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Abstract: We present a general computational framework that enables one to generate realistic 3D 
microstructure models of heterogeneous materials from limited morphological information via 
stochastic optimization. In our framework, the 3D material microstructure is represented as a 3D 
array, whose entries indicate the local state of that voxel. The limited structural data obtained in 
various experiments correspond to different mathematical transformations of the 3D array. 
Reconstructing the 3D material structure from such limited data is formulated as an inverse problem, 
originally proposed by Yeong and Torquato [Phys. Rev. E 57, 495 (1998)], which is solved using the 
simulated annealing procedure. The utility, versatility and robustness of our general framework are 
illustrated by reconstructing a polycrystalline microstructure from 2D EBSD micrographs and a 
binary metallic alloy from limited angle projections. Our framework can be also applied in the 
reconstructions based on small-angle x-ray scattering (SAXS) data and has ramifications in 4D 
materials science (e.g., charactering structural evolution over time). 
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1. Introduction  

The majority of the engineering materials such as metallic alloys, ceramics, composites and 
granular media are heterogeneous in nature. Such materials possess complex microstructures 
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spanning a wide spectrum of length scales, which determine their macroscopic properties and 
performance [1, 2, 3, 4]. The growing demands in global sustainability, national security, and 
renewable energy have raised great challenges in the design and development of multifunctional 
materials that can achieve optimal performance under extreme conditions [5, 6]. The success of such 
a mission strongly relies on our ability to characterize and modify material properties and behaviors 
under a myriad of external stimuli. This in turn depends on our intrinsic understanding and 
knowledge of complex microstructures and how they evolve under various conditions, which make it 
extremely important to accurately characterize and model material microstructures. 

Advances in experimental methods, analytical techniques, and computational approaches, have 
now enabled the development of three dimensional (3D) structural analyses [7]. The study of 3D 
microstructures under an external stimulus (e.g., stress, temperature, environment) as a function of 
time (4D) is particularly exciting. Examples include an understanding of time-dependent deformation, 
crack initialization and propagation, phase transformations, compositional evolution, magnetic 
domain separation, etc. Furthermore, advances in 3D and 4D computational tools and structure 
analysis methods have enabled the analysis of large experimental data sets, as well as simulation and 
prediction of material behavior [8‒10]. 

On the experimental side, x-ray tomography has become an extremely attractive, 
non-destructive technique for characterizing microstructures in 3D and 4D [11‒19]. The use of high 
brilliance and partially coherent synchrotron light allows one to image multi-component materials 
from the sub-micrometer to nanometer range. In a typical tomography experiment, 2D projections 
are obtained at small angular increments, from which tomographic reconstruction techniques such as 
the filtered-back-projection algorithm (FBP) [11] can be employed to generate a grayscale image of 
the material microstructure. However, the FBP reconstruction method usually requires a very large 
number of projections to render a raw 3D image, and further segmentation and thresholding analysis 
are needed to resolve details of individual material phases and produce accurate digital 
representations of the microstructure in 3D. These strongly limit its application in characterizing 
rapidly evolving materials (i.e., 4D materials science). Alternative reconstruction methods that 
directly render accurate 3D or 4D microstructure models from limited tomography data (e.g., a very 
small number of projections) without segmentation are thus highly desirable. 

For system with low adsorption contrast between the phases, such as a polycrystalline material, 
x-ray tomography cannot sufficiently resolve the 3D phase morphology (e.g., the distribution of 
grain orientations). In such cases, a common practice is to use serial sectioning to reconstruct the 3D 
material from 2D electron-back-scattered-diffraction (EBSD) micrographs of the material’s surfaces 
[20,21]. This technique, which involves extensive surface polishing, image smoothing and image 
alignment, is extremely time consuming and tedious. Thus, developing efficient statistical 
morphological descriptors [3,22,23] that capture the key structural features of the materials from a 
handful of 2D images and that enable one to reconstruct accurate 3D virtual microstructure models 
from such limited information will significantly improve the efficiency in characterizing 
polycrystalline materials. 

In this paper, we present a general computational framework that enables one to generate 
realistic 3D microstructure models from limited morphological information, such as limited angle 
tomographic projections and 2D micrographs, via stochastic optimization. This framework is based 
on the stochastic microstructure reconstruction procedure originally devised by Yeong and  
Torquato [24,25], and further generalized by Jiao, Stillinger and Torquato [26‒28]. Specifically, we 
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consider that the 3D microstructure is represented as a 3D array, whose entries indicate the local 
state of that voxel (e.g., the phase the voxel belongs to). The limited structural data obtained in 
various experiments correspond to different mathematical transformations of the 3D array (see Sec. 2 
for details). Thus, generating or reconstructing the 3D material structure from such limited data can 
be formulated as an inverse problem in which one recovers the original 3D array, given the 
transformation and the resulting data. The utility of our general framework is illustrated by 
reconstructing a polycrystalline microstructure from 2D EBSD micrographs and a binary metallic 
alloy from limited angle projections.  

The rest of the paper is organized as follows: In Sec. 2, we present the general mathematical 
formulation for the reconstruction framework and a stochastic procedure for solving the general 
inverse problem. In Sec. 3, we illustrate the utility of the framework by reconstructing a 
polycrystalline microstructure from 2D EBSD micrographs and a binary metallic alloy from limited 
angle projections. In Sec. 4, we provide concluding remarks. 

2. Inverse Microstructure Reconstruction 

Accurate rendition of 3D microstructure is long standing in computational materials. A variety 
of reconstruction schemes have been developed that enable one to generate material microstructure 
models from limited structural information. Examples of such schemes include the Gaussian random 
field method [29], phase recovery method [30], multi-point reconstruction method [31], and 
raster-path method [32], to name but a few. The Gaussian random field method [29] was originally 
devised to reconstruct realizations of statistically homogeneous and isotropic random media from the 
associated two-point correlation functions (see Sec. 2.1 for definitions and discussion of the 
correlation functions). The phase recovery method enables one to take into account the full vector 
information contained in the two-point statistics associated with the material, and thus allows the 
reconstructions of complex anisotropic microstructure and polycrystalline materials [30]. The 
multi-point reconstruction method was originally developed for the reconstruction of porous 
geomaterials from 2D images [31]. Instead of using two-point statistics associated with the entire 2D 
microstructure, this method incorporates all n-point statistics within a smaller window containing 
portions of the 2D microstructure. The recently developed raster-path method allows one to employ 
the multi-point statistics in a much more efficient way [32]. Specifically, instead of extracting the 
statistics from the 2D microstructure, a cross-correlation function is introduced to directly compare a 
reconstructed portion of the material to the target 2D image. 

All of the aforementioned reconstruction methods require specific structural information as 
input and thus, are system dependent. Another widely-used reconstruction method is the stochastic 
optimization procedure devised by Yeong and Torquato [24, 25]. In its original implementation, the 
Yeong-Torquato (YT) procedure enables one to incorporate an arbitrary number of correlation 
functions of any type (see Sec. 2.1 for details) into the reconstructions, which is formulated as an 
inverse optimization problem. Although the correlation functions are a special type of structural 
information, we will see in the subsequent section that this procedure can be generalized to 
incorporate a wide class of different types of structural information, as long as a mathematical 
transformation that maps the material microstructure to the given information can be defined. 
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2.1. Mathematical formulation 

Consider a digitized representation of a 3D material by a 3D array M, whose entry value Mijk 
indicates the local state of that voxel (e.g., the phase that the voxel belongs to). An experiment 
performed to probe the material microstructure generates a set of structural data, which we noted by 
D. In general, a mathematical transformation F can be defined, which maps the 3D array to the 
structural data set, i.e.,  

D = F { M }        (1) 

In the case of x-ray tomography, the structural data D are 2D projections of the original 3D 
microstructure from different angles. The 3D material can be completely determined once the 
attenuation coefficient associated with every voxel (i.e., the phase associated with that voxel) is 
known. Thus, the entries of the 3D array representing the material M are the attenuation coefficient 
values associated with different phases in the material. The intensity of the projection (i.e., the value 
of an entry of D) associated with angle θ at position r is given by, 

0( , ) exp ( , , )r I x y z d    D M s      (2) 

where I0 is initial intensity of the incident rays without attenuation and s is the path along which the 
ray travels (see Figure 1). Given a sufficient number of 2D projections (acquired with small angle 
increments, typically several thousand projections over an interval from 0 to π), computed 
tomographic reconstruction techniques, such as filtered-back-projection method, can be employed to 
directly inverse the integral transformation in Eq. (2) to recover the 3D distribution of the attenuation 
coefficients (i.e., material phases), and thus, the 3D microstructure. However, such methods could 
not lead to accurate reconstructions when only limited angle projection data (e.g., a handful of 
projections) are available.  

 

Figure 1. A schematic illustration of a parallel-beam tomography system in two 
dimensions. The incident rays are parallel to one another and are attenuated as they 
pass through the material sample. The intensity of the attenuated rays is obtained 
using a detector, from which the total attenuation D(r, θ) can be computed. This 
figure schematically shows a profile of the total attenuation associated with angle θ. 
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In the case of 2D micrographs, the structural data set D contains spatial statistics sampled from 
the micrographs which are assumed to be representative of the original 3D microstructure M. 
Specifically, spatial correlation functions associated with the material’s phases can be used as D for 
3D reconstructions. Examples of such statistical structural descriptors include the standard n-point 
correlation functions Sn [3], which provides the probability of finding a particular n-point 
configuration (i.e., a polyhedron with n vertices) in the bulk phase of interest. The surface correlation 
functions Fs [3,33] are associated with the probability of finding an n-point configuration with a 
subset of points falling on to the surface, while the others lie in the bulk of the phase of interest. The 
lineal-path function L [3,34] gives the probability of finding a line segment of a specific length 
entirely lying in the phase of interest. The pore-size function F [3,35,36] provides statistics of the 
size of the largest spherical region centered at a randomly selected point in the phase of interest that 
entirely lie in this phase. The functions L and F respectively contain linear and spherical topological 
connectedness information of the phases of interest, which can be obtained from the 2D micrograph. 
The n-point cluster function Cn, [3,37] is associated with the probability of finding a particular 
n-point configuration in the same cluster of the phase of interest, and thus, contain complete 
topological connectedness information of the phases of interest. However, Cn for a 3D material 
cannot be obtained from 2D micrographs. Figure 2 schematically illustrates the probability 
interpretation of the aforementioned statistical microstructural descriptors. Detailed discussion of 
these correlation functions can be found in Ref. [3]. It is noteworthy that these descriptors have been 
employed to successfully model [38,39] and design [40,41] engineering materials.  

 

Figure 2. Schematic illustration of the probability interpretation of the correlation 
functions. The 2-and 3-point configurations (i.e., line segments and triangle) shown 
represent the events contributing to the associated correlation functions. 

For a general heterogeneous material, the microstructure M can be represented as a collection of 
binary arrays M(i), in which the voxels associated with phase i possess a value of 1 and 0 otherwise. 
For statistically homogeneous and isotropic microstructures, the two-point correlation function S2(r) 
associated with phase i, which is the probability of finding two points separated by distance r both 
falling into phase i, can be obtained as follows: 
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where V is volume of the material and Ω is the solid angle in 3D. For such materials, it has been 
shown that S2(r) sampled from 2D images or slices is representative of the full 3D microstructure, 
and thus, can be used to reconstruct the 3D material microstructure. Similarly, the surface correlation 
functions Fs, lineal-path function L and pore-size function F sampled from 2D micrographs can also 
be used as structural data for 3D reconstruction, i.e., we have D = { Sn, Fs, L, F }. 

2.2. Stochastic optimization for reconstruction 

To reconstruct 3D microstructure M from the limited data set D and the associated 
transformation F, we generalize the Yeong-Torquato (YT) procedure [24,25] originally devised to 
generate virtual 3D microstructures from a specific set of correlation functions discussed in Sec. 2.1. 
In particular, the reconstruction problem is formulated as an “energy” minimization problem, with 
the energy functional E defined as the squared “difference” between the available data set D and a 
corresponding set D* measured from a trial microstructure M*: 

  E = | D – D* |2       (4) 

where D = F { M } and D* = F { M* }. The squared difference can be defined as the sum of squared 

differences between corresponding data points in D and D*. For example, in the case that the data set 

contains the spatial correlation functions, i.e., D = { ( )f r }, the energy has the following form: 

2

( ) ( )
r

E f r f r 



   
 
    (5) 

where ( )f r  is a target correlation function of type α and ( )f r  is the corresponding function 

associated with a trial microstructure.  
The simulated annealing method [45] is usually employed to solve the aforementioned 

minimization problem. Specifically, starting from an initial trial microstructure Mo (i.e., old 
microstructure) which contains a fixed number of voxels for each individual phase consistent with 
the volume fraction of that phase, two randomly selected voxels associated with different phases are 
exchanged to generate a new trial microstructure Mn. The transformation F is applied to both Mo and 
Mn to obtain the associated data set Do and Dn, which are then compared to the experimentally 
measured structural data D. The energies Eold and Enew, which are associated with the old and new 
trial microstructures, repressively, are then evaluated using Eq. (4). The energy values determine 
whether the new trial microstructure should be accepted or not via the probability:  

( ) min 1,   exp expold new
acc

E E
p old new

T T

          
    

   (6) 

where T is a virtual temperature that is chosen to be initially high and slowly decreases according to 
a cooling schedule [24,25]. Initially, T is chosen to be high in order to allow a sufficiently large 
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number of “up-hill” (energy increasing) trail microstructures. As T gradually decreases, the “up-hill” 
moves become less favorable. This procedure significantly decreases the chances that the final 
microstructure gets stuck in a shallow local energy minimum, as illustrated in Figure 3. In practice, it 
is usually extremely difficult for the system to converge to the global minimum. Thus, the annealing 
process is considered complete if E is smaller than a prescribed tolerance, e.g., E* = 10-6 here.  

In general, an extremely large number of trial microstructures need to be searched during the 
reconstruction, and for each trial microstructure M* the associated structural data D* need to be 
computed by performing the transformation on M* in order to evaluate the energy. Therefore, 
efficient methods have been devised to re-compute D* of a new trial microstructure from that of the 
old trial microstructure, using the fact that only a single pair of voxels are switched to generate the 
new microstructure from the old one and thus, only a small portion of D* is affected [28,43,44].  

 

Figure 3. Schematic illustration of the simulated annealing reconstruction 
procedure. The acceptance of energy-increasing trial microstructure allows the 
system to escape from local energy minima and thus, increases the probability of 
convergence to the global minimum.  

3. Illustrative Examples 

In this section, we demonstrate the utility of our general framework by employing it to 
reconstruct 3D solder materials from limited structural information. Specifically, we will reconstruct 
the 3D polycrystalline microstructure of a portion of a pure tin joint from 2D electron back scattered 
diffraction micrographs and reconstruct a 3D lead-tin alloy from limited angle projections.  

3.1. Reconstructing polycrystalline microstructure from 2D micrographs 

Tin has been widely used as solider materials in electronic packaging [45]. Due to 
heterogeneous cooling and the existence of intermetallic particles, a pure tin solder joint usually 
processes a polycrystalline microstructure. The physical properties of the joint are largely determined 
by the grain size distribution and the grain orientations. Such structural information can be obtained 
via electron back scattered diffraction (EBSD) experiments (see Fig.ure 4A). However, the EBSD 
imaging technique only allows one to probe essentially the surface of the material sample. Therefore, 
serial sectioning is required to acquire successive 2D images at different depth of the polycrystalline 
structure. A final reconstruction can be obtained by carefully stacking these 2D images via image 
alignment.  



35 
 

AIMS Materials Science                                                           Volume 1, Issue 1, 28-40. 

Our framework provides an alternative approach to generate virtual 3D polycrystalline structure 
models from single or a few EBSD images of the material surface. Specifically, the almost 
continuous distribution of grain orientations is “coarsened” such that the polycrystalline 
microstructure is represented as a multiphase structure, with each phase associated with a narrow 
range of orientation values. In practice, the original colored EBSD image is converted to a gray-scale 
image, which is then thresholded according to the gray value of each pixel to produce a multiphase 
material structure for further analysis. The morphology of each phase includes compact regions (i.e., 
grains) that are associated with a specific narrow range of orientations. The two-point correlation 
functions S2 associated with the individual phases are computed (see Figure 4B). Under the 
assumption that the structure is statistically homogeneous and isotropic, the sampled S2 from 2D 
images are representative of the full 3D microstructure (i.e., the morphology of different grains) and 
thus, can be used to generate 3D reconstructions.  

Figure 4C shows the reconstructed 3D polycrystalline material (i.e., a multiphase structure) 
using S2 of the phases, including both the autocorrelation functions (i.e., spatial correlations within 
each phase) and cross-correlation functions (i.e., spatial correlations between different phases). The 
reconstruction process is terminated when the energy E is smaller than 10-4, which means that the 
sum of squared difference between the target and reconstructed correlation functions are small than 
10-4. Therefore, the target and reconstructed correlation functions are virtually identical to one 
another and thus, cannot be distinguished on the plot scale in Figure 4B. The reconstruction 
statistically reproduces the key structural features including the size and shape of the grains and the 
orientation correlation between neighboring grains (i.e., the cross-correlation functions), as can be 
seen by comparing the surfaces of the 3D virtual microstructure to the target 2D image. These results 
suggest that S2 alone would be sufficient to model this polycrystalline material as a multiphase 
structure. We emphasize that a quantitative comparison between the reconstructions and 
experimentally obtained 3D structure is necessary to definitely ascertain the accuracy of the 
reconstructions. However, the latter is currently not available. 

 

Figure 4. Reconstructing a polycrystalline tin solder as a multiphase material using 
the two-point correlation function obtained from a 2D EBSD image. (A) The 2D 
EBSD image of the surface of the solder. (B) The associated two-point correlation 
functions of the phases and cross correlation functions. Inset: The crystallographic 
triangle providing the orientations of the grains shown in (A). (C) A 3D 
reconstruction using two-point correlation functions S2. The linear size of the 
system we considered is 85 μm and one pixel = 0.6 μm. 
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3.2. Reconstructing binary metallic alloy from limited angle projections 

Conventional tomography reconstruction algorithms such as the filtered-back-projection method 
usually require an extremely large number of 2D projections as input, and can only yield a gray-scale 
image, for which extensive post-processing including image segmentation is required to generate a 
3D microstructure model. On the other hand, our framework only requires a handful of projections 
(usually 20 ~ 40) and can directly produce an accurate 3D microstructure without post-processing.  

Figure 5B shows a 3D lead-tin alloy microstructure, which is our target system. The 2D 
projections associated with the binary structure at selected angles in cone-beam geometry are shown 
in Fig. 5A. We note that these simulated projections are obtained by sending virtual rays through the 
material in vacuum and recording the total attenuation values on a virtual detector. Thus, the 
projection intensity corresponds to the value of the total attenuation at that point. Figure 5C shows 
the reconstructed alloy microstructure using 30 projections associated with angles evenly distributed 
over the interval [0, π], which is visually indistinguishable from the target microstructure. 
Quantitative comparisons between the target and reconstructed microstructure indicate that there are 
less than 3% of mis-placed voxels in the reconstruction. These results clearly demonstrate the 
accuracy and robustness of our stochastic reconstruction framework using limited-angle projections. 

 

 

Figure 5. Reconstruction of a binary alloy from limited angle projections. (A) 
Simulated projections at 0, π/6, π/2 and 2π/3, by sending virtual rays through the 
material in vacuum and record the total attenuation values on a virtual detector. 
The projection intensity corresponds to the value of the total attenuation [i.e., 
ln(I/I0)] at a point of the dector. (B) The target 3D alloy microstructure. (C) The 
reconstructed 3D microstructure using 30 projections with angles evenly distributed 
over the interval [0, π].  
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4. Concluding Remarks 

We have presented a general computational framework that enables one to generate realistic 3D 
microstructure models from limited morphological information via stochastic optimization. In our 
framework, the 3D microstructure is represented as a 3D array, whose entries indicate the local state 
of that voxel. The limited structural data obtained in various experiments correspond to different 
mathematical transformations of the 3D array. Thus, generating or reconstructing the 3D material 
structure from such limited data can be formulated as an inverse problem in which one recovers the 
original 3D array, given the transformation and the resulting data. A general stochastic microstructure 
reconstruction procedure has been provided which evolves a trial microstructure to minimize the 
difference between the corresponding structural data and the experimental structural data, such that 
the final reconstructed microstructure possesses the target experiment data. The utility of our general 
framework has been illustrated by reconstructing a polycrystalline microstructure from 2D EBSD 
micrographs and a binary metallic alloy from limited angle projections, which also demonstrated the 
versatility and robustness of our procedure. 

Although only limited-angle 2D projections and 2D micrographs were used as limited structural 
data to illustrate our general framework, it is straightforward to apply the framework to reconstruct 
3D materials from other limited data. For example, stochastic optimization procedures have been 
successfully applied to study the phase separation of a fluid in nano-porous materials from limited 
small-angle x-ray scattering (SAXS) data [46].  

Importantly, our computational framework also has ramifications in 4D materials science (e.g., 
charactering microstructural evolution over time). Since only limited structural information is 
required for our reconstruction procedure, the time needed for accquring structural data in 
experiments can be significantly reduced (e.g., accquring 2000 tomography projections vs. 20 
projections). This enables one to increase the temporal resolution and thus, to study rapidly evolving 
materials. In addition, characterizing of the evolution of grain orientation distributions and associated 
structural features in a 3D polycrystalline material [47,48] is almost not possible to achieve using 
serial sectioning method. However, one can model such process from the limited structural 
information contained in the 2D micrographs using our framework. We will report the applications of 
our framework in 4D materials science in future publications.  
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