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Abstract: Piezoelectric thermoset composites (PTCs) are the class of material having the ability of 
transformation between mechanical energy and electric energy. In addition to having the advantages 
of high strength, easier processing, lower temperature, pressure requirement and unlimited storage, 
PTCs also have high stiffness, high elastic modulus and high strain coefficients. This review presents 
the advances and approaches used in PTCs and their applications. Various techniques, such as 
analytical, finite element and experimental methods for analyzing the coupled piezoelectric 
responses, are also reviewed. This paper also includes current applications of PTCs in strain sensing, 
vibration control, actuation, energy harvesting, structural health monitoring and biomedical fields. 
The studies of PTCs and its applications are in the emerging phase, and the review permits to find 
new notions for interface studies and modelling progresses for PTCs. In addition to that, these 
reviews pave the way for various research potentials towards the flourishing pertinent application 
zones of PTCs. Also, this review highlights the relevance of the particular research area and 
preliminary work under its different approaches, necessitates the need for more researches.  
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1. Introduction 

Composite materials are accessible in many engineering fields like aerospace, automobiles, civil 
structures, etc., due to their high strength to density and stiffness to density ratios. But nowadays, 
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composite materials being the primary load-carrying member of any structure is expected to have 
additional functionality along with its primary services. These other functions enable the composite 
structure to sense and to provide actuation to the system under consideration and control the same. 
The conventional composite materials can refine their properties and be smart by joining in hand 
with adaptive, and smart materials. The most common smart materials are piezoelectric and 
electrostrictive materials, shape memory alloys, magnetostrictive materials, electro and 
magnetorheological fluids, fibre optics etc. When these smart materials are bonded or embedded in 
composite materials, the performance and capabilities of the conventional composites are improved 
and acquire some additional functionality to its primary (usually structural) purpose. Smart materials 
can respond to changes in stress, strain, displacement, velocity, acceleration, electrical, thermal or 
other mechanical change of a structure through changes in their properties in a controlled manner to 
maintain desirable and satisfactory performance.  

Among these smart materials, piezoelectric ceramics as sensors and actuators exhibit unique 
and superior characteristics over the others which are suitable for applications like noise and 
vibration, shape and position control, non-destructive testing, energy harvesting and health 
monitoring systems. The fields of applications of piezoelectric thermoset composites (PTCs) ranges 
from, aerospace industry to micro and nano-electromechanical sensors and actuators. So, 
piezoelectric ceramics, act both as sensors and actuators in PTCs. This paper also reviews 
piezoelectric ceramics and its applications in biomedical, aerospace, automotive, sport and machine 
tool industries, aviation, civil structures etc., due to their lightweight, self- monitoring and self-
controlling capability. 

2. Piezoelectric elements and characteristics 

Piezoelectric ceramics and piezo polymers are active materials which possess the ability to alter 
the geometric to material properties under the application of various external stimuli, thereby 
acquiring an inherent capacity to transduce energy [1,2]. In short, in piezoelectric elements generates 
piezoelectric and the inverse piezoelectric effects. That is, the generation of electric charge upon 
piezoelectric material is deformation and development material deformation upon application of 
electric charge. The dipole re-orientation of piezoelectric material by an external electric field is 
shown in Figure 1. 

Though the most common piezoelectric ceramics are Lead zirconate titanate (PZT), Lead 
magnesium niobate (PMN), Lead meta niobate (LMN) and Lead titanate (LT), PZT’s have been the 
most widely employed. The most commonly used piezo-polymer is Polyvinylidene fluoride (PVDF) 
even though other piezo-polymers like Polyvinylidene trifluoroethylene P(VDFTrFe), 
polyvinylidene fluoride tetrafluoroethylene and their copolymers exist [3]. Various piezoelectric 
materials and their strain capabilities are specified in Table 1. 
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Figure 1. Dipole re-orientation by an external electric field in the piezoelectric material. 

Table 1. Piezoelectric materials and their strain capabilities. 

Piezoelectric material Density (g/cm3) Piezoelectric (strain)  
constant d33 (m/v) 

Electro-mechanical coupling 
coefficient k33 

Refs. 

PZT 7.80 4.50 × 10−10 0.66 [4,5] 

PVDF 1.78 4.00 × 10−10 0.12 [6] 

PMN-PT 7.70 3.57 × 10−10 0.94 [6,7] 

LMN 6.30 0.77 × 10−10 0.42 [8] 

2.1. Lead zironate titanate (PZT) 

Combining the chemical compound titanate with lead and zirconium under very high 
temperature result in the formation of PZT. Superior material characteristics like high dielectric 
constant, high coupling coefficient and high density along with fine grain structure and noise-free 
response make PZT highly employable inflow or level sensors, ultrasonic non-destructive testing, 
generation of high-voltage energy in ultrasonic cleaners, sonar devices, etc. In addition to this, higher 
mechanical quality and more economical operation increase its demand among other piezoelectric 
materials [4–7].  

The PZT samples(a PbTiO3 and PbZrO3 mixture) exhibits high values of electro-mechanical 
coupling factor and energy conversion effectiveness coefficient depending on the composition [8]. 
Electro-mechanical coupling factor, kp, is an indicator of the energy conversion effectiveness and 
piezoelectric charge constant. d, is the mechanical strain experienced by a piezoelectric material per 
unit of the electric field applied. The high values of kp and d in PZTs make it highly acceptable than 
the other piezoelectric ceramics. This PZT system embedded over polymer composites were studied 
by several investigators [9–14]. 
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2.2. Lead magnesium niobate-lead titanate (PMN-PT) 

PMN-PTs which finds its application as actuators demonstrate large electrostriction strains [15]. 
These materials exhibit outstanding piezoelectric properties (e.g., d33 = 357 × 10−12 m/v, k33 = 0.94) 
and it has other specific advantages such as negligible hysteresis, lower creep and lack of high 
voltage that considerably outdoes PZT ceramics [16–17] but exhibits inferior piezoelectric 
performance. PMN-PTs finds its application as actuators in the area of biomedical for endoscopy [18] 
and as hearing aid [19]. PMN-PTs are challenging to manufacture and lead titanate ceramics in bulk 
form undergo a phase transformation, and this limits its application [20].  

2.3. Lead meta niobate (LMN) 

In pure form, LMNs exhibits the most substantial piezoelectric anisotropy [21] but are of 
limited efficacy practically because of the difficulty in manufacturing. This piezoelectric phase 
experiences severe cracking while production [22]. Numerous studies had done to fix this issue by 
introducing various additions but had limited success, leading to a sharp decrease in anisotropy [23]. 
Due to this drawback, practical applications of LMNs are limited. 

2.4. Polyvinylidene fluoride PVDF 

PVDF is the most common piezoelectric polymers used as sensors and actuators. PVDF 
polymer is soft and flexible and therefore can be attached easily on to the curved surfaces. Further, 
PVDF is chemically inert, robust, creep resistant, and has excellent stability when exposed to 
sunlight [24–26]. Also, it has a low density along with low dielectric permittivity resulting in a very 
high voltage coefficient [27,28]. 

But low d33 and dh values and little dielectric constant inherent in PVDF have limited its use. In 
addition to this, the poling the PVDF film is a touch difficult due to the requirement of the high 
electric field. Despite their high dielectric breakdown values, the low piezoelectric voltage constant 
makes them inapt for energy harvesting applications [27]. 

3. Necessity and trends in piezoelectric composites 

Embedding piezoelectric materials in composites depend on the required properties of smart 
composite structures. Several factors such as type and dimensions of piezoelectric material, its 
position, its compatibility with the composites, etc. play a vital role in choosing and embedding the 
right kind of piezoelectric materials for composites. 

Even though the excellent properties of PZT have widens its area of applications, its unfortunate 
mechanical strength act as a limiting factor for their life cycle and performance. Also, the brittleness, 
inflexibility and high densities of the piezoelectric ceramics lead to considerable acoustic resistance 
which necessitates the need for matching layers [28]. Piezoceramic materials also add additional 
mass and stiffness to the host structure, especially when working with flexible and lightweight 
materials. In such a status quo, fibre-reinforced polymer composites can be used as a matching layer 
for piezoelectric materials which improves the load-bearing capacity of the piezoceramics along with 
retaining all the qualities of conventional ceramics (electrical, mechanical, chemical). Coupling 
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piezoceramics and polymer composites mitigate the weight and brittleness issues of piezoceramics. 
Besides, this enhances the overall mechanical properties and strength of the composite [29]. 

Therefore, interest in polymer-ceramic [30–34] composites have emerged as an area of  
interest [35,36]. These composites can be polarized under the influence of an external electric  
field [37]. Piezoelectric ceramic/polymer composites possessing numerous association outlines had 
been explored in several studies during the past several years [38,39]. The relationship between the 
number of Web of Science-indexed publications under the area of piezoelectric ceramics over the 
last few year groups, is shown in Figure 2. The surge in the number of articles portrays the relevance 
of the field and the developments occurring in this area.  In the present review, the focus is mainly 
oriented towards the work done in polymer composites due to its better strength and stiffness 
properties. The strength and stiffness properties within the plane of polymer composites can be 
controlled more precisely. 

 

Figure 2. Details of Web of Science-indexed piezoelectric composite articles. 

4. Approaches in smart composites 

The main approaches in smart composites can be classified as analytical, numerical and 
experimental. For the proper characterization of composite materials and their interfaces, the use of 
multiple analytical techniques is required. Analysis of composite materials can be quite complex, and 
composite material analysis laboratories need correct analysis tools to characterize and resolve many 
of the problems of composite materials.  

An extensive review of different analysis approaches, namely, analytical approach, finite 
element approach and experimental approach on piezoelectric thermoset composites are depicted in 
this paper. 
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4.1. Analytical approach 

Smart composites can be investigated using mathematical models when largescale experimental 
studies are expensive and challenging to conduct. Geometrically imperfect piezo-magnetic 
nanobeams were analyzed in [40,41] to investigate the thermal post-buckling behaviour. In that work, 
the nanobeams were considered as functions of piezoelectric phase percentage and reported that the 
increase in phase percentage had increased the applied voltage sensitivity meanwhile increase in 
nonlocal parameters resulted in lowering the post-buckling temperatures. Ganesh et al. [42] had 
analyzed a delaminated composite plate with active fibre composite under hygrothermal environment. 
They have also considered the effect of moisture and temperature and observed that the natural 
frequencies were reduced due to delamination. A complete dynamic analysis and significant 
coefficients were extracted from reinforced piezo-magneto-thermo-elastic plates by Hadjiloizi et al. [43] 
for a set of unit cell problem. According to them, the significant coefficients were not a constant but 
a function of time. A mathematical model of a piezoelectric sensor was developed by Asif et al. [44], 
to study the debonding effect and verified that the developed model could recover the presence and 
extent of partial debonding between the composite laminate and the piezo sensor. 

The static, free vibration, dynamic control and transient characteristics of piezoelectric 
laminated composite plates were analyzed in [45–47]. And a novel solution for finding twisting 
deformation and optimal shape control of smart laminated composites plates was developed by 
Soheil et al. [48]. From the study, it was observed that the laminate stiffness could distress the 
twisting bending coupling developed by the inclined piezoelectric actuators. The major works using 
analytical approaches for piezoelectric polymer composite is shown in Table 2. 

Table 2. Summary of major analytical approaches for piezoelectric polymer composites. 

Composite material Piezoelectric material Approach Properties Refs.
Laminae  PZT-5H Extensional Hamilton’s  

principle and improved layer 
theory 

Degrading performance 
of the partially debonded sensor

[15] 

Piezo-magneto  
nanobeam 

 Hamiltons principle Thermal post-buckling [41] 

Graphite epoxy  A.F.C. layer Potential energy approach Parametric study [42] 
Wafer reinforced  
magnetoelectric plate  
magnetoelectric shell  
with honeycomb filler 

 Maxwell’s equation Significant coefficients and  
dependent field variable 

[43] 

Elastic layer  Piezoelectric +  
Piezomagnetic layer 

Maxwell’s equation Mechanical and electrical  
properties 

[44] 

Graphite epoxy  PFRC actuator Navier’s method and  
Principle of virtual work 

Transient characteristics [45] 

Graphite epoxy  PZT + PVDF Classical variational 
formulation 

Static and dynamic vibration  
control 

[46] 

GFRP  Kirchoff’s hypothesis Twisting deformation [47] 
Graphite epoxy  CFRP Higher-order shear  

deformation kinematics 
Flexural behaviour [48] 

4.2. Finite element approach 

Among the various approaches available, the finite element approach is the useful preliminary 
tool to analyze the effect of multiple parameters on PTCs. Several studies enumerating the static, 
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dynamic, linear, non-linear parametric analysis using the finite element approach were cited by many 
researchers [15,45,48–55]. While the integrity limit and failure behaviour of piezoelectric sensor 
embedded fibreglass composite was studied by Lampani et al. [56], the degree of polarisation and 
piezoelectric characteristics of PVDF integrated kevlar-carbon fibre composite was investigated by 
Michael et al. [57]. The optimal shape control and twisting deformations of PTCs were investigated 
by Soheil et al. [48] and concluded that the usage of inclined piezoelectric actuators could suspend 
the pure twisting deformation. Mehrdad et al. [58] had modelled an active composite strut and an 
active composite panel to find out the optimum voltage for vibration suppression was modelled by 
Dutta et al. [59]. The primary studies with finite element methods for piezoelectric polymer 
composite are summarised in Table 3. 

Table 3. Summary of central finite element works in piezoelectric polymer composites. 

Composite material Piezoelectric material Approach Properties Refs.
Laminae PZT-5H FEM (Extended Hamilton’s 

principle and improvedlayer 
theory) 

Dynamic characteristics [15] 

Graphite epoxy PZT + PVDF FEM Static and dynamic 
vibration control 

[46] 

GFRP KYNAP FEM-Abaqus (Kirchoff’s law) Twisting deformation 
and optimal shape 
control 

[47] 

Graphite epoxy and  
CFRP 

Trefnol-D + PZT-4 FEM-Ansys (Higher-order shear  
deformation kinematics) 

Flexural behaviour [48] 

CFRC PZT XFEM-Abaqus (Galerkin’s 
method) 

Tensile and in-plane 
shear properties 

[49] 

Aluminium boron 
fibre 

Piezoelectric +  
Piezomagnetic layer 

FEM-Ansys (Classical laminate  
theory and Viscoplastic theory) 

Mechanical properties  
and non-linear responses

[50] 

Graphite epoxy PZT FEM (Variational principle) Material nonlinearity [51] 
Graphite epoxy and  
glass epoxy 

PZT FEM-Ansys Vibration [52] 

Graphite epoxy Trefnol-D F.E.M. (Third order shear 
deformation theory 

Non-linear static 
behaviour 

[53] 

Graphite epoxy PZT-4 FEM (Virtual work principle) Static parameters [54] 
Graphite epoxy PZT-5A FEM (Maxwell’s equation) Static- nonlinear [55] 
Fibreglass PZT FEM (Strength-based approach) Damage [56] 
Kevlar carbon fibre PVDF FEM-Ansys (Dunn and Taya 

micromechanical approach) 
Degree of polarization 
and mechanical and  
piezoelectric 
characteristics 

[56] 

Composite strut and 
composite panel 

PZT-5A FEM Optimum voltage [58] 

4.3. Experimental approach 

Various experimental studies in the field of piezoelectric composites are included in this section 
for a better understanding of the influence of multiple static and dynamic parameters of composites 
and to validate various finite element and analytical models. The tensile, in-plane shear and bending 
properties of PZT piezoelectric embedded carbon fibre reinforced composite was studied by Swati  
et al. [49] for analyzing progressive damage. The mechanisms of damages are explored by Lampani 
et al. [56] with the help of the four-point bending test of fibreglass composite embedded with PZT 
piezo element. Tao et al. [60] had done an investigation to improve the load-bearing capacity of 
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PZT/PVDF composites and concluded that the addition of aramid fibre could cause a substantial 
improvement in the same. The relevant research works using experimental approaches for 
piezoelectric polymer composite is included in Table 4. 

Table 4. Summary of major experimental works in piezoelectric polymer composites. 

Composite material Piezoelectric material Properties Refs.
CFRC PZT Mechanical properties (Electronic Universal Testing 

Machine) 
[49] 

Fibreglass PZT Mechanical and electrical capacity (4-point bending test 
setup) 

[56] 

Aramid PZT + PVDF Mechanical and electrical properties [60] 

5. Applications of piezoelectric composites 

Piezoelectric embedded composites become acceptable only if its structural integrity is 
promised. The reinforcing fibres should be disturbed minimum, and mechanical properties of the 
composite should not be reduced [60]. Piezoelectric composites find its applications in various fields 
of engineering. 

Ariel et al. [61] had used flexible solar cells into the compliant wings of a Robotic bird 
(Flapping Wing Ariel Vehicles, FWAVs). FWAVs are comprised of a carbon fibre -mylar composite. 
Various wing designs have been suggested by integrating a diverse number of solar cells in different 
positions on Robotic bird. Integration of solar cell has increased the stiffness of the wings, and the 
deformation produced during flapping generates aerodynamic forces for the flight. Also, the use of 
solar cells increases the payload capacity by electrical energy harvesting. Thus the addition of solar 
cells makes the wings multifunctional by allowing it to produce electrical power, senses the changes 
in wing deformation and to harvest solar energy during flight. This advanced technology is used in 
aerospace and its applictions have been explained in [62]. 

Another central area where PTCs find its application is in the advancement of morphing aircraft 
wings and its review was done by Thill et al. [63]. The study reveals that the composites and 
polymers with structural flexibility and elastomers with a low cross-link density were considered for 
morphing since they can undergo sizeable elastic deformation without permanent changes. Integrated 
composites with SMA wires and Fibre Bragg Grating (FBG) were also considered and were sed as 
self-actuating structures. Even though the study discloses the difficulty to combine the properties like 
flexibility and stiffness to one design, it highlights the aerodynamic performance and operational 
benefits of morphing technology and the possibilities of PTCs in morphing technology. 

A piezoelectric composite actuator was designed and validated by Mudupu et al. [64] for a 
smart projectile fin. The piezo-fibres, embedded within the epoxy matrix and coated with skin, were 
used to design a fuzzy logic controller for the fin. The study presented the robustness of design to 
overcome various disturbances and subsonic wind velocities. Another application of integrating 
electronic communication antenna into a composite structure was detailed in [65–68]. The design 
and fabrication of a microchip antenna over a three dimensional orthogonal woven composite 
structure [69], its impact testing [70] and damage analysis of the composite [71] had been recently 
developed in the field of aerospace.  

The application of polymer composites with graphene-silver hybrid nanoparticles in the 
biomedical field was presented by Kumar et al. [72]. The uniform distribution of the nanoparticles 
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helps better exfoliation and dispersion of the nanofiller in the polymer composite matrix. It also 
improves the storage modulus and enhances electrical conductivity.  

The applications of luminescent ions- in the composite matrix and other advanced composite 
materials were reviewed by Bai et al. [73]. Luminescent ion coupled composites have additional 
optical and electrical properties, and hence they find its application in sustainable energy devices for 
solar light harvesting. Also, their better optical properties have been exploited for diagnosis, nano-
composite biosensors and medical treatment in the biomedical field. 

Biranche et al. [74] had reviewed the critical characteristics and fabrication routines of 
piezoelectric materials, including piezoelectric ceramics, piezoelectric polymers and piezoelectric 
composites from the perspective of bone tissue engineering. The relatively high piezoelectric 
properties of ceramics combined with bioactive filers enhances the potential of ceramic matrix 
composites as bone tissue engineering material. But the major limitation of thesis the absence of 
mechanical simulation control. 

Vaidya et al. [75] had developed a woven E-glass with vertical piles model which enhances the 
impact resistance and vibration damping. A 3D space available configuration of sandwich material is 
used in form filling, which has increased the strength of the laminate and the impact load-carrying 
capacity. Experimental analysis for the active vibration control of E-glass/epoxy laminated 
composites using piezoelectric ceramic patches was done by Song et al. [76] an analytical study of 
the same combination was done by Bohua et al. [77]. Thierry et al. [78] had conducted a vibration 
reduction study to increase the lifespan and avoid the fluttering in the composite fan blades of a 
turbojet engine using piezoelectric devices. 

Structural health monitoring of cement-based composites with embedded piezoelectric ceramic 
had been studied by Biqin et al. [79]. A novel cement-based piezoelectric sensor to the in-situ stress-
time history monitoring of a reinforced concrete frame has been developed, and the results revealed the 
feasibility and applicability of the same in the concrete structures. Vibration analysis on the impact 
response of multi-layered cement-based piezoelectric composite was done by Taotao et al. [80].  

The application of damage detection in smart panels composites had been illustrated by Phong 
et al. [81]. In the study, a non-linear vibro-acoustic wave modulation technique was used for the 
damage analysis of carbon/epoxy smart composite panels. The research includes the stationary 
statistical characteristics of vibroacoustic responses. A theoretical model of carbon nanotube 
reinforced piezoelectric cylindrical composite shell has been considered by Hossein et al. [82–89]. 
The effects of transverse shear and rotary inertia have been included in the study. The wave 
propagation characteristics are investigated considering the impact of various piezoelectric coupling 
factor, different polarization and different orientation of the nanotubes. The investigation of the 
effects of nanotube agglomeration on wave propagation and vibrational characteristics in 
hygrothermal were also included in the study. The proposed models find its application in dynamic 
stability analysis as well as in structural health monitoring as non-destructive testing. Table 5 
includes significant works in various application fields of the piezoelectric polymer composite. 
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Table 5. Summary of applications of piezoelectric polymer composites. 

Material Application Characteristics Refs. 

Carbon fibre with Mylar Solar energy harvesting Stiffness, payload capacity [61] 
Composites with SMA wires and 
FBG 

Morphing aircraft wings Structural flexibility, low cross-
link density 

[63] 

Epoxy matrix with piezo-fibre Smart projectile fin  [64] 
Polymer composite with graphene-
silver hybrid nanoparticles 

Biomedical field Storage modulus, electrical 
conductivity 

[72] 

Composite matrix with luminescent 
ions 

Solar light-harvesting, 
biomedical field 

Optical and electrical properties [73] 

Ceramic-composite with bioactive 
fillers 

Bone tissue engineering Piezoelectric property [74] 

E-glass/epoxy composite with 
piezoelectric ceramic patches 

Vibration control Impact resistance [76–78] 

Carbon epoxy smart composite Damage detection Vibro-acoustic properties [81] 
Piezoelectric cylindrical composite 
with carbon nanotube 

Structural health monitoring, 
dynamic stability 

Wave propagation characteristics [82–89] 

6. Directions of future research 

The review reveals that significantly less number of investigations have been enduring under 
experimental methods due to the requirement of highly expensive equipment and difficulty in 
manufacturing. In these scenarios, analytical and numerical methods found most promising in the 
analysis of PTCs. An extensive scope of study exists in the investigation of various types of 
piezoelectric materials, their coupling effects on thermoset composites, its failure modes etc. The 
various fields of application of PTCs are also wide open for further studies. PTCs finds its 
application in the emerging fields of energy harvesting, structural health monitoring, biomedical 
fields etc.and the research potential in these areas are in the nascent stage. So, this review paves the 
way for new studies in the promising regions of PTCs and its applications. Also, the increase in the 
number of studies in the specified area as from Figure 2 reveals the relevance of the topic. 

7. Conclusion 

In this paper, an overview of various piezoelectric materials and multiple approaches in PTCs 
are presented. PZTs are found to be the most promising piezoceramic though studies are going on to 
improve the electrical and mechanical characteristics of other piezoelectric materials. When used 
with a matching layer, the functionalities of both the piezoelectric element and the attaching layer 
can be improved, and thermoset composites are found to be best suited for this purpose. The 
applications of PTCs are not limited to the fields of aerospace, structural health monitoring etc. but to 
vibration control, energy harvesting, biomedical application and many more. A comprehensive 
review of the related journals covering approaches and applications in PTC is done here. The study 
reveals the need for extensive development in the area of piezoelectric thermoset composites as the 
range of applications is broad. 
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