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Abstract: The surface roughness model for predicting surface roughness during machining is built in 
order to deal with time constraints of adjusting and testing. This study aims to achieve this purpose. 
The 9XC steel turning experiment is performed on a CNC lathe with the cutting tool is Titanium 
Nitride-coated. The input parameters selected for the test matrix include cutting velocity, feed rate, 
depth of cut and tool nose radius. The experiments were carried out based on Central Composite 
Design (CCD) with 29 trials. The analysis of results using Minitab software reveals that feed rate is 
the most influential parameter, while the others have a negligible impact on surface roughness. The 
response surface method (RSM) is applied for modeling surface roughness. Johnson and Box-cox 
transformations are also used to develop two new models of surface roughness. The comparison of 
predicted results from these three models with experimental results shows that the Box-Cox-based 
model has the highest accuracy, followed by the Johnson while the model not using these 
transformation is the least. Mean absolute error and mean square error of the RSM-based model     
are 17.264% and 2.712% respectively; while they are 10.373% and 1.280% in the Johnson-based   
and 10.208% and 1.284% when using the Box-Cox transformation. 

Keywords: 9XC steel; surface roughness model; Titanium Nitride-coated cutting tool; John 
transformation; Box-Cox transformation 
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Abbreviations: vc: Cutting velocity; f: Feed rate; ap: Depth of cut; r: Tool nose radius; Ra: Surface 
roughness (Roughness average); RSM: Response surface method; MAE: Mean absolute error; MSE: 
Mean square error; CCD: Central composite design 

1. Introduction 

Turning is the most common of the cutting machining methods. Its workload accounts for 40% 
of the total machining and number of lathes makes up 25 to 35% of total machines in a cutting 
workshop [1]. Many factors affect the efficiency of the turning process such as surface roughness, 
dimensional accuracy, cutting force, cutting capacity, cutting heat, machining productivity, etc. And 
the surface roughness is significant to have an influence on the working ability and lifetime of the 
product and it is often chosen as a criterion to evaluate the efficiency of the turning process. Many 
studies were carried out to experiment with the effect of technological parameters on surface 
roughness when turning a workpiece with different materials. 

The impacts of cutting velocity, feed rate and depth of cut on surface roughness during turning 
operation of AISI 4140 steel with a PVD-coated cutting tool were constructed [2]. This study 
indicated that the feed rate is the parameter that has the greatest influence on the surface roughness, 
followed by the cutting velocity, while depth of cut has a negligible effect.  

Upon using coated carbide cutting tools for turning steel AISI 5140, the feed rate is the most 
influential parameter to surface roughness (accounting for 69.4%) in comparison with spindle speed 
and cutting edge angle [3]. When turning steel AISI 5140 by PVD coated carbide cutting tool, the 
feed rate is the most important parameter for surface roughness (accounting for 62.3%), followed by 
spindle speed, while depth of cut has nearly no effect on surface roughness [4]. 

When using coated carbide cutting tools for convenient steel AISI 5140, of the three parameters 
including cutting velocity, knife running and cutting edge angle, the amount of knife running is the 
most influential parameters to surface roughness (accounting for 69.4%) [3]. When conveniently 
steeling AISI 5140 with PVD coated carbide cutting tool, of three parameters including cutting 
velocity, knife run and cutting depth, knife running is the most influential parameters for surface 
roughness (accounting for 62.3%), followed by the impact of cutting velocity, while cutting depth 
has virtually no effect on surface roughness [4]. 

After implementing tests to find out how cutting velocity, feed rate, depth of cut and tool nose 
radius impact surface roughness using cutting tool coated with Al2O3 and TiC compounds for turning 
AISI 4140 steel, another study concluded: The feed rate and tool nose radius are the significant 
parameters [5]. 

The cutting velocity, feed rate and tool nose radius are found to importantly affect the surface 
roughness in turning process of EN 353 steel with the tungsten carbide-coated cutting tool, while the 
depth of cut are negligible [6]. Tests on the influence of cutting velocity, feed rate and depth of cut 
on surface roughness when turning titanium alloy TC11 with a carbide TiAlN coated cutting tool 
were implemented [7]. The feed rate is revealed to have the considerable impact on surface 
roughness, followed by cutting velocity. The depth of cut is fairly limited. When using the 41305A 
carbide cutting tool for turning 1Cr18Ni9Ti stainless steel, it was determined that the feed rate is the 
parameter that has the greatest effect on the surface roughness, followed by the cutting velocity while 
the depth of cut is not noticeable [8]. One study revealed that the cutting velocity and feed rate have 
a significant effect on the surface roughness and the depth of cut is negligible (for EN 8 steel and 
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CVD carbide cutting tool) [9]. In the test of turning Titanium-alloy workpiece with YG8 cutting tool 
(consisting of 92% tungsten carbide and 8% cobalt), the analysis results showed that influence of the 
feed rate on surface roughness was greater than the depth of cut and cutting velocity is the least 
among three cutting parameters [10]. When using the CNMG-type cutting piece for turning 
aluminum 6061, the input parameters to be considered include the tool nose radius, the feed rate and 
depth of cut. Their influence level to surface roughness is decreased correspondingly [11]. The 
effects of cutting velocity, feed rate and depth of cut on surface roughness when turning Inconel 718 
material with carbide-coated tool was experimented [12]. The feed rate is the greatest-impacting 
parameter, followed by the cutting velocity, and the depth of cut that is the least. When turning    
AISI 4340 steel with a tungsten carbide-coated cutting tool under minimum quantity lubrication 
(MQL) conditions, four parameters including the cutting velocity, the feed rate, the depth of cut and 
the tool nose radius were considered. Only first three of them have a significant influence on surface 
roughness [13]. 

Among three cutting parameters of the input in the test of turning Ti–6Al–4V using cubic boron 
nitride (CBN) tool, the cutting velocity is the one that has the greatest effect on surface roughness, 
followed by depth of cut. The feed rate is not noticeable [14]. The impact of cutting velocity,       
feed rate and depth of cut on surface roughness when turning using carbide-coated tool was 
experimented [15]. This study showed that the feed rate and cutting velocity are two parameters that 
have great significance for surface roughness. But the depth of cut does not have importance to it. 
When using CNMG 12 04 08-PM 4225 cutting tool for turning AISI 1020 steel, the feed rate is main 
parameter to impact surface roughness, followed by depth of cut while cutting velocity is the       
least [16]. 

In the turning process of AISI 410 steel using ceramic-coated tool (supplied by Ceratizit), 
cutting velocity, feed rate and tool nose radius all have a significant effect on surface roughness. In 
which, the feed rate is the most influential parameter followed by the tool nose radius and cutting 
velocity. The depth of cut is negligible in this case [17]. The experiment using the CBN insert for dry 
turning EN 31 bearing steel indicates that the feed rate is the major impact. The cutting velocity also 
has a significant effect on the surface roughness, following the feed rate while the depth of cut is 
inconsiderable [18]. 

9XC is a high-alloy steel, commonly used to make components with tensile loads such as 
screws, bolts, shafts, gears; hot forging details; moving components or gear, connecting rod of 
pistons; parts with abrasion resistance, high impact resistance, rollers, etc. Table 1 shows its 
designation according to several standards. 

Table 1. Designation of 9XC steel in several standards. 

Country Russian USA Britain Britain Japan Germany 
Standard GOST ASTM A29 EN 10250 BS 970 JIS G4103 DIN 
Grades 9XC 4340 36CrNiMo4/1.6511 EN24/817M40 SNCM439/SNCM8 150Cr14 

The research on surface roughness when turning some steel similar to 9XC is carried out by 
several studies. The operation of dry turning of EN24 steel using carbide cutting tool showed that all 
three cutting parameters including cutting velocity, feed rate and depth of cut have an influence on 
surface roughness: feed rate is the most considerable, followed by the cutting velocity while depth of 
cut has the limited impact on surface roughness [19]. When using multilayer CVD-coated 
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(TiN/TiCN/Al2O3) carbide inserts for turning AISI 4340 steel, the effect of feed rate is significantly 
greater than the cutting velocity and depth of cut on surface roughness [20]. When using the PVCD-
coated cutting tool for turning AISI 4340 steel, the cutting velocity and the feed rate have a 
considerable influence on the surface roughness. Increasing the cutting velocity reduces surface 
roughness. Decreasing the feed rate reduces it as well. Meanwhile, the depth of cut is insignificant to 
surface roughness [21]. 

The studies mentioned showed that cutting velocity, feed rate and depth of are often chosen as 
the input when conducting experimental research on the effect of these parameters on surface 
roughness during turning operation. The tool nose radius is also selected by some authors as the 
input parameter when researching the surface roughness of details during turning process. At the 
same time, the influence of cutting parameters on surface roughness is distinguished depending on 
the specific case of work piece and cutting tool material. It happens as well when turning steel which 
are similar to the 9XC. The authors of these studies also built surface roughness models using a 
method based on the relationship between surface roughness and cutting parameters and 
experimental research results. The method is called the response surface methodology (RSM). 

Titanium Nitride-coated cutting tool has high hardness, high antioxidant properties. This type of 
cutting tool is widely used in metal machining [22,23]. However, number of research on the impact 
of cutting parameters on surface roughness in the turning process using this type of cutting piece to 
turn 9XC alloy steel (or equivalent) is fairly limited to date. Therefore, this study conducted 
experiments to determine the influence of cutting velocity, feed rate, depth of cut and tool nose 
radius on surface roughness when turning 9XC alloy steel with Titanium Nitride-coated cutting tool. 
The analysis of experimental results determined the influence of cutting velocity, feed rate, depth of 
cut and tool nose radius on the surface roughness. The RSM method is also applied for modeling 
surface roughness. In order to improve the model's accuracy for surface roughness prediction, 
Johnson and Box-Cox transformations were applied in this study. For each transformation used, a 
new model of surface roughness is proposed. Then, these models were assessed on the basis of their 
accuracy. 

2. Experiment of turning 9XC steel 

2.1. Material 

The material used in the experiments is 9XC steel. Outer diameter and the sample length        
are 28 mm and 300 mm, respectively. The specimen is analyzed for spectrum and its chemical 
composition is introduced in Table 2. At a temperature of 20 oC, some basic features of this steel are 
presented in Table 3. Its specimens were heat-treated to reach a hardness of 52HRC. 

Table 2. Chemical composition and properties of 9XC steel. 

Element  C Si Mn Ni S P Cr Mo W V Ti Cu 
(%) 0.92 1.4 0.52 0.36 0.01 0.01 1.12 0.18 0.16 0.15 0.02 0.28 
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Table 3. Characteristics of 9XC steel. 

Elastic 
modulus at  
20 oC (GPa) 

Elongation  
(%) 

Poission’s 
ratio 

Tensile strength 
(MPa) 

Yield 
strength 
(MPa) 

Conefficient of 
thermal 
expansion (1/K)

Specific heat 
capacity  
(J/kgꞏK) 

Thermal 
conductivity 
(W/mꞏK) 

200–210 12 0.29 980 835 1.2 × 10−5 450 44.5 

2.2. Machine and cutting tool 

The experiments are implemented using CNC Doosan Lynx 220L lathe. Tungsten cutting tool 
coated with Titanium nitride from Kyocera (Korea) is used. Tool nose radiuses are 0.2 mm, 0.4 mm, 
0.6 mm, 0.8 mm and 1 mm. The five cuttin tools are labeled TNMG160402GP, TNMG160404GP, 
TNMG160406GP, TNMG160408GP and TNMG160410GP (Figure 1). Their rake angle, clearance 
angle, plane point angle, chip breaker angle are 7o, 5o, 75o, 7o, respectively. This type of cutting tool 
that has high hardness and temperature oxidation is commonly used in milling and turning so as to 
machine the workpiece with high hardness and heat resistance. Figure 2 presents some basic 
elements of the experimental system.  

 

Figure 1. Cutting tools. 

 

Figure 2. Basic elements of the experimental system. (a) Tool holder, (b) Three-jaw 
chuck, (c) Workpiece, (d) Cutting tool, and (e) Center. 

2.3. Experiment plan 

The experiments are intended to conduct based on the CCD. Each parameters is tested in 5 
levels, including −α, −1, 0, 1 and α. Where α = (2k)1/4, k is the number of parameters. Four 
parameters selected as the input of the experiments includes cutting velocity, feed rate, depth of cut 
and tool nose radius. Their values can be changed by the operator simply. The values of each input at 
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all the levels are shown in Table 4. They are within the value range recommended by the 
manufacturer of the cutting tools. The test matrix includes 2k of original points (at the levels of −1 
and 1), 2 × k of axial points (at −α and α level) and 5 central points (at the level of 0) as shown in 
Table 5. 

Table 4. Input parameters.  

Parameter Symbols Unit Value at levels 
−2 −1 0 1 2 

Cutting velocity vc m/min 50 75 100 125 150 
Feed rate  f mm/rev 0.04 0.06 0.08 0.10 0.12 
Depth of cut ap mm 0.2 0.3 0.4 0.5 0.6 
Tool nose radius  r　 mm 0.2 0.4 0.6 0.8 1.0 

Table 5. Test series matrix with code form of input parameters. 

No. vc f ap r　 
1 1 −1 −1 1 
2 0 0 −2 0 
3 −2 0 0 0 
4 −1 1 −1 −1 
5 −1 1 −1 1 
6 0 0 0 0 
7 −1 −1 1 −1 
8 1 −1 1 1 
9 −1 −1 −1 −1 
10 1 1 1 1 
11 0 0 0 −2 
12 −1 −1 1 1 
13 −1 1 1 −1 
14 1 1 1 −1 
15 0 0 0 0 
16 0 0 0 0 
17 0 0 0 0 
18 0 0 0 2 
19 1 −1 −1 −1 
20 1 −1 1 −1 
21 1 1 −1 1 
22 −1 −1 −1 1 
23 −1 1 1 1 
24 2 0 0 0 
25 0 2 0 0 
26 0 −2 0 0 
27 1 1 −1 −1 
28 0 0 2 0 
29 0 0 0 0 
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2.4. Measuring instrument  

Surface roughness measuring machine SJ-301 from Mytutoyo (Figure 3) was used to measure 
the roughness of the test specimens. Direction of the machine probe is parallel to the spindle of the 
workpiece (perpendicular to the direction of the cutting velocity vector). The standard length is 0.8 mm. 
Each specimen is measured at least three times. The roughness value of each test is the average of 
the successive measurements. 

 

Figure 3. Surface roughness measuring machine SJ-301. 

2.5. Machining condition  

In addition to adjusting the value of the cutting parameters according to the matrix, cutting fluid 
is also used in the machining process. It is CN32 industrial oil (made in Vietnam) which has 
concentration of 10% and irrigation flow rate of 12 liters/min. To eliminate the effect of tool 
corrosion on surface roughness, each cutting tool is only used for one trial.  

3. Result and discussion  

The result is presented in Table 6. Figure 4 shows the impact of parameters on surface 
roughness. It indicated that the feed rate has the greatest influence on surface roughness and it is 
similar when using the carbide cutting tool to turn EN24 steel [19]. When the feed rate increases 
from 0.04 to 0.06 mm/rev, the surface roughness decreases. However, when the feed rate increases 
from 0.06 to 0.12 mm/rev, the surface roughness increases rapidly. While cutting velocity, depth of 
cut and tool nose radius have the negligible impact on the surface roughness.  
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Table 6. Experiment matrix and result. 

No. vc (m/min) f (mm/rev) ap (mm) r (mm) Ra (µm) 
1 125 0.06 0.3 0.8 0.493 
2 100 0.08 0.2 0.6 0.773 
3 50 0.08 0.4 0.6 1.019 
4 75 0.10 0.3 0.4 1.411 
5 75 0.10 0.3 0.8 1.668 
6 50 0.08 0.4 0.6 0.470 
7 75 0.06 0.5 0.4 0.582 
8 125 0.06 0.5 0.8 0.886 
9 75 0.06 0.3 0.4 0.571 
10 125 0.10 0.5 0.8 0.818 
11 100 0.08 0.4 0.2 0.917 
12 75 0.06 0.5 0.8 0.538 
13 75 0.10 0.5 0.4 1.254 
14 125 0.10 0.5 0.4 1.142 
15 100 0.08 0.4 0.6 0.448 
16 100 0.08 0.4 0.6 0.470 
17 100 0.08 0.4 0.6 0.437 
18 100 0.08 0.4 1.0 0.942 
19 125 0.06 0.3 0.4 0.325 
20 125 0.06 0.5 0.4 0.638 
21 125 0.10 0.3 0.8 0.784 
22 75 0.06 0.3 0.8 0.638 
23 75 0.10 0.5 0.8 0.662 
24 150 0.08 0.4 0.6 0.706 
25 100 0.12 0.4 0.6 1.512 
26 100 0.04 0.4 0.6 0.837 
27 125 0.10 0.3 0.4 0.997 
28 100 0.08 0.6 0.6 0.818 
29 100 0.08 0.4 0.6 0.493 

 

Figure 4. Main Effects Plot for surface roughness. 
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4. Surface roughness models 

4.1. RSM-based model 

Based on the experimental results in Table 6, a model of the relationship between surface 
roughness and parameters of the input is established, as shown in Eq 1. Building up the mathematical 
relationship between input and output is known as the response surface method (RSM) [24]. This 
model is the basis for choosing the value of the parameters to ensure that the surface roughness 
achieves the desired value. It is also used for predicting surface roughness after machining in each 
specific condition and in surveyed area. Figure 5 shows surface roughness results based on (1) and 
experiments. 

Ra = 0.46360 − 0.07779  vc + 0.22563  f − 0.01154  ap − 0.01596  r + 0.08263  vc
2 + 

0.16063  f2 + 0.06588  ap
2 + 0.09938  r

2 + 0.09938  vc  f + 0.13356  vc  ap + 
0.01194  vc  r − 0.10006  f  ap − 0.08194  f  r − 0.06194  ap  r 

(1)

 

Figure 5. Surface roughness results based on experiments and (1). 

Figure 5 shows that the surface roughness in prediction is considerably different with the results 
from many of 29 trials. The mean absolute error between the predicted and experimental results       
is 17.264%. It is necessary to develop surface roughness models so as to achieve higher accuracy in 
predicting surface roughness. Box-Cox and Johnson transformations are known as the techniques in 
order to improve the accuracy of the models [24]. This is the purpose for the authors to carry out the 
work in this study. 

4.2. Probability plot of surface roughness 

The study used Minitab 16 statistical software to determine the probability plot of surface 
roughness according to the data in Table 6 and the results are presented in Figure 6. The figure 
shows that the data were distributed fairly far from normal probability line. Moreover, the probability 
value P = 0.049 is smaller than the significance level (which is usually chosen as 0.05). Hence, it can 
be confirmed that the surface roughness values do not fit the normal distribution [24].  
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Figure 6. Probability plot of surface roughness. 

4.3. Development of surface roughness with Johnson transformation  

The Johnson transformation is used to convert a data set that does not follow the normal 
distribution pattern into a normal distribution [24,25]. The Minitab 16 statistical software was used to 
perform the Johnson transformation in order to convert the surface roughness data in Table 6. The 
results were presented in Figure 7 and Table 7. 

 

Figure 7. The Johnson transformation results for surface roughness.  

The observation of the upper left area in Figure 7 showed that the data was distributed fairly far 
from the normal probability line (as analyzed in section probability plot of surface roughness), while 
the lower left off figure revealed that the data plot was close to normal probability line. In addtion, P 
value is 0.945 which was greater than the significance level. Thus, it can be said that the surface 
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roughness values fit the normal distribution. This proves that it is appropriate to apply Johnson tool 
for converting surface roughness data. The upper right section of the figure showed the data after 
Johnson transformation was distributed in the form of a curve. The lower right presented the 
relationship between the data after and before the Johnson conversion. As a result, the surface 
roughness model is shown in Eq 2. 

2.27649 + 1.29895  Ln((Ra–0.233359)/(3.42629−Ra)) = −1.04661 − 0.20923  vc + 0.60895 
 f + 0.05401  ap + 0.00299  r + 0.29163  vc

2 + 0.45566 f2 + 0.25620  ap
2 + 0.34281  

r
2 − 0.07801  vc  f + 0.41624  vc  ap + 0.11397  vc  r − 0.32021  f  ap − 0.28270  f 

 r − 0.20182  ap  r 

(2)

Eq 2 is written as Eq 3. 

Ra = (3.42629  Exp(F) + 0.233359)/(Exp(F) + 1) (3)

In Eq 3, F is defined as the following Eq 4.  

F = −2.55830 − 0.16107  vc + 0.46881  f + 0.04158  ap + 0.00230  r + 0.22451  vc
2 + 

0.35079  f2 + 0.19724  ap
2 + 0.26391  r

2 − 0.06006  vc  f + 0.32045  vc  ap + 
0.08774  vc  r − 0.24652  f  ap − 0.21764  f  r − 0.15537  ap  r

(4)

Table 7. Surface roughness before and after transformation. 

Order Surface roughness  
Experiment (µm) Johnson transformation (dimensionless) Box-Cox transformation (dimensionless)

1 0.493 −0.873 −0.707
2 0.773 0.208 −0.257
3 1.019 0.822 0.019
4 1.411 1.579 0.344
5 1.668 2.012 0.512
6 0.47 −1.004 −0.755
7 0.582 −0.450 −0.541
8 0.886 0.511 −0.121
9 0.571 −0.497 −0.560
10 0.818 0.334 −0.201
11 0.917 0.587 −0.087
12 0.538 −0.645 −0.620
13 1.254 1.295 0.226
14 1.142 1.079 0.133
15 0.448 −1.140 −0.803
16 0.470 −1.004 −0.755
17 0.437 −1.213 −0.828
18 0.942 0.647 −0.060
19 0.325 −2.298 −1.124
20 0.638 −0.231 −0.449
21 0.784 0.239 −0.243
22 0.638 −0.231 −0.449
23 0.662 −0.145 −0.412
24 0.706 0.003 −0.348
25 1.512 1.752 0.413
26 0.837 0.385 −0.178
27 0.997 0.773 −0.003
28 0.818 0.334 −0.201
29 0.493 −0.873 −0.707
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4.4. Development of surface roughness with Box-Cox transformation 

The Box-Cox transformation is used to convert a data set that does not follow the normal 
distribution pattern into a normal distribution as well [24,26].  

The transformation has the form: 

൤ Xᇱ ൌ X஛ when λ ് 0
Xᇱ ൌ lnሺXሻ when λ ൌ 0

 (5)

where X’ is after-transformation data; X is before-transformation data; λ is the exponent of the 
transformation. The value λ is determined by detection, as long as the standard deviation of the 
converted data set is minimum. Box-Cox method performs the detection of λ in the range of −5 to 5, 
then round it to one of common values as shown in Table 8 [16,24]. 

Table 8. Common values of λ in Box-Cox transformation. 

Value λ (dimensionless) Transformation formula 
λ ൌ 2 X′ ൌ Xଶ 
λ ൌ 0.5 X′ ൌ √X 
λ ൌ 0 X′ ൌ ln X 
λ ൌ െ0.5 X′ ൌ 1/√X 
λ ൌ െ1 X′ ൌ 1/X 

Surface roughness data after the Box-Cox transformation was also included in Table 6. Figure 8 
showed the distribution of surface roughness after the transformation. The plot was close to the 
normal probability line. And P value is 0.919 which was significant. Therefore, it can be seen that 
the surface roughness values follow the normal distribution. In other words, the Box-Cox 
transformation was also performed successfully in converting the non-normal-distributed data into 
the normal distribution. 

 

Figure 8. Probability plot of surface roughness after Box-Cox transformation.  
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Figure 8 showed a graph of the Box-Cox transformation function. From the results in this figure, 
the value of the exponent λ was determined to be zero. Thus, the surface roughness model after 
performing the Box-Cox transformation is defined as in Eq 6.  

 

Figure 9. The Box-Cox transformation results for surface roughness. 

Ln(Ra) = –0.76962 – 0.08120  vc + 0.25461  f + 0.01494  ap – 0.00893  r + 0.12186  
vc

2 + 0.19247  f2 + 0.10573  ap
2 + 0.14473  r

2 – 0.04710  vc  f + 0.16453  vc  ap + 
0.03814  vc  r – 0.12332  f  ap – 0.11393  f  r – 0.07358  ap  r 

(6)

Eq 6 is written as Eq 7. 

Ra = Exp(–0.76962 – 0.08120  vc + 0.25461  f + 0.01494  ap – 0.00893  r + 0.12186  
vc

2 + 0.19247  f2 + 0.10573  ap
2 + 0.14473  r

2 – 0.04710  vc  f + 0.16453  vc  ap + 
0.03814  vc  r – 0.12332  f  ap – 0.11393  f  r – 0.07358  ap  r) 

(7)

To evaluate the accuracy of the three surface roughness models introduced (including the RSM, 
Johnson and Box-Cox-based), mean absolute error (MAE) and mean square error (MSE) of the 
predicted results and the experimental was compared. Values of MAE and MSE are defined as Eqs 8 
and 9 below. 

%𝑀𝐴𝐸 ൌ  ൭
1
𝑛

෍ ฬ
𝑒௜ െ 𝑝௜

𝑒௜
ฬ

௡

௜

൱ ∗ 100%  (8)

%𝑀𝑆𝐸 ൌ  ൭
1
𝑛

෍|𝑒௜ െ 𝑝௜|ଶ

௡

௜

൱ ∗ 100% (9)

where e is experimental value; p is predicted value; n is a number of trials.  
Table 9 presented the experimental and predicted value of surface roughness on the basis of 

RSM approach (Eq 1) and predicted surface roughness value on the basis of Johnson (Eqs 3 and 4) 
Box-cox (Eq 7) transformation.  
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Table 10 introduced comparison of the three models. The data revealed that: Compared with the 
model of the RSM method, the MAE decreased from 17.264% to 10.373%, the MSE decreased    
from 2.712% to 1.280% in the Johnson-based model, and the MAE decreased from 17.264%           
to 10.208%, the MSE decreased from 2.712% to 1.284% in the Box-Cox-based model. Deviation of 
MAE and MSE in the model using Box-Cox transformation was smaller than in the model using 
Johnson transformation. However, the difference is slight. 

Table 9. Predicted surface roughness in models and Errors compared to experimental value. 

Order Experimental 
surface 
roughness Ra 
(µm) 

Predicted surface roughness 
Ra (µm) 

Absolute error (%) 
(Eq 8) 

Square error (%) 
(Eq 9) 

SRM 
(Eq 1) 

Johnson 
(Eqs 3 and 4) 

Box-Cox  
(Eq 7) 

SRM Johnson Box-Cox SRM Johnson Box-Cox 

1 0.493 0.387 0.541 0.560 21.481 9.808 13.614 1.121 0.234 0.450 

2 0.773 0.750 0.666 0.686 2.950 13.809 11.228 0.052 1.139 0.753 

3 1.019 0.950 0.897 0.887 6.801 11.981 12.943 0.480 1.491 1.739 

4 1.411 1.369 1.703 1.713 2.961 20.717 21.423 0.175 8.545 9.137 

5 1.668 1.273 1.473 1.438 23.656 11.670 13.762 15.569 3.789 5.269 

6 0.470 0.464 0.463 0.463 1.362 1.524 1.449 0.004 0.005 0.005 

7 0.582 0.787 0.649 0.641 35.141 11.548 10.119 4.183 0.452 0.347 

8 0.886 0.707 0.901 0.886 20.160 1.666 0.015 3.191 0.022 0.000 

9 0.571 0.753 0.568 0.583 31.825 0.523 2.108 3.302 0.001 0.014 

10 0.818 0.993 0.844 0.835 21.443 3.196 2.043 3.077 0.068 0.028 

11 0.917 0.893 0.812 0.841 2.613 11.409 8.258 0.057 1.094 0.573 

12 0.538 0.771 0.633 0.632 43.257 17.609 17.535 5.416 0.897 0.890 

13 1.254 1.003 1.157 1.150 20.033 7.733 8.295 6.311 0.940 1.082 

14 1.142 1.289 1.172 1.146 12.890 2.654 0.315 2.167 0.092 0.001 

15 0.448 0.464 0.463 0.463 3.482 3.312 3.390 0.024 0.022 0.023 

16 0.470 0.464 0.463 0.463 1.362 1.524 1.449 0.004 0.005 0.005 

17 0.437 0.464 0.463 0.463 6.087 5.913 5.993 0.071 0.067 0.069 

18 0.942 0.829 0.817 0.812 11.975 13.296 13.827 1.272 1.569 1.696 

19 0.325 0.107 0.363 0.363 66.960 11.662 11.726 4.736 0.144 0.145 

20 0.638 0.675 0.754 0.771 5.865 18.196 20.817 0.140 1.348 1.764 

21 0.784 1.073 0.884 0.864 36.908 12.818 10.245 8.373 1.010 0.645 

22 0.638 0.985 0.783 0.772 54.339 22.783 21.020 12.019 2.113 1.799 

23 0.662 0.659 0.680 0.719 0.420 2.748 8.663 0.001 0.033 0.329 

24 0.706 0.639 0.620 0.641 9.555 12.195 9.194 0.455 0.741 0.421 

25 1.512 1.557 1.657 1.664 3.001 9.582 10.081 0.206 2.099 2.323 

26 0.837 0.655 0.584 0.601 21.761 30.233 28.182 3.317 6.403 5.564 

27 0.997 1.121 0.856 0.884 12.477 14.125 11.355 1.548 1.983 1.282 

28 0.818 0.704 0.732 0.728 13.932 10.471 10.946 1.299 0.734 0.802 

29 0.493 0.464 0.463 0.463 5.963 6.118 6.047 0.086 0.091 0.089 

Table 10. Comparison between surface roughness models. 

Models % MAE % MSE 
With Johnson transformation 10.373 1.280 
Box-Cox transformation 10.208 1.284 
With RSM 17.264 2.712 
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5. Conclusion 

In this study, the experiment of turning 9XC alloy steel using Titanium Nitride coated-cutting 
tools was conducted. The results identified the influence of input parameters on surface roughness. 
The study also proposed three models of surface roughness based on the experiments and Johnson 
and Box-Cox transformation. Some conclusions are drawn as follows: 

-The feed rate is most influential to surface roughness. Other parameters including cutting 
velocity, depth of cut and tool nose radius have the negligible impact on the surface roughness. 

-The surface roughness values from experiments does not fit the normal distribution. Johnson 
and Box-Cox transformation are used to convert the values in order to suit this distribution.  

-Surface roughness model using Box-Cox transformation has the highest accuracy, followed by 
the Johnson-based while the model developed from testing results (without transformation) has the 
lowest accuracy. 

-The comparison of results from three surface roughness models with experiments reveals that 
mean absolute error (MAE) of the model using the Box-Cox transformation, the Johnson-based and 
the RSM-based is 10.208%, 10.373% and 17.264%, respectively. In addition, the mean square error 
(MSE) value of the two models using the transformations is similar (1.284% and 1.280%) and 
noticeably smaller than the other’s. 

-The results obtained in this study show that the application of the Box-Cox and Johnson 
transformation is likely feasible in improving the accuracy of surface roughness models in particular 
and in developing regression models for machining methods in general. 
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