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Abstract: In the present paper, nanometer scale hydroxyapatite powders with a rod-like shape, were 
prepared using a combined ultrasonic and microwave heating-based method. Subsequent annealing 
of as-synthesized powders at 800 °C for 2 h produced nanoparticles with a rectangular and granular 
morphology. The hydroxyapatite particles were characterized using X-ray diffraction and Fourier 
transform infrared spectroscopy methods. Also, nanoparticle size and morphology were investigated 
using transmission electron microscopy and field emission scanning electron microscopy. A 
comparable selected area electron diffraction (SAED) analysis also showed results in line with X-ray 
powder diffraction patterns. The resulting X-ray diffraction peaks indicated that the powders were 
highly crystalline in nature and no impure phases were present. The X-ray diffraction data, was also 
used to study the effects of peak broadening by using the Williamson–Hall (W–H) analysis technique. 
The analysis used the uniform deformation model (UDM), uniform stress deformation model 
(USDM) and uniform deformation energy density model (UDEDM) to  determine physical 
parameters like crystallite size, lattice strain, stress and energy density. The results of the W-H 
analysis were found to be comparable to the results obtained from microscopy studies. Importantly, 
the studies confirmed the synthesized nano- hydroxyapatite powders had morphologies similar to 
those found in dental hard tissues. 
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1. Introduction 

There is an increasing numbers of dental reports in the literature reporting the prevalence of 
periodontal diseases affecting a large portion of the global population. Human teeth are composed of 
three different types of calcified tissues, which categorizes teeth as hard tissue. These calcified 
tissues consist of enamel, dentine and cementum. The upper region of a tooth (above the gum) is the 
enamel-coated crown and directly experiences the tearing and grinding of food during mastication. 
The thin enamel coating (<1 mm) is brittle and the hardest material present in the human body. It is 
composed of calcium-deficient carbonate hydroxyl apatite (96 wt%), with the balance of the weight 
made up by organic materials and water [1]. While the underlying dentine, which is not as hard as 
enamel, is composed of a three dimensional organic scaffold structure reinforced by numerous 
embedded hydroxyapatite crystallites (~20 nm) [2].  

Naturally occurring hydroxyapatite (HAP) is a mineral composed of calcium phosphate groups 
that form a hexagonal lattice structure. The unit cell is expressed by the general formula of 
[Ca10(OH)2(PO4)6]. Chemical and crystallographic studies have shown the close physiochemical 
similarity between synthetic HAP and natural HAP found in both enamel and dentine [3,4]. The 
results of several studies have shown there are four advantages of using synthetic HAP in dental and 
medical procedures. These advantages include: (1) good biocompatibility with surrounding tissues; 
(2) slow biodegradability in situ; (3) good osteoconductivity, and (4) good osteoinductivity [5,6]. 
Interestingly, HAP-based pastes are currently used in dental procedures to treat surface 
discolorations, chips and voids in enamel, and as re-mineralizing agents in toothpastes [7,8]. While 
granular forms of HAP are currently used in dental procedures like: (1) restoration of periodontal 
bone defects [9]; (2) edentulous ridge augmentation [10]; (3) increasing the thickness of atrophic 
alveolar ridges; (4) filling bone defects after cystectomy; (5) endodontic treatment procedures such 
as repairing bifurcation perforations and pulp-capping [11,12] and (6) dental implant coating [13]. 
Because of the close chemical similarity between synthetic HAP and natural HAP, research has 
focused on developing new methods for synthesizing synthetic HAP with specific physiochemical 
properties suitable for use in preventative and restorative dental procedures. In recent years 
nanotechnology-based techniques have been able to synthesize functionalized nanomaterials with 
tailored and enhanced properties. Thus, making the properties of these new nanomaterials superior to 
the properties of their bulk equivalents [14,15].  

In this article, we discuss the properties of a synthetic nanometer scale hydroxyapatite 
(nano-HAP) powder that was synthesized using a combined ultrasonic and microwave assisted 
method as a potential restorative material for dental procedures. X-ray peak analysis plays an 
important role in estimating the microstructural quantities such as crystallite size and lattice strain 
and correlate them to the observed material properties. Crystallite size and lattice strain both affect 
the Bragg peak in different ways, for instance, crystallite size varies as 1/cosθ while the strain varies 
as tanθ from the peak width [16]. The Williamson–Hall based X-ray peak analysis technique was 
used to determine powder properties like crystallite size (D(hkl)), lattice strain (ε), stress (σ) and 
energy density (u). The analysis utilized the uniform deformation model (UDM), uniform stress 
deformation model (USDM) and uniform deformation energy-density model (UDEDM) to generate 
an idea about stress-strain relation and strain as a function of energy density (u). A comparative 
evaluation of the particle size of nano-hydroxyapatite rods obtained from TEM, SEM, SAED 
measurements and from powder X-ray diffraction peak broadening is also reported in present 
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research. Furthermore, Fourier transform infrared spectroscopy (FT-IR) was used to identify 
functional groups, their respective vibration modes and possible impurities in the samples. Elemental 
analysis of the samples was investigated using energy dispersive spectroscopy (EDS). While 
transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) 
were used to determine the overall size and shape of the respective samples. 

2. Materials and methods 

2.1. Materials 

All chemicals used in this study were procured from Chem. Supply (Australia) and Sigma 
Aldrich (USA). The aqueous reagents were prepared using Milli-Q® water (18.3 MꞏΩꞏcm−1) 
produced by an ultrapure water system (Barnstead Ultrapure Water System D11931; Thermo 
Scientific, Dubuque, IA). Chemical synthesis was carried out using a Hielscher Ultrasound Processor 
UP400s operating at maximum power of 400 W and 24 kHz. 

2.2. Methods 

2.2.1. Preparation of nanometer scale hydroxyapatite powders  

Formulation of nano-HAP began by decanting a 40 mL solution of 0.32 M Ca(NO3)2ꞏ4H2O into 
a small beaker and then kept under ultrasonic irradiation. The ultrasound processor used was a 
UP400S supplied by Hielscher Ultrasound Technology (Teltow, Germany). The processor was fitted 
with a 22 mm diameter sonotrode operating at 24 kHz and set to maximum amplitude and operating 
power of 200 W. During the ultrasonic processing (1 h), the solution pH was maintained above 9 
using a 5 mL of NH4OH solution that was added at regular intervals. Then a 60 mL solution of 0.19 M 
[KH2PO4] was slowly added drop-wise to the above solution under ultrasonic irradiation conditions. 
The mixture was then subjected to ultrasonic processing for a further 20 min. The solution pH was 
kept above 9 and the Ca/P ratio of 1.67 was maintained throughout the process. After processing, the 
mixture underwent centrifugation at 3500 rpm for 20 min to separate the white precipitate that had 
formed during processing from the mixture. Following centrifugation, the white precipitate 
underwent washing with Milli-Q® water several times. The precipitate was then heated in a 240 V 
and 50 Hz microwave oven (Model TMOSS25) operating at 900 W and 2450 MHz for a 12-minute 
treatment period. After treatment, samples were ground to the consistency of an ultrafine powder 
using mortar and pestle. After powder grinding, a selection of powders were annealed at 800 °C for 2 h. 
All powders were then studied using advanced characterization techniques. 

2.2.2. X-ray powder diffraction studies 

X-ray Diffraction (XRD) spectroscopy was carried out on all powder samples using a GBC® 
eMMA X-ray Powder Diffractometer (CuKα = 1.54056 Å radiation source) operating at 35 kV   
and 28 mA. Diffraction patterns were recorded over a 2θ range starting at 10° and finishing at 80°. 
The incremental step size used over the 2θ range was 0.04° and the acquisition speed was 1°ꞏmin−1. 
From the resulting XRD patterns, the Bragg peak positions were identified and compared to those 
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reported in the ICDD (International Centre for Diffraction Data) databases and were assigned the 
appropriate Miller indices. Peak broadening data from the XRD patterns were studied using the 
Williamson–Hall (W–H) analysis technique to determine physical parameters like crystallite size, 
strain, stress and energy density. 

2.2.3. Fourier transform infrared spectroscopy (FT-IR) 

Fourier transform infrared spectroscopy (FT-IR) was used to identify functional groups and 
their respective vibration modes present in the samples using a PerkinElmer FT-IR/NIR 
Spectrometer Frontier fitted with a universal signal bounce Diamond ATR attachment. The dry 
samples were thoroughly mixed and placed onto the FTIR top-plate sample holder using the pressure 
arm accessories. FT-IR spectra were recorded over the wavenumber interval of 400 to 4000 cm−1 
with a resolution step of 1 cm−1.  

2.2.4. Electron Microscope and Energy Dispersive Spectroscopy 

Initial particle size and shape were obtained from a JEOL JCM-6000, NeoScopeTM electron 
microscope. Prior to imaging, samples were dried, fitted to holders using copper adhesive tape and 
sputter coated using an E5000 sputter coater (Polaron Equipment Ltd). The deposited coating 
consisted of a 2 nm layer of platinum to prevent charge build up. While the energy dispersive 
spectroscopy (EDS) attachment of the NeoScopeTM electron microscope was used for the elemental 
analysis of each sample. High resolution sample images were taken using a field emission scanning 
electron microscope (FESEM: FEI-Verios 460 XHR) operating at 5 kV, with 0.10 nA current and 
operating under secondary electron mode. The immersion lens in the FESEM column and FEI 
imaging software were used for generating nanometer scale images. Morphological analysis of the 
samples were done using an FEI-TITAN G2 80-200 Transmission Electron microscope (TEM) 
operated at 200 kV bright-field mode (installed at Centre for Microscopy, Characterization and  
analysis, University of Western Australia). 

3. Results and discussions 

3.1. XRD and Williamson–Hall based X-ray peak analysis 

Representative XRD patterns for as-synthesized stoichiometric nano-HAP powder and a 
subsequently annealed sample are presented in Figure 1. Both samples clearly display several 
diffraction peaks that indicate a polycrystalline structure. The observed peak positions in the 
respective patterns were indexed and compared to those reported by the Joint Committee on Powder 
Diffraction Standard (JCPDS No. 09-0432) for pure hexagonal crystalline hydroxyapatite.  
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Figure 1. XRD patterns of nano-HAP: (a) as synthesized and (b) after annealing at 800 °C for 2 h. 

In each case the appropriate Miller indices were assigned to the respective peaks as seen in 
Figure 1. Also seen in Figure 1 are changes in intensity and sharpness of the peaks in the annealed 
pattern compared to the as-synthesized sample. This clearly indicates improved crystallinity and 
increased crystallite size in the annealed sample. This feature has also been seen in similar studies 
reported in the literature [15,17]. The crystallinity of the samples was also confirmed by the ring 
patterns generated by selected area electron diffraction (SAED). A representative SAED pattern is 
presented in Figure 2a. Importantly, the presence of impurities, if any, were well below the detection 
limit of X-ray diffractometer and subsequent analysis. Crystallite sizes were calculated using both 
the Scherrer (DS(hkl)) Eq 1 and the Williamson–Hall (D(hkl)) Eq 2. In addition, the Williamson–Hall 
analysis technique was also used to determine strain (ε), stress (σ) and anisotropic energy density (u). 

𝐷  
𝑘𝜆

𝛽 cos 𝜃
 (1)

𝛽   cos 𝜃
𝑘𝜆

𝐷
4𝜀 sin 𝜃 (2)

where λ is the wavelength of the monochromatic X-ray beam and k is the crystallite shape constant k, 
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which is 0.9 for spherical crystals with cubic unit cells. And β is the Full Width at Half Maximum 
(FWHM) of the peak at the maximum intensity, θ(hkl) is the peak diffraction angle that satisfies 
Bragg’s law for the (hkl) plane, ε is the strain, and Ds(hkl) and D(hkl) are the respective crystallite sizes.  

 

Figure 2. (a) SAED pattern of the as-synthesized hydroxyapatite crystals; (b) 
representative EDS elemental analysis. 

Equation 2 represents the uniform deformation model (UDM) and assumes strain is uniform in 
all crystallographic directions and material properties are independent of the direction along which 
measurements are made. Thus, plotting 4sinθ along the x-axis and β(hkl)cosθ along the y-axis enables 
a linear fit to the data. From the plot both slope (ε) and (y-intercept) crystallite size (D(hkl)) can be 
estimated. The plots are illustrated in Figure 3 and the calculated (D(hkl)) and ε values are presented in 
Table 1. The crystallite surface stress was calculated using the Uniform Stress Deformation Mode 
(USDM), which assumes linear proportionality between stress and strain, thus obeying Hooke’s law: 
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𝑌
𝜎
𝜀

 (3)

where Y is the modulus of elasticity or Young’s modulus. Thus, substituting Eq 3 into 2 and 
rearranging gives Eq 4: 

𝛽   cos 𝜃
𝑘𝜆

𝐷
4𝜎 sin 𝜃

𝑌
 (4)

In hexagonal crystallites like hydroxyapatite the elastic modulus Y(hkl) is dependent on 
crystallographic direction (normal to the set of (hkl) crystal lattice planes) and is expressed by Eq 5: 

 

(5)

where the elastic compliances for the respective crystallographic directions are S11 = 7.49 × 10−12, S33 
= 10.9 × 10−12, S44 = 15.1 × 10−12 and S13 = −4.0 × 10−12 m2ꞏN−1 [18]. Thus, plotting 4 sinθ/Y(hkl) 
along the x-axis and β(hkl) cos θ along the y-axis produces a linear graph in which the slope (σ) and 
crystallite size (D(hkl)) can be estimated. The plots are illustrated in Figure 3 and the calculated (D(hkl)) 
and σ values are presented in Table 1. The anisotropic energy density (u) was estimated using the 
Uniform Deformation Energy Density Model (UDEDM), which modifies Eq 2 by substituting the 
strain energy for an elastic crystallite following Hooke’s law, Eq 6 to produce Eq 7 below: 

𝑢
𝜀 𝑌

2
 (6)

𝛽   cos 𝜃
𝑘𝜆

𝐷
4 sin 𝜃

2𝑢
𝑌

 (7)

Then plotting β(hkl)cosθ along the y-axis and 4sinθ(2u/Y(hkl))
1/2 along the x-axis, the anisotropic 

energy density u was estimated from the slope and the crystallite size was determined from the 
y-intercept. The plots are illustrated in Figure 3 and the calculated (D(hkl)) and u values are presented 
in Table 1. 



366 

AIMS Materials Science  Volume 8, Issue 3, 359–372. 

 

Figure 3. Plots of β(hkl)cosθ versus 4sinθ; β(hkl)cosθ versus 4sinθ/Y(hkl) and β(hkl)cosθ 
versus 4sinθ(2u/Y(hkl))

1/2 for as synthesized samples (a, c, e) and annealed (800 °C) 
samples (b, d, f). 

Table 1. XRD peak analysis results of samples before and after annealing. 

Sample Scherrer(002) 

(nm) 

UDM methods USDM methods UDEDM methods 

D(hkl) (nm) ε × 10−3 D(hkl) (nm) σ (MPa) D(hkl) (nm) u (kJ/m3)

As synthesized 23.28 26.35 2.586 16.81 55.28 20.28 19.03 

Annealed at 800°C, 2h 29.11 32.75 0.549 30.43 38.65 32.1 10.99 

Also calculated from the XRD data were the lattice constants (a, c) and the unit cell volume (V) 
of the respective samples using Eqs 8 and 9: 

1
𝑑

4
3

 
ℎ ℎ𝑘 𝑘

𝑎
𝑙
𝑐

 (8)
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𝑉
√3 𝑎 𝑐

2
0.866 𝑎 𝑐 (9)

The calculated lattice constants and unit cell volumes obtained for the samples are presented in Table 2.  

Table 2. Lattice parameters & unit cell volume of samples before and after annealing. 

Sample Lattice parameters Unit cell volume 
a (Å) c (Å) V (Å3) 

As synthesized 9.4256 6.8933 530.351 
Annealed at 800 °C for 2 h 9.4191 6.8988 530.042 

Both Scherrer and Williamson–Hall analysis techniques revealed the product formed by 
annealing tended to have an increased crystallite size as seen in Table 1. The Williamson-Hall 
analysis also revealed the annealing process also reduced the strain in the crystalline structure. For 
instance, as seen in Table 1, the strain in the as-synthesized sample was 2.586 × 10−3. But after 
annealing the sample strain was reduced to 0.549 × 10−3. Similarly there was also a reduction in 
crystallite surface stress. As seen in Table 1, stress in the as-synthesized sample was 55.28 MPa and 
after annealing it was reduced to 38.65 MPa. There was also a corresponding reduction seen in 
energy densities. With the energy density reducing from 19.03 kJ/m3 for the as-synthesized sample 
down to 10.99 kJ/m3 for the annealed sample. Similar property changes resulting from annealing 
have also been reported in comparable studies by other researchers [19,20]. Also investigated were 
the lattice parameters and unit cell volumes of the samples. The results of the analysis is presented in 
Table 2 and reveals very little difference between the samples. A similar result was reported for a 
comparable study using similar annealing temperatures by Chaikina et al. [21].  

3.2. Furher characterisations techniques 

3.2.1. FTIR 

FT-IR spectroscopy studies were carried out on all samples to confirm functional groups 
associated with the formation of the synthesized crystalline powders. Importantly, the studies 
revealed the absence of impurities in the samples. The studies also revealed a sharpening of the 
bands after annealing, which was an indication of increasing crystallinity, as seen in Figure 3. The 
as-synthesized spectra (a) in Figure 4 shows a number of characteristic bands normally associated 
with HAP. Moving from right to left, the bands occurring at 564 cm−1 and 601 cm−1 are the result of 
O–P–O vibrational modes. At 632 cm−1 a weaker hydroxyl vibrational mode was detected, while at 
832 cm−1 there was a weaker band indicating the presence of carbonates. The next band was located 
at 961 cm−1 and indicates the symmetric stretching vibrations of the P-O mode. While the stronger 
bands located at 1032 cm−1 and 1092 cm−1 correspond to the (PO4)

3– functional group, and the 
weaker band located at 1384 cm−1 corresponds to the (CO3)

2– functional group. The smaller band 
located at 1644 cm−1 also corresponded to a (CO3)

2– functional group. The presence of carbonates in 
the samples is the result of interactions between the nano-HAP precursor alkaline solution and 
atmospheric carbon dioxide. This peak has been seen in several other comparable studies and 
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reported in the literature [22,23]. While the band located at 3432 cm−1 indicated the presence of 
absorbed water and the weaker band located at 3570 cm−1 corresponded to the vibrations of OH– ions 
in the nano-HAP lattice. The slightly sharper bands in the annealed sample (b) indicates improved 
crystallinity of the nano-HAP and has been reported in the literature [24]. The absence of bands    
at 1644 and 1384 cm−1 is due to the loss of carbonate ions during heating in air and is typical when 
annealing temperatures are above 700 °C [25]. In addition, the loss of the broad band at 3432 cm−1 in 
the annealed sample is due to the loss of adsorbed water during the annealing process. In addition, 
EDS analysis of the samples was carried out during the manufacture of the nano-HAP and confirmed 
the elemental Ca/P ratio was maintained at 1.67 during synthesis. The analysis also confirmed the 
absence of impurities in the samples and the synthesis process produced high quality nano-HAP 
powders. Thus, confirming the results of the FT-IR spectroscopy studies. A representative EDS 
spectrum is presented in Figure 2b. 

 

Figure 4. FTIR spectra: (a) as-synthesized nano-HAP and (b) nano-HAP annealed at 800 °C for 2 h. 

3.2.2. Electron Microscopy confirmation 

Moreover, to confirm the size and crystallinity of the HAP, electron microscopy was used. A 
high resolution TEM investigation was carried out on the as-synthesized nano-HAP powders and 
representative images are presented in Figure 4a,b. The nano-HAP particles were rod-like in shape 
with diameters ranging from 18 nm up to 30 nm, and lengths ranging from 130 nm to around 200 nm. 
The average aspect ratio of the particles was found to be typical around 1:7. The particles tended to 
cluster to form large agglomerations as seen in Figure 5b. The SAED pattern (Figure 5a) also 
corresponded to the crystal planes as observed by XRD analysis. The rings on the SAED pattern 
belonged to (200), (111), (002), (102), (210), (112), (300), (202), (301), (130,310) and (222) crystal 
planes with d-spacing of 0.404 nm, 0.385 nm, 0.349 nm, 0.329 nm, 0.308 nm, 0.278 nm, 0.270 nm, 
0.260 nm, 0.254 nm, 0.227 nm and 0.191 nm, respectively. It should be noted that the crystal planes 
observed through SAED analysis were in comparison to the planes observed by X-ray powder 
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diffraction. Similar as-synthesized nanoparticle sizes were also seen in FESEM images, as seen in 
Figure 5c. 

 

Figure 5. (a) Transmission Electron Micrographs of as-synthesized nano-HAP particles; 
(b) clustering of as-synthesized particles; (c) representative FESEM image of highly 
agglomerated as synthesized nano-HAP, and (d) SEM showing the physical effect on 
HAP sample as a result of annealing at 800 °C. 

Figure 5c also confirms the tendency of the nanoparticles to cluster and form dense 
agglomerations. Figure 5d presents a representative FESEM image of an annealed (800 °C) sample. 
Inspection of the image reveals a different particle size range and morphology compared to the 
non-annealed samples. The annealed nanoparticles have a granular and a rough irregular rectangular 
morphology, with sizes ranging from 70 to 150 nm. Importantly, the present study has demonstrated 
the combined ultrasonic and microwave based synthesis procedure is capable of producing two 
different morphological types. Purely ultrasonic synthesis methods generally produce spherical 
morphologies. But the present study has shown the additional microwave irradiation step promotes 
an orientated crystal growth to produce rod-like shaped nano-HAP particles. Furthermore, 
subsequent annealing of powder samples at 800 °C also generated morphological changes in the 
nanoparticles. However, lower annealing temperatures of around 400 °C (images not shown) did not 
show any morphological changes in the powders. In order to understand the morphological approach 
of using synthesized nano-hap powders as a potential dental restorative system, the micrographs of 
synthesized hydroxyapatite crystals were compared to the scanning electron micrographs of 



370 

AIMS Materials Science  Volume 8, Issue 3, 359–372. 

extracted human wisdom tooth (shown in Figure 6). The representative images show a cross section 
of chipped tooth enamel detailing the fine needle shaped micro-structures and architecture. 

 

Figure 6. (a) Optical image of extracted human wisdom tooth, (b) Schematic 
representation of area chipped on tooth and respective scanning electron image of area 
highlighted, (c), (d) and (e) are scanning electron micrographs of highlighted areas as 
shown in respective schematic diagrams. 

4. Conclusion 

Highly crystalline pure nano-HAP powders were successfully synthesized using a combined 
ultrasonic and microwave heating based method. During the ultrasonic synthesis stage, the reaction 
mixture pH was stabilized at 9 and the Ca/P ratio of 1.67 was maintained. After the microwave 
heating treatment, the nano-HAP powders were found to be highly crystalline in nature and were 
rod-like in shape. The average aspect ratio of the particles was found to be around 1:7, with 
diameters ranging from 18 nm up to 30 nm. Annealing for 2 h at 800 °C transformed the nanoparticle 
morphology to a rough irregular rectangular and granular nature, with sizes ranging from 70 to 150 nm. 
There was good agreement between the crystallite size values estimated by Williamson–Hall analysis 
methods like (UDM), (USDM) and (UDEDM). With the annealed sample showing the closest 
agreement between crystallite size for the respective models. The calculated crystallite size of all 
models tended to be larger than those predicted by the Scherrer method. The present study also found 
instrumental effects and lattice strain in the samples can significantly contribute to X-ray peak 
broadening. Thus, in the case of nanomaterials, both instrumental and lattice strain broadening must 
be taken into account when calculating microstructural parameters like crystallite size, lattice strain, 
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stress and energy density. The study has also demonstrated that nano-HAP powders with crystallite 
sizes and morphologies similar to those found in dental hard tissues can be synthesized using the 
combined ultrasonic and microwave heating-based method presented in this article. 
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