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Abstract: Simulations by Finite element analysis (FEM) of open die forging process related to 
different configurations are quite common in industry to optimize the process. This approach, anyway, 
is relatively slow to be performed: hence it is not suitable for online optimization of the forging 
processes. In this paper a simplified approach is proposed aimed to describe the plastic strain at the 
core of the forged component. The proposed approach takes into account the plastic deformation at the 
core of the forged component and consists on a thermo-mechanical FEM model implementation 
allowing to define a set of equations giving as output the plastic strain at the core of the piece as a 
function of the forging parameters. An Artificial Neural Network (ANN) is trained and tested aimed to 
relate the equation coefficients with the forging to obtain the behavior of plastic strain at the core of the 
piece. 
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1. Introduction 

Forged steels are a quite promising material family, both from a scientific and commercial point 
of view, based on the several and quite different applications they can be devoted to [1]. In this 
framework, it is quite important to focus on the relations between mechanical properties and 
microstructural features in order to understand how to process the material in order to achieve   
them [2–6]. Forged materials are widely used in the machining and forming industry [7–9], in 
automotive sector [10], and in other applications including aerospace, transport, and precision 
industries [11–13]. In addition, as the energy and power engineering industry grow large-sized 
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hot-forged products demand has also increased. This includes turbine shafts (water, gas, steam), 
rotors for wind, and gas power generators [14]. Based on data from EUROFORGE (an organization 
that associates European production associations, including the Polish Forge Association), the 
volume of forged products has been growing steadily, and in 2021 it will reach over 10 million tons. 
The global forging market is likely to grow significantly at a CAGR (Compound Annual Growth 
Rate) of close to 8%, reaching USD 111.1 billion by 2020, according to Technavio’s latest report [14].  

In all the above applications, forged steels are used based on a requirement asking for increasing 
manufacturing economic efficiency and improved mechanical properties, such as high strength, wear 
resistance, hardness, and toughness [15,16].  

Free forging is the more common forging technology commonly adopted to forge heavy charge 
materials in short production runs. High-pressure hydraulic forging presses are on the other hand 
used in open die forging of heavy steel forgings (carbon, alloy, high-alloy, stainless and other steels). 
Open die forging is an incremental forging technology mainly adopted to manufacture large 
components asking for improved tensile properties and toughness behavior together with reliability 
of the forged parts [17]. In the steel industry, there is a strong need to produce large components 
characterized by high weight, calling for high press loads. Such components can be spindles, rolling 
mills rolls as well large turbine shafts and nuclear reactor vessels [18,19]. In the open die forging 
process the workpiece is processed using flat or shaped dies. The piece is subjected to a high 
temperature plastic deformation. Both the component geometry and internal properties are affected 
by the above process [20].  

Cavities and porosities amount (coming from the casting process) is reduced by forging process. 
This allows to manufacture almost defect free components thus assuring homogeneous plastic strain 
in the piece [21,22]. The open die forging process quality is affected by many different parameters 
(e.g., die width and shape, ingot shape and size, temperature gradient, pass schedule, and so on [23]). 
In order to achieve the requirements in term of geometric tolerance and internal quality, it is common 
practice to set up an adequate pass schedule previously verified by means of numerical simulations. 
In order to do that, in the case of forging sequence design and optimization, it is necessary to 
simulate many different configurations with the aim to identify the best solution. FEM is one of the 
most commonly adopted approach. Anyway, it is well known that such approach requires significant 
efforts in terms of both computational resources and time [24,25].  

Following to the above limitation, it is useful to develop fast calculation models of the open die 
forging process allowing to perform a rapid calculation of material properties during the layout of the 
process as well for the online monitoring of the process.  

In the past, some authors dedicated to the development of fast models oriented to open die 
forging process optimization [26–30]. The common idea at the base of the above works was to 
develop process models able to combine data from online measurements and a simplified 
plasto-mechanical model for the forecasting of the equivalent strain, strain rate, and the temperature 
in the core of the forged piece. The final aim of such models is to optimize the stretching forging not 
only from a geometric point of view but also in terms of final microstructure, internal quality (e.g., 
casting porosity closure), working temperature to avoid phase transformation during the mechanical 
processing. Kim et al. [27] developed forging pass schedule algorithms based on artificial neural 
networks (ANN) are mainly oriented to calculate the optimum number of passes and reduction in 
each pass to economize power and minimize the forging cycle time. The algorithms were trained on 
the experimental data from pilot and full-scale industrial forging. 

Starting from the approach reported in [28–30], an innovative formulation based on Artificial 
Neural Networks (ANN) [31,32] is here proposed aimed to quickly (fraction of a second) and 
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correctly evaluate the plastic strain at the core of the forged component. Starting from the 
coefficients for the new analytical model, a neural network has been implemented and trained using 
analytic coefficients. This allows to calculate the plastic strain occurring during the forging process. 
The correct evaluation of plastic strain at the core fiber of the forged steel component is a key 
parameter to be considered in a tool which targets at the internal integrity of the material or the final 
microstructure optimization. 

2. Materials and methods 

2.1. FEM model for open-die forging of 42CrMo4 steel grade 

The open die forging of large components is a very complex issue characterized by a sequence 
of several forging operations including upsetting, cogging, drawing. Furnace soaking to reheat the 
pieces between deformation steps also needs to be taken into account. In such complex process quite 
important is the ability to predict microstructure evolution with the aim to target the final target 
properties. In the stretching forging process, the pass sequence is roughly square or round to octagon 
to round, where the reduction ratio only varies every second pass. In the considered pass sequence, 
the round is forged to an oval section with a given height reduction, turned 90°, and then forged 
again with the same reduction and same bite ratio, producing a square cross-section. The final 
achieved square bar is now forged into an octagonal bar. This represents an intermediate shape 
between square and round. As a final step. the round bar is manufactured in single and consequent 
passes by deforming the octagonal bar. The octagonal bar has a greater cross-sectional area than the 
final round bar. The round bar is then finished in a round-contoured die during the finishing passes. 
Simulation of the stretching forging process of a 42CrMo4 steel has been performed by FE model 
developed using the commercial code MSC.Marc. Such code is well known for being characterized 
by a high accuracy tool for closed and open die forging process simulation [33–35]. The strokes start 
in the central part of the piece and proceed until the 4th. Accurate predictions from the model calls for 
proper material models able to describe the flow stress. This is why, laboratory compression tests are 
usually performed by means of Gleeble on cylindrical specimens with different temperatures, strains, 
strains rates, post deformation holding times to characterize the flow stress, static recrystallization 
and grain size evolution during forging. The rheology has been modelled following [36,37] model.  

At a first stage, some forging key parameters have been chosen in order to simulate the 
deformation process, such as: ingot diameter D, contact die length Sb0, forged piece temperature, 
percentage reduction. The chosen die has a flat shape, and the numerical values of the parameters 
adopted to implement the FEM model are shown in Table 1, which corresponds to about 600 
simulations after DOE. The DOE considered method is based on a linear model with an additional 
term aimed to take into account possible interaction between factors. 

Table 1. Parameters of FEM simulation for stretching forging process for round ingot. 

Forging parameter Minimum value Maximum value Step 
Temperature (°C) 800 1200 100 
Sb0 (mm) 150 750 150 
Reduction (%) 5.0 25.0 2.5 
ΔSb0 (%) (Pitch (%) respect Sb0) 10 (90%) 50 (50%) (20%) 
Ingot initial diameter (mm) 300 1500 300 
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The model was implemented considering a double symmetry in longitudinal and radial 
directions and a constraint in order to take into account the presence of the manipulator during the 
forging process. Calculations were carried out considering isothermal condition, without exchange 
between ingot and external environment and tools in order to separate the thermal effect from the 
mechanical one on the plastic strain at the core of the ingot. 

2.2. Analytical model for open die process simulation 

A preliminary analysis of FEM results in terms of plastic strain at the core of the forged piece 
(Figure 1) has been carried out in order to represent the plastic strain at the center of the piece. An 
example of output of the FEM thermo-mechanical simulation is reported in Figure 2. In such plot the 
plastic strain evolution as a function of length at 1200 °C, Sb0 = 300 mm, reduction = 25% is 
reported. Figure 2 shows how the simulated forging process is characterized by a first stroke with a 
major contact zone since the material is not yet deformed. The last three strokes follow the Same 
evolution characterizes the following strokes. In this paper a separation of the strokes has been 
performed aimed to distinguish each one. This will allow to separately apply the analytical model 
and the neural network. In addition, since a similar behavior in terms of maximum plastic strain is 
reported for strokes from 2nd to 4th, only the first and the second strokes are considered in the 
analysis.  

 

Figure 1. Schematic representation of forged piece simulated; results have been token at 
the core of the piece in terms of plastic strain as a function of the length. 

 

Figure 2. Evolution of plastic strain as a function of length at 1200 °C, Sb0 = 300 mm, 
reduction = 25%, ingot diameter equal to 300 mm, pitch 90%. 
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A double sigmoidal function has been chosen to represent the evolution of the core fiber plastic 
strain of a single stroke [37–39]. The sum of two hyperbolic tangents (Eq 1) has been implemented 
in order to better reproduce the plastic strain evolution at the core of the forged piece along the ingot 
axis. The growth phase and decay phase of plastic strain are described by Eqs 2,3. Eq 1 varies from 0 
to 2 and is continuously derivable and defined throughout the Real numbers domain, therefore it can 
be used without problems in an optimization system.  

௧௢௧ߝ
௣  = M*(	tanh ቀ୶ି େభ

ୈభ
ቁ + tanh ቀെ ୶ି େమ

ୈమ
ቁ) (1)

ଵߝ
௣ = tanh ቀ୶ି େభ

ୈభ
ቁ (2)

ଶߝ
௣ = tanh ቀെ ୶ି େమ

ୈమ
ቁ (3)

Coefficients in equations 1, 2, 3 represent respectively:  
 C1 and C2: middle points of growth and decay phase respectively.  
 D1 and D2: slopes of the growth and decay branches of the function.  
 M is a multiplier coefficient. The Eq 1 varies in a range between 0 and 2, thus the coefficients 

M brings the maximum of double-sigmoidal curve to the maximum of plastic strain. 
C1, C2, D1, D2 and M have been calculated by fitting of double-sigmoidal model on the FEM 

results in terms of total equivalent plastic strain along the core fiber for each forging configuration 
considered in this analysis. The above obtained coefficients do not have an identified mathematical 
dependence by forging parameters. The fitting of mathematical model as shown by equation 1 to the 
individual conditions of the forging process could be carried out using a fragmented, look-up 
table-based approach. This approach has disadvantages due to the required size for the look-up tables 
and the lack of interpolation capability. The application of neural networks within the control strategy, 
setup model, and optimization tool has significantly reduced such kind of problems [40]. The 
obtained coefficients were used to train the proposed neural network. 

2.3. Forecasting models based on Artificial Neural Networks (ANNs) 

The artificial neural networks (ANNs) is a nonlinear regressive models, allowing the correlation 
between a set of independent variables and a set of dependent variables.  

Neural Networks are mathematical approaches able to learn from empirical data which are 
collected in some problem domain by approximating sample of it in a data set. This is done without 
any assumption about the physical laws. This correlation between variables is achieved through a 
training process during which a data set containing both independent and dependent variables is used 
to iteratively adapt the internal structure of the neural model to its purpose [41]. 

Many families of artificial neural networks are known, according to the learning and recall 
algorithms. The network adopted in this paper belongs to the Multi-Layer Perceptron (MLP) family 
based on Back Propagation (BP) learning algorithm [42]. Such algorithm turns to the best 
configuration of the weights. This is achieved by calculating the error between the target and the 
network response. The Root Mean Squared (RMS) error has been adopted as index of performance 
both for each single output variable and for the output as a whole.  

The performance of the selected approach is strongly dependent on data quality itself. In our 
case, no data duplication (similarities) or scattering are present in the data. This is guaranteed by the 



690 

AIMS Materials Science  Volume 8, Issue 5, 685–697. 

fact that data are given by results of a FE model and that simulations are defined by means of a DOE. 
This allow to avoid any correction (elimination of similarities) or filtering action [41,42]. Clustering 
analysis was carried out in order to define and identify the cluster, and then for the definition of best 
neural network topology and number of neural networks. The independent variables of ANN are the 
forging parameters in terms of forged component temperature and diameter, Sb0, fitch, reduction and 
stroke number while the output is in terms of the coefficients of double-sigmoidal function that 
models total equivalent plastic strain. Input and output data have been normalized within the range 0 
and 1 with a linear function between the minimum and maximum value of each quantity, Table 2. 

Each node in ANN is fully connected to the nodes of the following layer (hidden or not) through 
a sigmoidal transferring function and weights whose value is adapted during the learning phase to 
encode on them the knowledge of the forging process described by the used dataset [42]. The 
implemented ANN is composed of 1 bias node and a single hidden layer characterized by 13 hidden 
nodes, determined by the formula: l = sqrt(p + q + k), considering the smallest hidden layer error. 

The initial data, that consisted in about 600 examples, has been divided into three groups: 
 Training: about 400 examples 
 Validation: about 150 examples 
 Test: about 50 examples 

The examples have been subdivided considering the three main clusters identified during the 
data analysis. 

Table 2. Normalized values for artificial neural network. 

Variable Min value Max value Min normalized value Max normalized value 
Sb0 75 750 0.1 0.9 
Temperature 800 1200 0.1 0.9 
Reduction (%) 5 25 0.1 0.9 
C1 −384 −28 0.1 0.9 
D1 19 60 0.1 0.9 
C2 9.5 350 0.1 0.9 
D2 27 60 0.1 0.9 
M 0 0.24 0.1 0.9 

3. Results and discussion 

The comparison between equation 1coefficients calculated by FE model and by ANN related to 
the 50 examples used for the tests are shown in Figures 3 and 5. The figures show how data groups 
into three identified cluster. The scatter plot related to the C1 and C2 coefficients adopted to train the 
ANN coefficients, and the coefficients trained by ANN is shown in Figure 3a,b. Also, R2 coefficient 
is reported in such figures. Results show a poor dispersion. A good agreement between the 
coefficient forecasted by ANN and fitting on FE results is confirmed. As a matter of fact, concerning 
C1, the R2 is approximately 1. Looking at Figure 4 and Figure 5, it is possible to put in evidence that 
the R2 coefficient is always high. In particular, it never falls below 0.997. 
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Figure 3. Plot of C1 from the analytical model C1 (target) versus the ANN trained C1 in 
blue with error bands at +5% and –5% in grey (a) and the analytical model C2 (target) 
versus the ANN trained C2 in blue with error bands at +5% and –5% in grey (b). 

 

Figure 4. Plot of D1 from the analytical model D1 (target) versus the ANN trained D1 in 
blue with error bands at +5% and –5% in grey (a) and the analytical model D2 (target) 
versus the ANN trained D2 in blue with error bands at +5% and –5% in grey (b). 
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Figure 5. Plot of M from the analytical model M (target) versus the ANN trained M in blue 
with error bands at +5% and –5% in grey. 

A comparison between FEM (black line), analytical model (as obtained by fitting of FEM data, 
red dot line) and analytical model with coeffects predicted by ANN (blue line) is reported in  
Figures 6–10 in terms of plastic strain dependence on arch length. The RMS deviation (green line) 
between the neural network and the analytical model results is also shown. The maximum RMS 
between the neural network and the analysis model is 14%. RMS curve shape (quite strict) is an 
indication of the consistency of the two approaches. 

 

Figure 6. Total equivalent plastic strain as a function of length for Sb0 = 150mm, 
reduction of 5%, first stroke at (a) 800 °C, (b) 1200 °C. 
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Figure 7. Total equivalent plastic strain as a function of length for Sb0 = 150mm, 
reduction of 25%, first stroke at (a) 800 °C, (b) 1200 °C. 

 

Figure 8. 42CrMo4. Flow stress curves by hot forming.  

 

Figure 9. Total equivalent plastic strain as a function of length for Sb0 = 300mm, 
reduction of 25% for first stroke at (a) 800 °C, (b) 1200 °C. 
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Figure 10. Total equivalent plastic strain as a function of length for Sb0 = 750mm, 
reduction of 25% for first stroke at (a) 800 °C, (b) 1200 °C. 

The above comparison for the case corresponding to initial ingot diameter equal to 300 mm, 
Sb0 = 150 mm, reduction = 5% at 800 °C and 1200 °C is shown in Figure 6a,b, respectively. The 
proposed modeling approach provides the possibility to have two different slopes of the growth and 
decay phase of plastic strain (e.g., different D1 and D2 coefficients). A similar behavior is reported in 
Figure 7, for the same initial ingot diameter and Sb0 = 150 mm. In this case higher reductions (25%) 
are considered. In this case two different temperatures (800 °C and 1200 °C) are compared. Figure 6 
and Figure 7 show a very poor temperature variation of maximum plastic strain and shape of plastic 
strain on core fiber in the case of (Sb0 = 150 mm). 

Differences on maximum plastic strain are equal to 1.4% and 4.4% for reduction rates of 5%  
and 25%, respectively, associated to a material softening from 800 to 1200 °C equal to 70% at strain 
= 0.3 and strain rate = 1 s–1 from 205 MPa to 62 MPa respectively (Figure 8). Such negligible 
rheological influence is related to isothermal hypothesis of FE forging modeling. Anyway, based on 
the above results, as a first approximation the proposed approach can be considered independent on 
the material properties. 

Same conclusions can be drawn from Figures 9,10: in these cases, 800 °C and 1200 °C 
temperatures are considered for Sb0 = 300 mm and 750 mm, respectively. As Sb0 increases the 
maximum plastic deformation value on core fiber increases. In addition, a strong shift away from the 
growth and decay branches of plastic strain is observed as Sb0/D ratio increases. Also in this case a 
good agreement is found between the ANN approach and FEM results. 

4. Conclusions 

A hybrid approach is proposed in this paper, able to describe the plastic strain behavior at the 
core fiber of an open die forged round shape component. Such approach considers the following 
parameters: ingot diameter, die length Sb0, stroke reduction and deformation temperature. A rapid 
tool faster than the commonly used FEM method but with the same accuracy class is the result of 
such approach. This makes therefore it suitable for the rapid design of online forging processes. 
Results show that in the first approximation the material properties can be neglected. They become a 
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key issue when geometrical and metallurgical effects are also considered in the optimization model 
of forging. The described approach proposes therefore a rapid method aimed to design and optimize 
a forging open die process, thus allowing its adoption in industrial applications. In particular, 
differences on maximum plastic strain are equal to 1.4% and 4.4% for reduction rates of 5% and 25%, 
respectively, associated to a material softening from 800 to 1200 °C equal to 70% at strain = 0.3 and 
strain rate = 1 s–1 from 205 to 62 MPa respectively. Such negligible rheological influence is related to 
isothermal hypothesis of FE forging modeling. Anyway, based on the above results, as a first 
approximation the proposed approach can be considered independent on the material properties. 
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