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Abstract: The algorithm of the scanning t-test of regression slope-coefficients in two phases is 

introduced to detect trend change-points, along with a coherency analysis of changes between two time 

series. This new algorithm is different from the previously published scanning Fmax test of trend 

changes. Meanwhile, the fuzzy weighted moving average (FWMA) was employed to intuitively verify 

the results of segment regressions. Then, these algorithms were applied to two series of monthly 

temperature over mainland China and the globe for January 1901–December 2020. The applied results 

show that significant changes in segment trends may be classified into two gradations on interdecadal 

and intradecadal scales. The coherency of trend changes between the two series were mostly positive, 

with a few differences in the change dates. The global warming “hiatus” was detected as two processes 

on the intradecadel scale: a sharp droop-down from July 1998 to February 2000 following a short 

warming up; the second weaker droop-down happened from November 2003 to July 2009. Thus, it 

was featured on the interdecadel scale as the warming rate slowed down to be nearly stable from 

October 2002 to June 2009 in globally but without turning into cooling. Mainland China seemed to 

slow down weaker, but lasted longer than the globe. A somewhat unexpected finding is that the 

warming rate over Mainland China was lower than that for the globe in the case of standardized 

differences. This contradicts the previous conclusion that resulted from annual anomalies of 

temperature. It is suggested that the anomalies in the distribution N(0,s) might be referred to the 

“perceptual” index to compare variations in the same series or between two series but with the same 

variance and distribution, while referring to the standardized differences in N(0,1) as a “net” indicator 

to compare fluctuations between two series with different variances, even in different distributions. 
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1. Introduction 

Research of change point been of interest for many years in a wide range of scientific fields. For 

example, for global warming, Varotsos et al. [1,2] and Jones and Ricketts [3] reported abrupt step-like 

changes of the segment average in global tropospheric temperature and SST (sea surface temperature), 

among many previous publications.  

Jiang published a monograph [4] in 2021 and introduced five algorithms, which include the 

scanning tests of detecting change points in the subsample mean, variance, trend, and correction 

between two series, along with coherency analysis for a pair of series in detail. It also described 

practical applications to time series of monthly temperature in mainland China and across the globe, 

of hydrology and precipitation, and of tree ring chronology respectively.  

One of the five algorithms, the scanning Fmax test, was developed to detect trend changes. This 

was extended from a review paper by Lund and Reeves [5] who originally detected only one change 

point in subsample means with the regressive step coefficient a. The test index in the Fmax test was 

based on the difference of the sum of squared regression error (SSE) between two-phase models and 

the pooled one-phase regression. In a subsequent study, it was found that their index can also test 

indirectly the trend indicated by the slope coefficient b in regression models [4,6,7]. 

This paper introduces a different scanning t-test algorithm of directly detecting the regressive 

slope coefficients to reveal trend changes, and we also carry out a coherency analysis. It can be applied 

for comparing and estimating segment trend rate in climate warming or cooling. The application was 

performed on two series of monthly temperature over mainland China and the globe for the period 

spanning 1901–2022, because the Fmax test failed to be applied to these two series. They were spatially 

averaged over large area of China or the globe resulting in too high of a serial dependence that is 

beyond the Fmax test’s strict Mont-Carlo correction. 

Section 2 briefly introduces methodologies of this new algorithm, a fuzzy weighted moving 

average (FWMA), and the data source. The application results are described in Section 3, in which the 

FWMA is used for intuitively verifying the resulting regressive models. Section 4 discusses why global 

warming in China was weaker than that across the globe in the case of standardized differences, which 

is in contrast to the conclusion from the anomaly series. A summary is presented in Section 5. 

2. Methods and materials  

2.1. Algorithm of the scanning t-test of trend change points 

This subsection briefly introduces the scanning t-test of the regressive slope coefficient [8].  

Supposing two phase linear regression models in a time series xj (j = 1, 2, 3, …, j, …, J), the two 

subsample regression models may be written as  

𝑥̂ = 𝑎𝑗1 + 𝑏𝑗1𝑡 + 𝜀,    𝑥̂ = 𝑎𝑗2 + 𝑏𝑗2𝑡 + 𝜀 , and 

𝑥̂ = 𝑎𝑗0 + 𝑏𝑗0𝑡 + 𝜀   for one phase joining the 𝑗1 and 𝑗2            (1) 
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where j1 denotes a subsample before the reference point j, while j2 indicates the subsample after j with 

the same size n. t = 1, 2, …, j, …, J. 

Modifying the sampling test of the regression coefficient [9,10], the statistics of the scanning t-test 

are then formulated for subsample size n = 2, 3, …, < J/2 and reference points j = n+1, n+2, …, J-n. 

 

  (2) 

 

where bj2 denotes the regressive slope coefficient of the subsample after j, while bj1 indicates that before 

j in same size n. 𝑆𝑡𝑗0
2  represents the variance of variable t in the pooled subsample joining j1 and j2, i.e. 

𝑆𝑡𝑗0
2 =

1

2𝑛−1
∑ (𝑡𝑖 − 𝑡𝑗0̅̅ ̅)

2𝑗+𝑛−1
𝑖=𝑗−𝑛                            (3) 

On the other hand, 𝑆𝑥𝑗0
2  is the variance of variable x for the pooled subsample: 

𝑆𝑥𝑗0
2 =

1

2𝑛−1
∑ (𝑥𝑖 − 𝑥𝑗0̅̅ ̅̅ )

2𝑗+𝑛−1
𝑖=𝑗−𝑛                           (4) 

The parameter 𝑟𝑗0  in (2) denotes the correlation coefficient of the variable x with respect to t in 

the pooled subsample: 

 

                                          (5) 

Setting m=0: ms= j − n and me=j+n-1 for the pooled subsample joining j1 and j2, 

m=1: ms= j − n and me=j-1, for subsample j1 before the reference point j, 

m=2: ms=j and me=j+n-1, for subsample j2 after j. 

The parameters 𝑎𝑗𝑚 and 𝑏𝑗𝑚 are the same as in [4,6,7]. Here, they are repeated for convenience 

to readers: 

𝑎𝑗𝑚 = 𝑥𝑗𝑚̅̅ ̅̅̅ + 𝑏𝑗𝑚𝑡𝑗𝑚̅̅ ̅̅                               (6) 
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where 𝑡𝑗𝑚̅̅ ̅̅  and 𝑥𝑗𝑚̅̅ ̅̅̅ are the subsample means of variables t and x, respectively: 

𝑡𝑗𝑚̅̅ ̅̅ =  
1

(𝑚𝑒−𝑚𝑠)
∑ 𝑡𝑖 
𝑖=𝑚𝑒
𝑖=𝑚𝑠                           (8) 

𝑥𝑗𝑚̅̅ ̅̅̅ =  
1

(𝑚𝑒−𝑚𝑠)
∑ 𝑥𝑖
𝑖=𝑚𝑒
𝑖=𝑚𝑠                            (9) 
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Theoretically, the Tb(n,j) is in the Student’s t distribution. In its two-dimensional contour map, 

a local positive maximum center with Tb(n,j) > 1.0 denotes a change point to start an increasing trend, 

while a local negative minimum center with Tb(n,j) < −1.0 indicates a change point to start a 

decreasing trend. 

The coherency index of trend changes between the globe (l) and China (s) is calculated as 

follows [6,7]: 

Tbc(n,j)=
Tbl(𝑛,𝑗)×Tbs(𝑛,𝑗)

|Tbl(𝑛,𝑗)×Tbs(𝑛,𝑗)|
1/2
                           (10) 

Similarly, in its two-dimensional contour map, the local maximum center with Tbc(n,j) > 1.0 

suggests an in-phase trend change, whereas the local minimum center with Tbc(n,j) < −1.0 indicates an 

out-of-phase trend change between the two series if at least one local center in Tbl(n,j) or Tbs(n,j) 

matches. If a coherency local center does not match with any local center in the series, this might 

indicate some change-point dating or trend-slope differences between the two series. The particular 

trend in each series depends upon the fitted line of the linear regression. 

In practice, one may select a suitable interval on n or j to reduce the resolution of the scanning t-test. 

2.2. Algorithm of the fuzzy weighted moving average (FWMA) 

The moving average or low-pass filter has been employed widely in various scientific and social 

fields. However, users often leave blanks [11–15] or set just a constant of average [16] at the 

beginning and end points without calculation, especially in the study of climate change. To reduce 

the data boundary influence in computation, the author coded a computing program of the FWMA 

as follows [8,17]: 
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                     (11) 

where G(k), (k = 1, 2, …, K << J), denotes a K-point Gaussian function and as the weightings, k = 

i−j+1+K/2, K/2 = INT(K/2). The odd number K for G(k) is the calculating window. The middle formula 

is equivalent to the low-pass filter for the middle part of the series to be calculated, because the 

denominator equals 1.0. The formula equals a moving average when G(k) = 1/K at every point. Of course, 

the weight function G(k) may be taken in other ways, even the denominator does not equal 1.0. 

Theoretically, formula (11) agrees with the fuzzy weighted average (FWA) method, which was 

proposed initially by Baas and Kwakernaak [18], and then has been widely discussed in the context 
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of fuzzy systems [19,20] with different subscript indices. Here, particular subscript indexes have 

been coded directly for practical computation. 

2.3. Data source 

The monthly anomalies of temperature across the globe for 1850–2022 were downloaded from 

the website https://crudata.uea.ac.uk/cru/data/temperature/, with file name HadCRUT5. It was 

modified and updated by Morice et al. [21]. The dataset consists of monthly anomalies relative to the 

monthly average over 30 years (1961–1990). These average values over 1961–1990 were commonly 

used as the climatologic baseline in IPCC [22]. The spatial resolution of the data is 5° log. × 5° lat. per 

grid box.  

The dataset of monthly temperature for mainland China was downloaded from 

http://www.cru.uea.ac.uk/cru/data/hrg/ with file name CRU CY. The spatial resolution in this file is 0.5° 

log. × 0.5° lat. per grid box, which is a much higher resolution than the HadCRUT5. It contains 287 files 

for countries or regions. The 55th file is for mainland China covering the years of 1901–2022 [23]. 

In this work, the two series were normalized with respect to the monthly data to remove the 

differences and effects of seasonal cycles. That is, each series was variance-adjusted from their 

monthly anomalies into their monthly standardized differences by dividing the corresponding monthly 

climatologic standard deviation. The standard deviation is another statistical parameter of the 

climatologic variance [22] relative to the same baseline period. 

3. Results from the scanning t-test 

The results of this scanning t-test were produced by computing Eqs. (2–9) at a confidence level 

of α = 0.01. Because the two series were monthly averaged spatio-temporally over mainland China 

and the globe, so that the two series are apparently in serial dependence. Thus, the computed results of 

Tb(n,j) are far larger than 1.0 in most cases with different magnitudes to each other. This leads to 

difficulties in setting the test threshold, and the coherency might depend upon one side of the large 

magnitude. In order to improve plotting, considering that the change points are detected by the local 

centers in a relativity to around grids, we tried to transfer every value of Tb(n,j) into the plotting values, 

by proportionally dividing a quasi-standard deviation as follows: 

 

 (12) 

 

The denominator is just a proportion coefficient without modifying the zero line and contour’s 

pattern. The threshold may be chosen from the Student distribution form in books besides 1.0.  

Then, the contours of 𝑇̂𝑏(𝑛, 𝑗) for mainland China, the globe and their coherency are plotted in 

Figures 1b, 2b, and 3b, separately. Figures 1a, 2a, and 3a illustrate the fitted regression lines, i.e. the 

𝑥 ̂in Eq. (1) on interdecadal scales, which are mostly for scales >120 months. Figures 1c, 2c, and 3c 

show regression lines on intradecadal scales ≤120 months. Here, the inter- or intra-decadal scales 

represent a persistent trend segment but not a cycle of oscillation. 
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3.1. Change points and segment regressions for mainland China 

After comparison of this downloaded data with observed data for mainland China, Jiang [17] 

illustrated that the annual anomalies of the downloaded dataset that is also used here, are usually lower 

than the observed values of the average over 160 basic meteorological stations in mainland China, but 

the change trends are in agreement with each other. For example, the warmest year is in 2021 for both, 

but the downloaded value was 8.50 ℃ compared to the observed record 10.53 ℃ [24]. Both had a 

reduction of a little in 2022 from 2021, but with different values: 8.30 ℃ in downloaded and 10.51 ℃ 

in the observed dataset [24]. However, the observed dataset begins in 1951. So, the downloaded data 

are used in this work for detecting change trends for longer periods.  

The contour patterns of 𝑇̂𝑏(𝑛, 𝑗) for mainland China was plotted as Figure 1b. It is obvious 

that the centers appear in two categories on the contour map: interdecadal scales and intradecadal 

scales. The physical background was tested and discussed in [3]. There are five local centers on the 

interdecadal scales. The first center was positive in June 1915 on a time scale of 169 months; the 

second center was negative in May 1940 on a 446-month scale; and the third center was positive in 

August 1973 on the scale of 588-months. This was then followed by a negative change in July 2002 

on a 128 month scale. The last center in August 2014 on a 97 month scale was slightly low because 

of the nearby ending of the series. 

On the intradecadal scales, there are 19 small centers. They were significant except for four 

centers around 1912, 1915, 1924, and 1935, as shown in Figure 1b. 

The linear regression models were calculated following Eq (1) to fit every segment data between 

two neighbor points. Subsequently, the regression lines (𝑥̂) for all segments are plotted as thick solid 

lines in Figure 1a. It illustrates six linear regressions on interdecadal scales. The earliest subperiod 

persisted for 173 months (January 1901–May 1915) with slight cooling, followed by a slow warming 

until April 1940 with a duration of 299 months. The third segment from May 1940 to July 1973 (399 

months) was close to the climatologic baseline, but cooling very slowly. China began to warm up rapidly 

in August 1973 until June 2002. This warming rate is larger than in the second subperiod (Table 1). The 

next one from July 2002 to July 2014 was a little later than the global warming “hiatus” [25–38], but 

featured the warming slowdown without trend turning to cooling. After August 2014, it was warming 

up again, and the warming rate became the largest one among the six episodes (Table 1).  

On the intradecadal scales (Figure 1c), twenty segment regressions on short scales are embedded 

in the interdecadal trend changes. These short scale regressions may be referred to as the climate 

variations rather than trend changes. A few statistical features are described here, because there were 

too many subperiods. The subperiod duration varied from 17 months in 1914–1915 to 140 months in 

1901–1912. The average duration was 73.2 months. It seems to portray a common feature: the up-

down variations were obvious after 1945.  
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Figure 1. a) Regression models fitted to segment data on interdecadal scales for mainland 

China. Thick solid red lines indicate regression lines. The thin dashed line in light red 

denotes the monthly standardized differences. b) Contours of the statistic 𝑇̂𝑏(𝑛, 𝑗) 

resulted from the scanning t-test for mainland China. The contour interval is 0.25, but the 

contour of zero is not shown. The proportion coefficient is 2.86. c) The same as in (a) but 

for intradecade scales, the thin dashed curve in light red represents the FWMA at 13-point 

Gaussian function for monthly standardized differences for intuitively verifying the 

regressive models. 

3.2. Change points and segment regressions globally 

Figure 2b depicts the global results. There are four local centers on interdecadal scales with one 

center less than that for China in the 1910’s. The first center is negative in July 1940 on a scale of 446 

months; the second center is positive in December 1977 on a 512-month scale; and the third center is 

negative again in October 2002 on a 128-month scale. The last one in July 2009 on a scale of 97 months 

is weaker because of the nearby the ending of the series.  
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Figure 2. The same as in Figure 1 but for the globe. The proportion coefficient is 5.53. 

Figure 2a illustrates five segments on interdecadal scales. Differences from that for China mainly 

occurred before 1920. The first segment appeared in January 1901–May 1943 (509 months, Table 1) 

with a warming trend but weaker than that after 1977. The second subperiod from June 1943 to 

February 1977 (405 months) changed into a cooling trend. The next subperiod from March 1977 to 

September 2002 (307 months) was the first stage of modern global warming, in which the warming 

rate was much larger than that before 1943 (Table1). The subperiod between October 2002 and January 

2008 warmed up very little. That coincided with the warming “hiatus”, which has been argued for 

years [25–38]. In fact, the data showed that the summer of 1998 was suddenly hot reaching the first 

peak warming since 1976, and the monthly anomaly in July 1998 reached up to above 0.726 ℃ relative 

to July of 1961–1990. But, it suddenly cooled down from August 1998 to February 2000, then it 

warmed up again but weaker than that before July 1998. The second cooling down happened in a 

longer period from November 2003 to July 2009 on the intradecadal scale (Figure 2c). The “hiatus” 

was confirmed by a deceleration of sea level rise derived from satellite-based data [39]. After 2008, 

global warming came again even stronger than previously. The warming rate increased (Table 1), and 
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the maximum record occurred in August 2016, and the monthly anomaly reached up to 0.863 ℃ above 

the baseline for August of 1961–1990, The annual anomaly in 2016 got up to 0.875 ℃ relative to 

annual of 1961–1990 (HadCRUT5). 

There are 29 local centers on the intradecadal scales with eight points more than that in mainland 

China. Thus, thirty segment regression lines are delineated in Figure 2c. The averaged subperiod 

duration was 49 months, and varied from 19 months (in December 1969–June 1971) to 108 months 

(in March 1917–February 1926).  

Table 1 Change points, duration, and statistical parameters for every subperiod on interdecadal scale. 

Note: *r0.01=0.32 for n=60; r0.01=0.25 for n=100. 

For detailed comparison, Table 1 lists the change points in month, subperiod duration, regressive 

slope coefficient b, and correlation coefficient r for every subsample on interdecadal scales for China 

and the globe respectively. The last two columns show segment correlation coefficients. The three 

warming phases for globally, and the longest two segments between 1940 and 2002 in China were 

significant (black numbers) at a confidence level of α = 0.01.  

3.3. Coherency analysis 

The coherency of trend changes between China and the globe is plotted in Figure 3. In Figure 3b, 

the contours pattern shows mostly positive coherency, and suggests that most trend changes were in 

phase between the two series.  

Figure 3a copies regression models from Figures 1a and 2a into one panel to illustrate the coherent 

relationships on interdecadal scales. Figure 3c is the same as in Figure 3a, but on intradecadal scales. It 

is found that the change trends were mostly agreement between China and the globe (Figure 3a and Table 

1). But in the early years before 1915, China was weakly cooling. This difference was not reflected in 

Figure 2b, probably because the Tb(n,j) is nearly zero for the globe (Figure 2b), corresponding to the first 

positive center in China. The change points in 1940’s and 1970’s for mainland China were earlier than 

that of the globe with a short time of around 3 years only. The global warming “hiatus” was composed 

of two processes on short scales as mentioned above. However, It showed that a warming slow down 

with only 0.001σ/month of warming rate for 64 months happened from October 2002 to January 2008 

(Table 1) according this detection on the interdecadal scale. Actually, a decline trend of monthly 

temperature was detected only in the global SST from November 2002 to March 2008 [8]. In China, the 

warming “hiatus” seemed weaker but lasted longer than globally (Figure 3a, Table 1).  

Change point in month Duration (months) Regression Coefficient b Correlation Coefficient r 

Globe China Globe China Globe China Globe China 

1901/01↑ 1901/01↓ 509 173 0.005 −0.001 0.72 −0.10 

 1915/06↑  299  0.002  0.20 

1943/06↓ 1940/05↓ 405 399 −0.00001 −0.002 −0.22 −0.25 

1977/03↑ 1973/08↑ 307 347 0.008 0.004 0.71 0.39 

2002/10↓  2002/07↓ 64 145 0.001 0.002 0.03 0.06 

2008/02↑ 2014/08↑ 179 101 0.011 0.006 0.56 0.15 

2022/12 2022/12       
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Figure 3. a) Regression models for mainland China (red lines) and the globe (blue lines) on 

interdecadal scales. b) Same as in Figure 1b, but for coherency between mainland China 

(Figure 1b) and the globe (Figure 2b). c) The same as in Figure 3a but for intradecadal scales. 

A somewhat surprising result was detected here that, in the global warming process, China 

warmed up more slowly than the globe did in the case of variance-adjusted anomalies (Figure 3a and 

3c). That is, contrary to the conclusions resulting from annual anomaly series [14,15]. This finding 

confirms Jiang’s result from the observed average over 160 stations in mainland China [4], despite the 

data sources being different. The reason, in statistics, will be discussed in the next section. 

4. Discussion 

This section discusses the statistical reason why the contrasting conclusions of the global warming 

rate happened between the standardized differences and the anomalies for China and the globe. As is 

well known, the standardized differences in the probability distribution N(0,1) are computed as the 

anomalies in N(0,s) divided by the climatologic standard deviation (SD). Thus, the SD explains why 

the standardized differences are different from the anomalies. Figure 4 compares the monthly 

climatologic SD between mainland China (red lines) and the globe (blue lines) based on the baseline 

period of 30 years (1961–1990). The obvious differences are evidence that the SDs in each month as 

well as seasonal cycle were much larger in China than that of the globe. This is easy to understand 

because oceans occupy 70% of the global area, even 77% (1995/2592) of the grid boxes in computation, 

adding more weight to the global warming index. Sea water’s specific heat is 3 times that of air over 

lands. Ding and Wang [14] did note the ocean roles importance globally, so that using the anomalies 

to compare the warming rate between China and the globe is not exactly scientific. Yet, the ratios of 
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the monthly SD of China to the globe were larger in winter than in summer. The minimum ratio of 

0.32/0.15 = 2.13 times that of China to the globe occurred in July, while the maximum ratio, 1.32/0.24 = 

5.50, happened in February. Larger SD implies a larger variation scope of variance-adjusted anomalies 

(Figure 5). These statistical results, i.e. that China’s climatologic variance is much larger than that of 

the gobe’s, might statistically explain why the anomalies in China experenced warming higher than 

that of the globe, but the standardized differences in China were inversely showed warming weaker 

than that of globe. Also, the climatologic variances of both China and the globe in winter were larger 

than that in summer (Figure 4) which may explain why the warming in winter was much more obvious 

than that in summer [15,40]. 

 

Figure 4. Comparisons of monthly climatologic standard deviation (SD) of temperatures 

between mainland China (red) and the globe (blue).  

 

Figure 5. Probability distributions depend upon different climatologic variances (from [41]). 
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The IPCC [22] clarified that two statistical parameters (average and variance) should be 

accounted for in climate change analysis. Therefore, it might suggest, in statistics, that the 

standardized differences measure “net” changes relative to the anomalies, while the anomalies might 

be referred to “perceptual” indicators because the anomalies measure temperature variations as 

directly sensible for social community. 

5. Conclusions 

This article introduced another scanning t-test of regressive slope coefficients to directly detect 

change points in segment trends, along with coherency analysis. Also, the fuzzy weighted moving 

average (FWMA) was employed to intuitively verify the results of segment regression lines. The two 

algorithms were applied to the monthly temperature data of mainland China and the globe for 1901–2022.  

The application results might be summarized mainly as follows:  

The scanning t-test successfully detected change points of trends and fitted well with subsample 

data. The detected changes may be classified into two categories: on interdecadal scales and on 

intradecadal scales. The global warming “hiatus” contained two processes: a quick droop down from 

July 1998 to February 2000, and then, following a short warming up, the second process featured a 

warming rate slow down to nearly stable from October 2002 to June 2009 globally, but without turning 

to cooling. China seemed have a weaker warming slow down, but lasted longer than that of the globe.  

It was a somewhat unexpected finding that the global warming rate in mainland China was lower 

than that of the globe in the variance-adjusted anomalies. This is contrary to the previous conclusions 

resulting from annual anomalies of temperature. 

In statistics, we might suggest that the anomalies in N(0,s) should be referred to as the “perceptual” 

index to be applied for comparing fluctuations in the same series or between two series with the same 

variance and distribution, while the standardized differences in N(0,1) should be referred to a “net” 

indicator to compare changes/variations between two series with different variances, even in different 

distributions. 

This article has reported statistical results only. The physical reasons need to be studied and 

discussed further. 
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