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Abstract: Large-scale landslides often result in severe soil displacement and the exposure of bedrock, 

particularly combined with heavy rainfall. This condition significantly increases the risk of sediment-

related disasters. Consequently, vegetation restoration and succession following landslide events are 

critical strategies for mitigating such hazards and enhancing disaster resilience. In this study, we 
integrated multi-temporal remote sensing imagery, land use classification, and Markov chain change 

simulations to evaluate the dynamic restoration of vegetation in a large-scale landslide area. Field 

surveys were conducted to validate the observed patterns of vegetation recovery. The results showed 
high accuracy in land use classifications derived from eight temporal images, with overall accuracy 

surpassing 80% and Kappa coefficients exceeding 0.7. The primary areas of vegetation recovery were 

identified as forests, followed by grasslands. Spatial change simulations indicated that full vegetation 
stability is expected to be reached after 2075. We emphasized the efficacy of combining remote sensing 

and modeling techniques for long-term monitoring of vegetation dynamics and offer critical insights 

for formulating sustainable strategies for disaster management. 

Keywords: large-scale landslides; vegetation dynamic; landscape change simulation; vegetation 

restoration; NDVI 
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1. Introduction 

Earthquake-induced landslides are frequent natural hazards in Taiwan due to its unique geographical 

location and climatic conditions. One of the most severe landslides was triggered by the 921 Earthquake 

in 1999, which was classified as a large-scale landslide [1–3]. In Taiwan, large-scale landslides are 
defined as those with a collapsed area exceeding 10 hectares, an earth volume greater than 100,000 cubic 

meters, or a collapse depth of more than 10 meters [4]. The exposed soil and rock slopes caused by 

landslides are prone to sediment-related disasters, especially during heavy rainfall when vegetation cover 
is insufficient. Therefore, monitoring and understanding vegetation recovery in landslide-affected areas 

are critical for the effective management and mitigation of landslide hazards [5–9]. Furthermore, 

monitoring vegetation restoration provides valuable insights into the restoration cycle within landslide-
affected areas. This information serves as a critical reference for developing and improving future 

vegetation restoration strategies in such regions. Although traditional vegetation survey methods offer 

important information on flora, succession pathways, and biodiversity, their application in large-scale 
landslide areas is challenging. These methods require long-term monitoring and assessment, which are 

both time-consuming and labor-intensive [10,11]. Furthermore, their implementation is often 

impractical in remote or inaccessible regions.  
In response to these challenges, remote sensing technology has been used as an effective 

alternative for monitoring vegetation changes. The Normalized Difference Vegetation Index (NDVI) 

is commonly used to track dynamic changes in vegetation [12–20]. Researchers have used multi-
temporal NDVI data to detect changes in vegetation cover after landslides and assess the extent of 

vegetation recovery [21–27]. However, these methods are limited to examining past vegetation 

changes and do not facilitate the prediction or simulation of future vegetation restoration scenarios. To 
address these limitations, landscape change models have been developed to simulate the functional 

and dynamic changes in land use systems, which offers a more comprehensive approach to forecasting 

future vegetation recovery [28–30]. These models can explore the interactions of natural processes and 
evaluate proposed management treatments [31–33]. Furthermore, landscape change models are 

regarded as an effective tool for post-disaster vegetation restoration and simulating future vegetation 

succession. However, many models overlook the sequential nature of vegetation succession. This may 
lead to simulation results that do not accurately reflect real-world conditions. This gap highlights the 

necessity of incorporating additional succession processes in the modeling approach. 

We leveraged multi-temporal Landsat remote sensing imagery, captured before and after the 921 
Earthquake in the Chiufenershan landslide area, in combination with a land use change model and the 

principles of vegetation succession priority. For this integrated approach, we aim to simulate and assess 

the dynamic restoration of vegetation and potential future landscape changes within the affected area. 
The findings are expected to contribute to the development of effective landslide management 

strategies, mitigate future disaster risks, and improve the efficacy of vegetation restoration efforts. 
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2. Materials and methods 

2.1. Study area 

The study area is in Nangang Village, Nantou County in the central part of Taiwan (R.O.C.). The 
Chiufenershan landslide occurred between 23°58′08″N and 23°56′52″N and between 120°49′36″E and 

120°51′01″E (Figure 1). The altitude of the study area varies from 500 to 1000 m above sea level. The 

Shizikeng and Jiucaihu Rivers transformed into barrier lakes due to the 921 Earthquake that collapsed 
the area and blocked both rivers. The collapsed area is 102.5 ha, with the depth collapse ranging from 

30 to 50 m. The collapsed volume was 32.85 million m³. The disaster is classified in a large-scale 

landslide category. The area is divided into three parts based on a top-down view of the location: A 
large collapsed area, a deposition area, and a conservation park. There is an almost intact semi-natural 

area in the western part outside the landslide area with some orchards and betel nut plantations. In 

contrast, the eastern part is steep areas resulting in minimal disturbance with complex categories of 
vegetation [24]. 

 

Figure 1. Location of the Chiufenershan landslide. 

2.2. Data acquisition 

2.2.1. Multitemporal satellite imagery 

Satellite imagery is commonly adopted for environmental monitoring, landscape change, and 

vegetation restoration assessments due to its wide detection range, fixed period, and multi-temporal-
spectral properties. Landsat imagery has been widely used for landscape and vegetation monitoring 

due to its long-term data availability and moderate spatial resolution [34]. Similarly, Sentinel-2 

provides high-resolution optical data with a 5-day revisit time, suitable for detailed environmental 
analyses [35]. MODIS (Moderate Resolution Imaging Spectroradiometer), with its daily global 
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coverage and multi-spectral capabilities, supports large-scale monitoring of vegetation dynamics and 

land-use changes [36]. These satellite platforms, among others, enable comprehensive monitoring of 
environmental changes over time through the integration of multi-temporal and multi-spectral data. 

We used satellite imageries from Landsat 5 and Landsat 8 due to the long-term availability [37], spatial 

resolution (30 m), and free application [38] for vegetation dynamics assessment and landscape change 
simulation. The Chiufenershan landslide occurred in a mountainous area, where imageries are often 

affected by clouds and shadows. Therefore, for the period 1990 to 2020, 10 satellite images were 

selected from April 1, 1999 (pre-earthquake), September 24, 1999 (post-earthquake), 2000, 2002, 2006, 
2009, 2013, 2015, 2018, and 2020. The images from 1999 were applied for landslide mapping, and the 

remaining images were used for land use classification (Figure 2). 

 

 

 

 

 

  

Figure 2. Multitemporal satellite images obtained from the U.S. Geological Survey. 

(a) 1999-04-01 (b) 1999-09-24 (c) 2000-01-07

(d) 2002-02-03 (e) 2006-12-09 (f) 2009-01-31

(g) 2013-12-03 (h) 2015-01-23 (i) 2018-01-15

(j) 2020-01-21 
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2.2.2. Long-term rainfall data 

Rainfall is a critical factor for vegetation growth; however, excessive precipitation can lead to 

runoff and surface erosion. We utilized rainfall as a key driving factor and considered its impact on 

spatial distribution. Long-term annual rainfall data from 2000 to 2020 were obtained from nearby 
weather stations. The data was employed to model the spatial distribution of rainfall. The rainfall data 

were collected by the Water Resources Department of the Ministry of Economic Affairs and the Central 

Weather Bureau of the Ministry of Transportation and Communications of Taiwan (Table 1). 

Table 1. Rainfall station information. 

Station Name Longitude Latitude Annual rainfall (mm) Production unit Distance to the 

landslide site (km) 

Beishan-2 120°53'34" 23°59'8" 2175 Water Resources Agency 

of the Ministry of 

Economic Affairs (WRA) 

5.51 

Jiji-2 120°46'30" 23°49'35" 2356 16.65 

Caotun-4 120°40'44" 23°58'21" 1636 16.94 

Shuangdong 120°48'08" 23°58'03" 2340 Central Weather 

Administration of the 

Ministry of 

Transportation and 

Communications (CWA) 

4.39 

Luzhuna 120°48'43" 23°56'02" 2882 4.6 

Zhanghu 120°50'49" 23°54'19" 3067 6.31 

Chiufenershan 120°50'42" 23°57'43" 2923 0.03 

Waidaping 120°55':05" 23°57':31" 2418 7.45 

2.3. Analytical methods 

2.3.1. NDVI 

Vegetation detection relies on the unique spectral properties of plants, which absorb blue and red 

light while reflecting near-infrared radiation [39,40]. The Normalized Difference Vegetation Index 
(NDVI), proposed by [41], represents this spectral difference by calculating the ratio of the difference 

between the near-infrared and red bands to their sum [42,43]. NDVI is widely utilized in remote 

sensing for evaluating vegetation restoration, classifying land use, and modeling vegetation changes. 
The values of NDVI range from −1 to 1, with negative values indicating non-vegetated areas and 

positive values reflecting varying degrees of vegetation cover. The formula for calculating NDVI is as 

follows: 

𝑁𝐷𝑉𝐼 ൌ ேூோିோ

ேூோାோ
         (1) 

where R is the red band and NIR is the near-infrared band. 
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2.3.2. Landslide mapping 

The NDVI difference values were calculated for images taken before and after the landslide event. 

The most severely affected area was identified on the map and selected as the seed point to determine 

the initial threshold for the landslide area. The landslide triggered by the 921 Earthquake was mapped 
through a comparison of images captured before and after the event [44]. The stratified sampling was 

used to select 250 random samples of collapsed and non-collapsed points from the map to evaluate the 

assessment accuracy. The accuracy of landslide mapping was evaluated based on the overall accuracy 
(OA) and the kappa coefficient [45,46]. 

2.3.3. Land use classification 

Image classifier—Support vector machine 

In the absence of multi-temporal land use maps for the study area, remote sensing image 

classification techniques are necessary to generate land use maps and assess land cover changes over 

time. Support Vector Machine (SVM) is a supervised learning model based on statistical theory. SMV 
identifies an optimal hyperplane within the input space to separate the best classes in the data. SVM 

can handle both linearly separable and non-linearly separable data by employing different types of 

kernels, such as linear, polynomial, or radial basis function kernels, which effectively map the input 
space into a higher-dimensional feature space where the classes become more easily separable. It is 

used to map an inseparable sample from a low-dimensional space into a higher-dimensional space 

where it identifies the optimal straight line, or hyperplane, that separates the sample sets within that 
space. The optimal hyperplane is defined as the one that maximizes the margin, or the greatest possible 

distance, between the sample sets, particularly in the context of binary classification (Figure 3). 

 

Figure 3. Diagram of a support vector machine (Modified from [47]). 

The sample set x with n records, where 𝑥௜ represents the feature vector of the ith record, and the 
records belong to two categories, 𝑤ଵ ൌ 1 or 𝑤ଶ ൌ 1. The hyperplane formula is as follows: 
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𝑓ሺ𝑥ሻ ൌ 𝑤 ∙ 𝑥 ൅ 𝑏         (2) 

where w is the normal vector of the hyper-plane and b is the threshold. 

Classification is performed based on the distance between the sample and the optimal hyperplane. 

If  𝑓ሺ𝑥௜ሻ ൐ 0, the sample 𝑥௜ is classified into𝑤ଵ. Conversely, if 𝑓ሺ𝑥௜ሻ ൏ 0, the sample is classified 

into𝑤ଶ. The classification constraints are expressed as follows: 

𝑤 ∙ 𝑥 ൅ 𝑏 ൒ 1
𝑤 ∙ 𝑥 ൅ 𝑏 ൑ െ1

,
𝑥 ∈ 𝑤ଵ
𝑥 ∈ 𝑤ଶ

       (3) 

SVM is commonly applied for remote sensing image classification. In this study, the segmentation 
and classification module of ArcGIS 10.5 (ESRI) was used for land use classification. 

Accuracy assessment 

Accurate land use classification is crucial for ensuring the reliability of the results. Statistical 

methods are commonly applied to assess the quality of classification. One widely used approach is the 
confusion matrix, which evaluates the performance of land use classification [48,49]. Among key 

metrics, the OA and kappa coefficient show the validity of classification results. These metrics are 

crucial for measuring the comprehensive accuracy between simulated and observed maps [50–53]. The 
kappa coefficient, which ranges from 0 to 1, provides a quantitative measure of classification accuracy. 

The higher values indicate greater accuracy. In remote sensing applications, accuracy assessments are 

vital for determining the suitability of classification results for specific purposes. A kappa coefficient 
greater than 0.7 is generally considered indicative of valid classification results [54–56]. The OA, 

calculated from the confusion matrix, represents the proportion of correctly classified sample points, 

weighted by the number of samples in the i-th row and j-th column. It offers an objective measure of 
classification performance, with higher values reflecting higher accuracy. The formula for calculating 

OA is as follows: 

Overall Accuracy ൌ
∑ ଡ଼౟౟

౤
౟సభ

∑ ∑ ଡ଼౟ౠ
౤
ౠసభ

౤
౟సభ

ൈ 100%     (4) 

where X୧୧ represents the number of sample points on the diagonal of the confusion matrix indicating 
correctly classified instances, and X୧୨ refers to the number of sample points in the i-th row and j-th 

column of the confusion matrix, reflecting misclassifications between categories. 

The Kappa coefficient is calculated by comparing the classified data with actual ground truth 
information. This comparison is used to assess the accuracy of the classification, providing a more 

reliable measure of agreement between the predicted and observed values. The formula is as follows: 

Kappa ൌ ୒ ∑ ଡ଼౟౟
౤
౟సభ ି∑ ሺଡ଼౟శൈଡ଼శ౟ሻ౤

౟సభ

୒మି∑ ሺଡ଼౟శൈଡ଼శ౟ሻ౤
౟సభ

ൈ 100%     (5) 

where n represents the number of rows in the confusion matrix and N is the total number of samples. 

X୧୧ is the number of samples on the diagonal of the confusion matrix, X୧ା is the number of samples 
in each row, and Xା୧ is the number of samples in each column of the confusion matrix. 



325 

AIMS Geosciences  Volume 11, Issue 2, 318–342. 

2.3.4. Landscape change analysis 

Determining driving variables of post-landslide landscape changes 

Landscape patterns are shaped by the interactions between natural processes and human 
activities [57,58]. In this study, human activities were not considered effective driving factors since 

there was no residential or agricultural activity in the study area after the earthquake disaster. 

Consequently, the landscape changes were primarily caused by environmental stressors. Factors such 
as altitude, slope, topographic relief, topographic position, and topographic wetness significantly 

influence temperature, transportation, and distribution of moisture and nutrients across the landscape. 

Therefore, the distribution of landscape vegetation is strongly related to topographic patterns. In 
addition, solar radiation is a key factor driving various physical and biological processes on the Earth’s 

surface. It is essential for photosynthetic plant growth and is influenced by topography, surface features, 

and seasonal variations. Therefore, solar radiation serves as another critical determinant of landscape 
change. Furthermore, road development disrupts vegetation and contributes to surface runoff, which 

accelerates soil erosion, impeding plant growth and hindering vegetation succession. Another 

important factor is the presence of rivers. When a river flows through the surface soil, capillary action 
enables the soil to retain water, which is beneficial for plant growth. Therefore, we utilized a 

combination of meteorological data, digital elevation models (DEMs), road maps, and river network 

maps to derive the driving factors for landscape change simulation using the spatial analysis module 
in ArcGIS 10.5. Meteorological data, including annual rainfall records, were obtained from the Water 

Resources Agency, Ministry of Economic Affairs (WRA), and the Central Weather Administration, 

Ministry of Transportation and Communications (CWA). The DEM, provided by the Ministry of the 
Interior (MOI), was utilized to calculate terrain-related indices such as slope, topographic relief, 

topographic position, and topographic wetness. Road and river network maps, sourced from the 

National Land Surveying and Mapping Center, Ministry of the Interior (NLSC), were used to compute 
proximity variables, including the distance to roads and rivers (Table 2). 

Table 2. Driving variables of landscape change. 

Data types Code Driving factors Unite Source Reference 

Climate C1 Annual rainfall mm See table 2 [59,60] 

C2 Solar radiation WH/m2 Derived from DEM 

Topography C3 Altitude/DEM m Ministry of the Interior (MOI) [61,62] 

C4 Slope % Derived from DEM 

C5 Topographic relief index m Derived from DEM 

C6 Topographic position Index m Derived from DEM 

C7 Topographic wetness index m2 Derived from DEM 

Road C8 Distance to the road m Road map and calculated by 

Euclidean Distance 

[63,64] 

River C9 Distance to the river m River map and calculated by 

Euclidean Distance 

[65,66] 
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Landscape change prediction 

The artificial neural network (ANN) is a nonlinear statistical method used to model relationships 

between influencing factors and output variables. ANNs can predict or classify variables more 

accurately than traditional statistical methods by leveraging mathematical and statistical learning 
techniques. ANNs identify patterns from large data sets more accurately compared to traditional 

statistical methods. Given the complexity of factors affecting plant growth, identifying correlations 

between these variables enhances the accuracy of simulations and predictions. We measured the 
relationship between each variable and each land use category. The selected variables included annual 

rainfall, solar radiation, altitude, slope, topographic relief index, topographic position index, 

topographic wetness index, distance to roads, and distance to rivers. Then, the dynamic landscape 
change simulation was run, with particular attention paid to calibrating the model and setting 

appropriate hyperparameters to achieve optimal results. Calibration was performed using images from 

2003 and 2009, as well as from 2016 and 2018. The trial-and-error method was applied to determine 
the optimal model. 

The Markov chain and cellular automata models are widely used to simulate the spatial 

distribution of landscape patterns. However, these models often overlook the sequential nature of 
vegetation succession, which follows a defined progression rather than a random sequence (e.g., from 

bare land to grassland and then to forest; Figure 4; [67]). This sequential progression was carefully 

considered in this study, which aimed to explore vegetation restoration and dynamically simulate 
landscape changes across different periods. TerrSet, developed by Clark Labs at Clark University, is 

an integrated geospatial software system designed for monitoring and modeling Earth systems to 

support sustainable development. We used the Land Change Model (LCM) within TerrSet to analyze 
potential future vegetation changes in study areas. The modeling framework combines historical data, 

spatial variables, and transition potential models to simulate and predict spatial phenomena. Machine 

learning techniques in TerrSet, specifically ANNs, were employed to create correlations between 
explanatory factors and observed landscape changes. The input data consisted of two land use maps 

and key driving factors (Table 2). ANN-based modeling iteratively adjusted weights and biases through 

backpropagation to minimize error, thereby generating predictions for potential future land use patterns, 
including forest, grassland, bare land, and water. The optimal ANN parameters used in this study 

included a maximum number of iterations of 20,000, a learning rate of 0.001, a momentum of 0.5, and 

hidden layers of 12. 
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Figure 4. Schematic of vegetation succession (Modified from [67]). 

3. Results 

3.1. Chiufenershan landslide mapping 

The landslide triggered by the 921 Earthquake was mapped using the NDVI image subtraction 

and threshold change approach. The total landslide area was found to be 223.74 ha. OA and Kappa 
coefficient statistical tests were used to measure the accuracy of the landslide delineation. OA 

represents the proportion of correctly classified pixels relative to the total number of reference pixels. 

The Kappa coefficient measures the agreement between the mapped results and reference data, 
accounting for chance-level agreement. The results showed an OA of 86.4% and a Kappa coefficient 

of 0.728, as presented in Table 3 and Figure 5. These values indicate good performance of the model 

based on the classification accuracy standards proposed by [54,68]. This suggested that the 
methodology provided more reliable results for assessing landslide impacts caused by seismic activity. 

The achieved accuracy highlighted the effectiveness of NDVI-based image subtraction in detecting 

landslides, particularly in complex mountainous terrain, before and after earthquakes. 
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Figure 5. Chiufenershan landslide mapping derived from pre-landslide and post-landslide 
satellite images. 

Table 3. Confusion matrix of landslide mapping derived from 04/01/1999 and 09/27/1999 
satellite images. 

Categories landslide Non-landslide 

landslide 108 17 

Non-landslide 17 108 

Overall accuracy = 86.4%, Kappa coefficient = 0.728 

3.2. Accuracy assessment of land use classification by period 

After coupling the NDVI data with the original image bands, Support Vector Machine (SVM) 
classification was applied to categorize land use. The accuracy evaluation results showed OA values 

exceeding 80% and Kappa coefficients greater than 0.7 for each image (Table 4). These results 

highlighted high classification accuracy [54,55]. Therefore, the classification results were considered 
reliable for the subsequent dynamic simulation of future landscape changes. Image inspection revealed 

that most error points were along the edge of the landslide or at the boundaries of land use categories 

(Figure 6). These errors are likely attributable to the spatial resolution (30 m) and the presence of mixed 
cells, where a single grid contains multiple land use types. The confusion matrix for each period 

indicated that most errors occurred between grassland and forest areas. This is primarily because 
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grassland and forest have similar spectral reflectance values, making them difficult to distinguish in 

classification. 

Table 4. Accuracy of land use classification by period. 

Date Overall accuracy Kappa coefficient 

2000/01/07 87.50% 0.833 

2002/02/03 96.88% 0.958 

2006/12/09 93.75% 0.917 

2009/01/31 94.14% 0.922 

2013/12/03 84.77% 0.792 

2015/01/23 85.94% 0.810 

2018/01/05 92.58% 0.901 

2020/01/21 90.23% 0.870 

 

 

 

 

Figure 6. Land use classification by period. 



330 

AIMS Geosciences  Volume 11, Issue 2, 318–342. 

3.3. Dynamic simulation of landscape change in the future 

3.3.1. Landscape change model calibration and validation 

The relationship between each driving factor and landscape category was identified through ANN. 
The Markov chain and cellular automata models were integrated to complete a dynamic simulation of 

future landscape changes. ANNs are commonly used to identify relationships between factors. 

However, optimizing parameters such as the maximum number of iterations, learning rate, momentum, 
and the number of hidden layers is crucial for achieving acceptable results. The Markov chain model 

simulates the probability distribution of landscape change for the next period (t+∆t) based on the 

differences observed between the two periods (∆t). For this study, data from 2003 and 2009, as well as 
from 2016 and 2018, were used to calibrate and validate the landscape change for the years 2015 and 

2020. In addition, the vegetation succession process was analyzed in terms of landscape patterns under 

restricted conversion conditions. Through the trial-and-error method, the optimal parameters were 
determined: A maximum of 20,000 iterations, a learning rate of 0.001, a momentum of 0.5, and 12 

hidden layers. The evaluation results of the landscape change simulation showed OAs of 72.80% for 

2015 and 82.26% for 2020, with Kappa coefficients of 0.53 and 0.72, respectively. These findings 
indicated medium to high accuracy for both simulations. The results demonstrated that optimized 

parameters effectively contributed to the dynamic simulation of subsequent landscape changes. 

3.3.2. Landscape change prediction 

The optimized parameters derived from the 2015 and 2020 simulations were applied to predict 
dynamic landscape changes. The area percentages of each land cover category were then calculated 

based on the dynamic simulation results  (Figure 7 and Table 5). The findings suggested that, in the 

absence of external disturbances, the land cover categories will stabilize by 2075. Forests comprised 
the largest proportion of land cover, approximately 60%, followed by grasslands at around 27%. Bare 

land and water bodies were 13% of the total land cover. These results revealed that vegetation in the 

Chiufenershan landslide area has smoothly recovered, with forests emerging as the dominant land 
cover type. 
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Figure 7. Dynamic simulation of landscape changes from 2025 to 2075. 
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Table 5. Dynamic simulation of landscape change from 2025 to 2075. 

year Forest (%) Grassland (%) Bare land (%) Water (%) 

2025 54.344 28.117 16.251 1.287 

2030 55.873 27.755 14.964 1.408 

2035 57.039 27.434 13.958 1.569 

2040 57.924 27.273 13.113 1.689 

2045 58.528 27.112 12.550 1.810 

2050 59.010 27.031 12.108 1.850 

2055 59.292 27.031 11.706 1.971 

2060 59.574 26.991 11.384 2.051 

2065 59.654 27.031 11.142 2.172 

2070 59.735 27.072 10.941 2.253 

2075 59.775 27.072 10.821 2.333 

4. Discussion 

4.1. Assessment of long-term vegetative restoration 

The transition probability matrix for landscape change from 2000 to 2020 indicated a significant 
negative net change of −136.89 ha in bare lands. However, forest areas experienced the largest positive 

net change of 90.18 ha (Table 6). The results showed that the landslide area has largely reverted to 

forest since 2000, with forest cover at approximately 52.29% of the total landslide area, followed by 
grassland at 28.80% (Table 7 and Figure 8). The spatial distribution analysis of the landscape pattern 

within the landslide demonstrated that water areas were predominantly concentrated in the two barrier 

lakes (Figure 6, Table 7). Following the landslide event, the water areas of these lakes showed only 
minor changes. Bare land has been steadily decreasing, with the primary fragmentation occurring in 

the deposition area beneath the landslide. The long-term monitoring and assessment of the 

Chiufenershan landslide following the earthquake by [69] showed that vegetation restoration was 
closely related to terrain conditions. Their study indicated that the deposited area, characterized by 

loose soil, provides appropriate conditions for vegetation invasion and the natural renewal of residual 

vegetation. This deposited area serves as a primary zone for natural vegetation recovery. In contrast, 
restoring vegetation in the collapsed area of the landslide is challenging due to exposed rock and 

unsuitable environmental conditions. Furthermore, [70] highlighted that the topography of the 

landslide significantly impacts the growth potential of plants. The collapsed area, which features a 
steep slope, had low vegetation coverage and was dominated by herbaceous plants. In contrast, the 

deposited area was covered by more vegetation due to its gradual slope, which is more conducive to 

the growth of woody plants. Our findings align with these studies, confirming the role of topography 
in influencing vegetation recovery. Additionally, a comparative analysis across various time points 

revealed a gradual decline in the rate of forest succession, followed by an increase in grassland 

succession rate after 2006. This trend suggested that grassland has emerged as the predominant form 
of vegetation succession during this period. Moreover, an examination of spatial vegetation changes 
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within the landscape indicated vegetation restoration process has progressively shifted from the 

deposited area to the collapsed area over time. 

Table 6. Net changes in land use area by period. 

Categories 

Period 
Forest Grassland Bare land Water 

2000–2002 53.28 11.79 −67.05 1.98 

2002–2006 40.05 −4.41 −34.65 −0.99 

2006–2009 −4.59 11.43 −7.29 0.45 

2009–2013 21.78 −0.36 −21.24 −0.18 

2013–2015 −3.42 5.4 −2.25 0.27 

2015–2018 −14.67 28.53 −14.49 0.63 

2018–2020 −2.25 −7.65 10.08 −0.18 

Total 90.18 44.73 −136.89 1.98 

Unit: ha 

 

Figure 8. Percentage of land use area by period. 

Table 7. Percentage of land use area by period. 

Year 

Categories 
2000 2002 2006 2009 2013 2015 2018 2020 

Forest 20.15 35.80 53.70 55.47 61.38 59.86 53.30 52.29

Grassland 9.86 14.08 12.11 18.38 17.06 19.47 32.22 28.80

Bare land 69.79 49.03 33.55 25.38 20.80 19.79 13.31 17.82

Water 0.20 1.09 0.64 0.76 0.76 0.88 1.17 1.09

Unit: % 
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The dynamic simulation of future landscape changes indicated that the deposited area has 

essentially stabilized and forest covers become the dominant land cover (Figure 7). However, the 
collapsed area (upper landslide), characterized by thin soil layers, steep slopes, and ongoing terrain 

instability, remains less conducive to the establishment of deep-rooted tree species. Therefore, 

vegetation recovery in the collapsed area is currently dominated by grassland. It is expected by 
improvements in soil formation and slope stability over time, more favorable conditions would emerge 

for tree development. From the perspective of landscape fragmentation, forest regeneration is primarily 

occurring along the edges of fragmented patches, where environmental conditions are more stable. The 
results showed a decreasing trend in bare land areas, which are in the central area. On the other hand, 

grassland continues to expand inward from the margins. From a successional perspective, the findings 

suggested the collapsed area will require a significant period to reach a climax community. The results 
showed the stability of the deposition area and the ongoing potential for recovery in the collapsed area 

for current conditions in the study area. Therefore, vegetation restoration efforts between 2025 and 

2075 will focus on enhancing recovery in the collapsed area. 

4.2. Vegetation restoration process and effects of the landslide 

The simulated spatial distribution showed vegetation succession progresses from the bottom 

upward (Figure 6 and Figure 9c). This pattern was created throughout the landslide event. The soil and 

rock fall downward and accumulate, which results in a thick soil layer and a moderate slope. These 
conditions provide an appropriate environment for plant growth [69,71,72]. Consequently, the 

vegetation recovery rate in this area was relatively rapid and led to the highest levels of forest coverage. 

In contrast, the upper part of the slope, where the collapse was deeper and bedrock is exposed, provides 
minimal topsoil for plant growth. Therefore, vegetation recovery in this area was slower and relies on 

the process of soil genesis. In addition, gramineous plants have been identified as the pioneer species 

in this region due to the steep and varied environmental conditions (Figure 9a and Figure 9c). The 
simulation indicated that the right side of the collapsed area, which is closer to the epicenter and 

characterized by exposed bedrock, will likely remain bare once the landscape pattern stabilizes. 

Vegetation restoration in this area is expected to take more time due to these challenging conditions. 

4.3. Field investigation and verification of Chiufenershan landslide vegetation 

The results of the field investigation revealed that a significant portion of the collapsed area 

remains bare, with a weak process of vegetation restoration (Figure 9b). This is mainly due to the steep 

terrain and the vulnerability of soil to erosion. In areas where soil from the upper slopes has been 
washed away by rainfall and formed a thick layer of soil in the upslope of the roads, vegetation has 

begun to regenerate and recovery has been facilitated  (Figure 9a). However, grassland remained the 

dominant cover, with Pennisetum purpureum Schumach identified as the pioneer species in this area. 
Furthermore, there were significant differences in plant distribution at the intersection of the deposited 

and collapsed sites (Figure 9c). The collapsed area was predominantly covered by grassland, while the 

deposited area was characterized by secondary forest (Figure 9d). The dominant species in the 
secondary forest included Machilus zuihoensis Hayata and Schefflera octophylla (Lour.) Harms [73]. 
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The findings from the field investigation verified that the vegetation restoration assessment results 

through the model were aligned with the actual vegetation succession observed in the study area. This 
suggested that the methodology proposed in this study addressed previously overlooked mechanisms, 

thereby enhancing the ability of the model to predict vegetation dynamics. As a result, this model offers 

a more accurate and practical reference for future land management and restoration strategies in areas 
affected by landslides. 

 

Figure 9. Vegetation restoration in collapsed and deposition landslide areas: (a) Landscape 

pattern in the collapsed area, (b) gramineous plants and condition of collapsed area, (c) 
vegetation recovery at the junction of collapsed and deposition areas, and (d) landscape 
pattern in deposition area. 

4.4. Limitations and uncertainties 

We successfully incorporated vegetation succession patterns and integrated support vector 
machine (SVM) classification, the Markov chain model, and remote sensing imagery, yielding 

effective results in land use classification and the simulation of dynamic landscape changes. However, 

several uncertainties affected model performance and prediction reliability.  

4.4.1. Spatial resolution of remote sensing imagery 

We utilized 30-meter resolution Landsat satellite imagery, which faced challenges such as mixed-

pixel effects and classification ambiguities, particularly along land cover boundaries. These limitations 

were notable in the classification of grassland and forest due to similar spectral reflectance, which led 
to misclassification. 

Collapsed area 

Deposited area 

(c) (d) 

(a) (b) 
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4.4.2. Spectral similarity between land cover classes 

The spectral similarity between grassland and forest further complicated spectral-based 

classification methods. This overlap in spectral characteristics reduced the accuracy of classification. 

In addition, it was difficult to distinguish these two land cover types with high precision. 

4.4.3. Assumption of stationarity in the Markov Chain Model 

The Markov chain model assumes stationarity in transition probabilities, which oversimplifies 

the complex interactions between land use categories. This assumption fails to account for abrupt 

changes in land use that may be triggered by extreme weather events or human activities. It increases 
the predictive uncertainties, particularly in long-term simulations. 

4.4.4. Limited consideration of external factors 

The model does not fully account for dynamic external factors such as human intervention, 

climate change, or sudden environmental disturbances. These factors may significantly alter land use 
patterns and reduce the ability of the model to accurately predict long-term landscape changes. 

It is suggested to address these limitations and enhance the model performance, future focus on 

utilizing higher-resolution imagery to reduce mixed-pixel effects, incorporate additional auxiliary data 
(such as soil properties, land management data, or more detailed topographic features), and apply more 

advanced modeling techniques that can better capture non-stationary dynamics in land use transitions. 

These enhancements will improve classification accuracy, better reflect the complexities of landscape 
change, and increase the overall reliability and predictive power of the model. 

5. Conclusions 

We aimed to explore dynamic vegetation restoration in the Chiufenershan area, where the large-

scale landslide occurred more than 25 years ago. A combination of multi-temporal remote sensing 
imagery, image classification, and land use change techniques were utilized to investigate vegetation 

succession sequences and land cover changes. The results suggested that the secondary forest stage 

can be reached approximately seven years after the landslide in the deposited area. In contrast, the 
recovery of the collapsed area may require a longer period due to the influence of environmental 

stressors. It is anticipated vegetation succession to remain unstable until 2075. Although the study used 

a significant volume of remote sensing data and landscape change models to simulate vegetation 
restoration, there were uncertainties resulting from the resolution of remote sensing images, the 

similarity of object reflection spectra, and the foundational assumptions of model theory. This may 

influence the reliability of the model. It is recommended that future research integrate higher-resolution 
remote sensing images with pertinent auxiliary information to enhance the accuracy of vegetation 

succession simulations. 
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