

AIMS Geosciences, 8(3): 488–502.

DOI: 10.3934/geosci.2022027

Received: 06 May 2022

Revised: 18 July 2022

Accepted: 31 July 2022

Published: 08 August 2022

http://www.aimspress.com/journal/geosciences

Research article

Reinforcement learning in optimization problems. Applications to

geophysical data inversion

Paolo Dell’Aversana*

Eni S.p.A., San Donato Milanese, Milan, Italy

* Correspondence: Email: dellavers@tiscali.it; Tel: 390252063217.

Abstract: In this paper, we introduce a novel inversion methodology that combines the benefits

offered by Reinforcement-Learning techniques with the advantages of the Epsilon-Greedy method for

an expanded exploration of the model space. Among the various Reinforcement Learning approaches,

we applied the set of algorithms included in the category of the Q-Learning methods. We show that

the Temporal Difference algorithm offers an effective iterative approach that allows finding an optimal

solution in geophysical inverse problems. Furthermore, the Epsilon-Greedy method properly coupled

with the Reinforcement Learning workflow, allows expanding the exploration of the model-space,

minimizing the misfit between observed and predicted responses and limiting the problem of local

minima of the cost function. In order to prove the feasibility of our methodology, we tested it using

synthetic geo-electric data and a seismic refraction data set available in the public domain.

Keywords: reinforcement learning; geophysical inversion; optimization; refraction seismic; electric

tomography; machine learning

1. Introduction

In mathematics, computer science and economics, as well as in other disciplines like geophysics,

solving an optimization problem consists of finding the best of all possible solutions in a given model

space [1]. This target can be realized by minimizing (or maximizing) some type of objective

AIMS Geosciences Volume 8, Issue 3, 488–502.

489

function that includes, in many practical cases, the difference between observed and predicted

quantities. For instance, in geophysics, a typical optimization problem is finding an Earth-model

consisting of seismic-velocity spatial distribution that minimizes the differences between observed and

predicted seismic travel times [2].

Optimization techniques can be divided into approaches that allow exploring locally the model

space, and approaches that allow a global or quasi-global search of the solution. In the first case, we

generally incur in the problem of convergence towards local minima (or local maxima) of the cost

function. In fact, the final solution will depend strongly on the initial model and on the exploration

path in the parameters space. In general, when we apply local optimization techniques, we search for

a solution in a limited portion of the model space, converging towards solutions that could not

correspond with the best one for our specific problem. In order to face this problem, Global

optimization techniques are addressed to find the global minimum (or the global maximum) of the

objective function over the given set. Unfortunately, finding the global minimum (or maximum) of a

function commonly represents a difficult task. Analytical methods are frequently not applicable and

the use of numerical solution strategies often is not sufficient [3]. Typical techniques based on global

or quasi-global search in the model space [4], include stochastic methods like Direct Monte-Carlo

sampling approaches. Other methods are based on heuristic approaches to explore the model space in

a more or less intelligent way. These include, for instance, Ant Colony optimization (ACO), Simulated

annealing, Evolutionary algorithms (e.g., genetic algorithms and evolution strategies), and so forth.

Despite the many advantages, these types of global optimization methods are generally difficult to put

in practice in many situations, especially in three dimensions, due to the very expensive computational

process when dealing with large parameter spaces.

In order to face the intrinsic problems of both local and global optimization methods, in this paper,

we propose to reformulate the optimization problems in terms of Reinforcement Learning (RL). Our

approach aims to teach an “artificial agent” to search for the global minimum of the cost function in

the model space using the advantages offered by a large suite of Reinforcement Learning algorithms.

These are aimed at mapping situations to actions through the maximization of a “numerical reward

signal” [5–13]. In every particular state, an artificial agent learns progressively by continuous interaction

with its environment. This can be a true physical environment, as it happens, for instance, in case we

desire to teach an agent to move through a real physical space. More in general, the environment can

consist of a virtual space with which one or more artificial agents interact. The effects of every agent’s

action will be returned by the modified environment in terms of a reward (or a punishment) and a new

state. The reward depends on the “quality” of the agent’s actions. High rewards correspond with positive

impact of the actions on the agent’s target, and vice versa. For instance, if the objective of the artificial

agent is to find the exit from a maze in the shortest possible time (or through the shortest path), the agent

will receive a positive reward every time it moves properly to reach the exit.

The final objective of such a learning strategy is to maximize the total reward accumulated during

all iterations (cumulative reward), and not just the immediate reward. In the example of the maze, it

means that the agent’s objective is to find a global strategy to escape from the maze, rather than just

selecting a single local step forward that could lead him into a dead end. This is a crucial point, because

the goal of Reinforcement Learning methods is optimizing the agent’s actions for a long-term horizon.

Such an intrinsic forward-looking approach of RL algorithms can be used with profit to find global

AIMS Geosciences Volume 8, Issue 3, 488–502.

490

solution(s) in many optimization/inversion problems in geophysics (as well as in other fields). In fact,

it is easy to grasp the analogies and possible points of connection between geophysical inversion

problems and Reinforcement Learning. In the first case, the goal is to find an Earth model that

corresponds to a minimum value of a certain cost function. In the second case, the goal is to find an

optimal policy through which an agent can maximize its total reward. These are both examples of

optimization problems.

In the next methodological section, we will see how the geophysical inverse problem can be

reformulated in terms of Reinforcement Learning strategy. For that purpose, we will use a combination

of Q-Learning, Temporal Difference and Epsilon-Greedy algorithms. We will see that these methods fit

the purpose of optimizing the exploration of the parameter-space in inversion problems. Finally, we will

test our approach using synthetic geo-electric data, plus a seismic data set available in the public domain.

2. Theoretical framework

Reinforcement Learning includes a suite of algorithms and techniques through which an “artificial

agent” learns an optimal “behavior” by interacting with a dynamic “environment” and by maximizing

a “reward metric” for the task, without being explicitly programmed for that task and without human

intervention. The artificial agent selects those actions that allow increasing the cumulative reward, r 

R, achievable from a given state, s  S (Figure 1).

Figure 1. Conceptual scheme of Reinforcement Learning.

A “discount factor”, , is applied to the long term rewards with the scope of giving progressively

lower weights to rewards received far in the future. The agent’s goal is to learn, by trials and errors, a

“policy” for maximizing such cumulative long-term reward. The policy is often denoted by the symbol

. It consists of a function of the current environment state, s, belonging to the set S of all possible

states, and returns an action, a, belonging to the set A of all possible actions.

𝜋(𝑠): 𝑆 → 𝐴. (1)

There are many different Reinforcement Learning techniques. Among the various methods, the

Q-Learning method [14] is a suitable approach for solving optimization/inverse problems. The name

Agent

Environment

Action at

Reward rt+1

State st

State st+1

Reward rt

AIMS Geosciences Volume 8, Issue 3, 488–502.

491

derives from the Q-function that provides a measure of the Quality (in terms of effectiveness for a

given task) of an action that the agent takes starting from a certain state. It is defined as follows:

𝑄(𝑠, 𝑎) = 𝑆 × 𝐴 → 𝑅. (2)

The Bellman equation below provides an operative definition of the maximum cumulative reward.

This is given by the reward r that the agent received for entering the current state s and action a, plus

the maximum future reward for the next state s', taking all the possible actions 𝑎′ from that state:

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′). (3)

In formula (3), the symbol  indicates the “discount factor”. It is introduced for balancing the

contribution of future rewards with respect to the immediate reward. The value of Q(s, a) can be found

recursively: the algorithm starts by using random values (or any guess value) for the Q-function. Then,

when the agent proceeds exploring its environment, the initial Q values progressively converge

towards the optimal ones, based on the positive and/or negative feedback that the agent receives from

its environment. The “Temporal Difference” (briefly TD) method (formula 4 below) provides a

practical way for updating the Q values, as follows:

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 ∙ [𝑟𝑡 + 𝛾 ∙ max
𝑎

 𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (4)

We can see that the new value of Q for state 𝑠𝑡 and action 𝑎𝑡, is obtained by adding to the previous

Q value a new term (in the square parenthesis) called temporal difference. This, in turn, is multiplied

by a factor α that represents the learning rate and is commonly determined empirically by the user.

The temporal difference consists of the immediate reward, 𝑟𝑡 , plus the difference between the

maximum Q value for all the actions that the agent can take from the state st+1, minus the old value of

Q. The max
𝑎

 𝑄(𝑠𝑡+1, 𝑎) term is multiplied by the above mentioned discount factor, .

Now, we must explain how we define the Q values in the frame of our integrated Inversion-

Reinforcement Learning (called, briefly, RL-Inv) approach. In other words, we must clarify how we

assign a reward to the artificial agent (the optimization algorithm) while it explores the model space. In

our method, we set the Q-function inversely proportional to the cost function (that, in turn, depends on

the difference between observed and predicted responses) after a certain number N of iterations. The user

determines such N value empirically. Indeed, we assume that a good convergence path towards a final

low misfit represents a reasonable long-term reward for our Reinforcement Learning agent. In that case,

low misfit (as well as low values of the cost function) correspond to high rewards and high Q values.

For instance, let us suppose that we apply a Least Square optimization algorithm to solve our

inverse problem; that algorithm coincides with our agent. In that case, we can define the cost function

(m) as follows:

(m) = (dobs - g(m))T Wd (dobs - g(m)) + ∙mT Rm . (5)

AIMS Geosciences Volume 8, Issue 3, 488–502.

492

In formula (5), m represents the vector of model parameters, or model vector; dobs represents the

data vector (observations); g(m) is the forward operator by which we calculate the predicted response

in the model vector m; the symbol T indicates “transpose”; Wd is he data covariance matrix for taking

data uncertainties into account; R is a smoothing operator applied to the model vector m as a

regularization term;  is a factor regulating the weight of the smoothing term in the cost function.

In our procedure, we calculate (m) at each iteration and store its value at every iteration. In such

a way, we can calculate and store the correspondent Q value as follows:

𝑄(𝑠𝑡, 𝑎𝑡) ≈ 1  (𝒎)⁄ . (6)

Next, let us clarify how the Q-Learning formulas contribute to the inversion. In the frame of the

Q-Learning approach, we need to estimate a cumulative reward by taking into account both the

immediate as well as the long-term reward. In our approach, the immediate reward is given by the

inverse of the cost function after just one or two iterations, as in formula (6). Instead, the long-term

reward is given by the inverse of the cost function estimated after a “significant number” of iterations

(such number depends on the inverse problem and is decided by the user, case by case). In such a way,

we intend to set a policy that minimizes the cost function through a balanced combination of both

short-term and-long term views. This concept will be further expanded in the next two sections.

The Bellman equation (3) and the Temporal Difference iterative method (4) allow us estimating

and progressively updating the values of the Q-function during the optimization (inversion) process.

These values depend on the starting models and on the exploration paths in the model-space. The goal

of our approach is to find an optimal policy for our optimization agent. Such a policy will coincide

with the “optimal” exploration/exploitation path in the model space aimed at maximizing the Q-

function. Hence, a crucial point is how the model space (that represents the environment of our

Reinforcement Learning approach) is explored.

2.1. Q-Learning, model space exploration and inversion

In the frame of geophysical inversion (as well as in other optimization problems), the environment

of the Reinforcement Learning problem is represented by the space of model parameters, or model

space (Figure 2). As we said earlier, the agent corresponds with the optimization algorithm through

which we try to minimize the cost function. At each iteration, the algorithm performs an action: it

explores the environment in order to update the current geophysical model with the goal to reduce the

misfit between observed and predicted responses. In our approach, we perform such an exploration

using the Epsilon-Greedy algorithm. This provides an effective strategy for facing the well-known

“Exploration vs. Exploitation” question. Let us explain the basics of this strategy and the reason why

we included it in our approach.

Exploration allows an agent improving its current state at each action, leading to a long-term

benefit. In the frame of geophysical inversion, this corresponds to retrieve a distribution of model

parameters that allows lowering the cost function (or the misfit) and, consequently, improving the

Earth model. On the other hand, exploitation means to choose the greedy action to get the most short-

term reward by exploiting the agent’s current action-value. For instance, in case of Gradient-based

AIMS Geosciences Volume 8, Issue 3, 488–502.

493

optimization methods, this action corresponds to taking repeated steps in the opposite direction of the

gradient of the cost function. The crucial point is that by being greedy with respect to immediate action-

reward estimates, may not actually lead towards the maximum long-term reward, causing a sub-

optimal behaviour. In other words, trying to minimize the cost function at each step could not represent

the optimal inversion policy.

Figure 2. Conceptual link between the Reinforcement Learning approach and the

exploration of the model space in optimization problems.

2.2. Epsilon-Greedy approach

Epsilon-Greedy is an effective approach aimed at balancing exploration and exploitation by

choosing randomly between these two possibilities. The term “epsilon” refers to the probability of

choosing to explore that is commonly lower than the probability to exploit. In other words, the

optimization/inversion algorithm exploits most of the time with a small chance of exploring. It means

that it updates the model parameters respecting the condition of reducing the cost function at each

iteration (exploitation). However, it explores the model parameters (with lower probability: epsilon <<

1) in different directions too, even if that choice could imply a temporary increase of the cost function.

Figure 3 shows a scheme of such approach and its pseudo-code.

Cost function

Environment: Model space

AIMS Geosciences Volume 8, Issue 3, 488–502.

494

Figure 3. Scheme of the Epsilon-Greedy approach (left) and its pseudo-code (right).

At the same time, by applying the Bellman equation and the Temporal Difference method, we

aim to a long-term reward that is minimizing the cost function after a significant number N of iterations

(and not just the cost function at each individual iteration). This strategy allows us sampling large

portions of the model space that otherwise would be excluded by a traditional greedy optimization

strategy. Finally, we will get the optimal inversion policy. This uses the best exploitation/exploration

strategy, produces the lowest final value of the cost function and the best inverted model.

The block diagram of figure 4 summarizes the entire procedure, showing the sequence of steps

through which we update the model parameters by maximizing the Q-function through a combination

of Epsilon-Greedy exploration strategy and Bellman/Temporal Difference equations.

Figure 4. Block diagram of the Reinforcement Learning-Inversion (RL-Inv) approach.

Exploration Exploitation

0 <   1

Choose epsilon; # exploration probability

Choose n; # number of iterations

for i = 1 to n do:

p = pick a random number from 0 to 1

if p < epsilon:

current_model = pick model at random # explore

else:

current_model = pick best model so far # exploit

reward = current_model.Bellman_Q # use Bellman eq. to calculate Q

Store Q value and update Q-Table

Inversion run (i)

DATA + PRIOR INFO

Starting model: m1(i)
Cost Function: c1(i)

Starting model: m2(i)
Cost Function: c2(i)

Starting model: mN(i)
Cost Function: cN(i)

Updated models and cost functions

Q-Learning and Bellman equation:

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎 𝑄 𝑠 , 𝑎 .

Maximum Total Reward and Optimal Policy definition:
best model(s) and optimal exploration/exploitation strategy

i > Max num. iterations?

YES → exit

NO → i = i + 1

…

Model space exploration by Epsilon-Greedy method

NO → : i = i + 1

AIMS Geosciences Volume 8, Issue 3, 488–502.

495

With reference to figure 4, in order to clarify better how and where the Q-Learning formulas

contribute to the inversion process, we schematize the entire workflow through the following key steps:

1) Create m starting models (process initialization). 2) Choose n (number of iterations). 3) Run n

iterations for each model. 4) Update each model after n iterations. 5) Calculate the inverse of cost

function (eq.6) after 1 or 2 iterations (short-term reward for each model). 6) Calculate the inverse of

cost function (eq.6) after n iterations (long-term reward for each model). 7) Calculate (or update) the

cumulative reward (Q values) using the Bellman and TD formulas (eqq.3 and 4). 8) Store Q values

and update the Q-Table. 9) Chose epsilon (for the epsilon-Greedy method), as shown in figure 3. 10)

Select model with the highest total reward with probability = 1-epsilon (exploitation). 11) Alternatively,

select random model with probability = epsilon (exploration). 12) Use the selected model, perturb it

and create other m initial models. 13) Iterate from step 3. 14) Exit from the loop when the cost function

and the cumulative reward Q is stationary. 15) Finally, select the model with the highest Q-value

(lowest cost function).

3. Examples

In this section, we discuss two tests where we apply the RL-Inv method to two types of data set.

In the first case, we use synthetic data obtained through a simulated resistivity survey. In the second

case, we use refraction seismic data available in the public domain. For each test, we compare the final

models obtained through a “standard” inversion/optimization approach and the RL-Inv methodology.

3.1. Synthetic test on geo-electric data

In this test, we simulated the acquisition of DC (Direct Current) geo-electric data along a line

550 m long, with electrodes deployed with a regular spacing of 10 m. The upper panel of figure 5

shows the “true” resistivity scenario in which we simulated the resistivity survey. The model consists

of two stacked resistive layers embedded in a conductive uniform background. The lower panel of

the same figure shows the data (apparent resistivity section) of the simulated DC response. After

adding 5% of Gaussian noise to the simulated response, our goal was to invert the synthetic data in

order to retrieve the correct resistivity model. We started from a half-space initial guess, assuming

no a priori information.

Despite its apparent simplicity, the resistivity model shown in figure 5 is not easy to retrieve by

data inversion without using any prior information. Many equivalent geophysical models can honour

the data equally well if we do not use any constraint. The inversion algorithm that we used in this case

is a “standard” Damped Least Square optimization algorithm that minimises iteratively the cost

function, like the one expressed by eq. (5). The regularization operator consists of a smoothing

functional that allows finding smoothed model solutions. The effect will be that the two resistive layers

cannot be adequately distinguished and, after the inversion process, they appear “mixed” into a unique

layer. This is clearly shown in figure 6.

AIMS Geosciences Volume 8, Issue 3, 488–502.

496

Figure 5. “True” (original) resistivity model (upper panel) and observed apparent

resistivity (lower panel). Colour scale represents resistivity, in ·m.

Figure 6. Inverted resistivity model (upper panel) using a Damped Least Square

Optimization algorithm. The “true” model is shown again in the lower panel, for comparison.

Next, we performed again the inversion of the same synthetic data, but this time through our

Reinforcement Learning approach (RL-Inv), in order to verify if it was possible to find an inverse

solution more consistent with the original resistivity model. Figure 7 shows the inverted resistivity

model (upper panel). In this case, the RL-Inv solution shows the two resistive layers properly separated.

Furthermore, they were retrieved with almost correct resistivity values, although the resistivity of the

upper layer is slightly overestimated.

AIMS Geosciences Volume 8, Issue 3, 488–502.

497

Figure 7. Inverted resistivity model (upper panel) using the RL-Inv approach. The “true”

model is shown again in the lower panel, for comparison.

Figure 8 shows the cross plot of predicted vs. observed apparent resistivity for both inversion

results. This type of graph is useful because it provides a synoptic view of the misfit between observed

and predicted geo-electrical responses. In case of perfect fit, the points should be on a 45-degree tilted

line (green line in the figure). The scattering of the points above the ideal best-fit line is a measure of

the misfit and of the noise in the data. Both cross plots show some level of scattering and of resistivity

overestimation; however, the misfit of the second inversion result (from RL-Inv) is less than the one

obtained through the traditional Damped Least Square approach. Furthermore, the second scattering

cross-plot shows two clusters of scattered points that are related with the two separate resistivity layers.

In summary, the RL-Inv approach produced results that are more consistent with the original

resistivity scenario used for the simulation.

3.2. Test with public seismic data

In this second example, we applied the RL-Inv method to a classical refraction seismic data set

with heterogeneous overburden and some high-velocity bedrock. This data set is included in the

examples provided in the public-domain repository prepared for testing the open source “pyGIMLi

software library” [15]. Figure 9 shows the data set in terms of travel times vs. offsets. The complex

trends of the travel-time curves vs. offset suggest significant variability in the velocity field. We can

observe frequent variations in the slope of the curves that indicate lateral as well as vertical velocity

changes. Such complexity in the data space corresponds to a similar complexity in the model space. In

scenarios like this, our RL-Inv approach can be useful to find a global solution for the refraction

tomography problem, limiting the risk to fall in local minima of the cost function during the inversion

process. We followed the scheme of Figure 3 by exploring the model space through the Epsilon-Greedy

approach. First, we created an initial Q-Table based on the cost function values (here expressed in

terms of Chi2 values) for a set of different starting models (Table 1). Next, the optimization agent

Inverted
model

‘True’
model

RL-INV

Well solved two-layers model

D
ep

th
 (

m
)

D
ep

th
 (m

)
“True” Resistivity

(Ω · m)

1000

100

10

1


90

 m


90
 m

550 m

550 m

1000

100

10

1

AIMS Geosciences Volume 8, Issue 3, 488–502.

498

started exploring the model-space (in this case, the unknown model parameter is P-Velocity, Vp)

through the Epsilon-Greedy approach.

Figure 8. Cross plot of predicted vs. observed apparent resistivity for the Damped Least

Square inversion result (upper panel), compared with the cross plot for RL-inv results

(lower panel).

Figure 10 shows an example of “Model selection histogram” obtained through exploration of the

model space with the Epsilon-Greedy method. The bars of each histogram are proportional to the

probability to select one model among many possible starting models. In this example, we have

considered just 20 possible candidate models, for illustrative purposes. For each model, we calculated

the cumulative reward using the Bellman formulas, as explained earlier in the methodological section.

We can see that for low values of the epsilon parameter, the method selects almost exclusively the

model(s) with high cumulative reward (some examples are indicated by the arrows in the figure 10).

This corresponds to adopt a greedy strategy, with prevalence of exploitation of the model(s) with high

reward. On the other side, by choosing high values of epsilon, model selection tends to be random,

allowing exploring the model space through directions that would otherwise have been ignored. In

other words, an appropriate setting of the epsilon parameter allows a balanced policy between

exploration and exploitation in the model space during the inversion process. In this specific test, we

Pr
ed

ic
te

d
 a

p
p

ar
en

t r
es

is
ti

vi
ty

 (
·m

)

Measured apparent resistivity (·m)

Pr
ed

ic
te

d
 a

p
p

ar
en

t r
es

is
ti

vi
ty

 (
·m

)

Measured apparent resistivity (·m)

Damped Least Square inversion

RL-INV

AIMS Geosciences Volume 8, Issue 3, 488–502.

499

performed many tests by setting the epsilon parameter in the range between 0.0 and 1.0. There is not

any absolute rule to find the optimal value of epsilon. However, a good strategy is to make epsilon

variable: as trials increase, epsilon should decrease. Indeed, as trials increase, we have less need of

exploration and more convenience of exploitation, in order to get the maximum benefit from our policy.

Figure 9. Data set: refraction travel-times (s) vs. offsets, x(m).

Figure 10. Example of “Model selection histograms” using the Epsilon-Greedy method,

for variable values of epsilon. Test on 20 different models.

During the inversion process, the Q-Table was progressively updated. As explained earlier, the

rule for updating the Q-Table is given by the Bellman equation and the iterative Temporal-difference

method. In summary, the agent (the minimization algorithm) explores the model space and selects the

optimal path that corresponds with the direction in the space of parameters with the highest cumulative

reward. At the same time, it does not neglect to explore alternative directions in the model space,

although with lower probability. After many iterations, the agent learns to move in the model space

AIMS Geosciences Volume 8, Issue 3, 488–502.

500

following the most convenient policy. This corresponds with the one that allows finding the global

minimum of the cost function. Our inversion test seems to confirm the effectiveness of such strategy,

as in the previous test. Figure 11 shows some examples of velocity models obtained by travel-time

tomography, with the correspondent ray tracing. Each individual model corresponds to a certain point

of the cost function in the model space. For each path explored in the model space, we have a

correspondent suite of values of the cost function. Finally, the best model (left panel of Figure 12) is

the one retrieved through the RL-Inv approach. It shows the Vp parameter distribution that corresponds

to the highest cumulative reward. For comparison, the right panel of the same figure shows the Vp

model obtained without the support of the RL approach, using a “standard” optimization approach.

Compared with the RL-Inv solution, the “standard” solution tends to overestimate the bedrock velocity

and is not able to highlight properly the heterogeneities in the overburden.

Table 1. Q-Table filled with the inverse values of the cost function for each search direction.

Figure 11. Examples of velocity models obtained by travel-time tomography, with the

correspondent ray tracing.

Iterations Search dir. 1 Search dir. 2 Search dir. 3 Search dir. 4 Search dir. i …………………… Search dir. M
1 0.105820106 0.103626943 0.091157703 0.080450523 …………………… …………………… 0.107874865

2 0.128369705 0.127226463 0.113895216 0.09380863 …………………… …………………… 0.152905199

3 0.143884892 0.149031297 0.12195122 0.106951872 …………………… …………………… 0.182815356

4 0.168918919 0.157977883 0.152905199 0.1447178 …………………… …………………… 0.199203187

5 0.177619893 0.169779287 0.176678445 0.156739812 …………………… …………………… 0.22172949

6 0.189753321 0.190839695 0.20242915 0.173010381 …………………… …………………… 0.234192037

7 0.203252033 0.214132762 0.225225225 0.198807157 …………………… …………………… 0.248138958

8 0.221238938 0.231481481 0.240384615 0.215517241 …………………… …………………… 0.25974026

9 0.233100233 0.243902439 0.249376559 0.226244344 …………………… …………………… 0.27173913

10 0.243902439 0.256410256 0.258397933 0.238663484 …………………… …………………… 0.279329609

11 0.251256281 0.269541779 0.263852243 0.251889169 …………………… …………………… 0.284090909

…………………… …………………… …………………… …………………… …………………… …………………… …………………… ……………………

Q-values

Model i + 1: inv. iter 14; chi² = 3.77

Model i: inv. iter 14; chi² = 3.86

Model N: inv. iter 14; chi² = 3.82

120 (P-velocity [m/s]) 4500

Best model

…

…

Model 1: inv. iter 14; chi² = 3.82Z[m]

X[m]

Z[m]

X[m]

Z[m]

X[m]

Z[m]

X[m]

AIMS Geosciences Volume 8, Issue 3, 488–502.

501

Figure 12. Comparison between the inverted Vp models obtained by RL-Inv (left) and by

a “standard” seismic refraction tomography approach (based on generalized Gauss-

Newton optimization method (right).

4. Conclusions

We introduced a new optimization/inversion approach fully integrated with Q-Learning,

Temporal Difference and Epsilon-Greedy methods. These allow expanding the exploration of the

model-space, minimizing the misfit and limiting the problem of falling in local inversion minima. The

advantages of our approach are clearly highlighted through the comparative test results on

multidisciplinary data (electrical and seismic). Finally, we remark that we expect the greatest benefits

from our method in those applications where an extended exploration of the model-space is difficult

or prohibitive, due to the size of the data-model space and the complexity of the inversion problem.

For instance, interesting cases include full-wave seismic inversion and simultaneous joint inversion of

multi-physics data.

Conflict of interest

The author declares no conflict of interest.

References

1. Boyd SP, Vandenberghe L (2004) Convex Optimization, Cambridge University Press, 129.

2. Tarantola A (2005) Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM.

https://doi.org/10.1137/1.9780898717921

3. Horst R, Tuy H (1996) Global Optimization: Deterministic Approaches, Springer.

4. Neumaier A (2004) Complete Search in Continuous Global Optimization and Constraint

Satisfaction. Acta Numerica 13: 271–369. https://doi.org/10.1017/S0962492904000194

5. Raschka S, Mirjalili V (2017) Python Machine Learning: Machine Learning and Deep Learning

with Python, scikit-learn, and TensorFlow, PACKT Books.

6. Russell S, Norvig P (2016) Artificial Intelligence: A Modern approach, Pearson Education, Inc.

7. Ravichandiran S (2020) Deep Reinforcement Learning with Python, Packt Publishing.

Model with the highest Q-value

120 (P-velocity [m/s]) 4500

Z[m]

X[m]

Model without the RL support

120 (P-velocity [m/s]) 4500

Z[m]

X[m]

AIMS Geosciences Volume 8, Issue 3, 488–502.

502

8. Duan Y, Chen X, Houthooft R, et al. (2016) Benchmarking deep reinforcement learning for

continuous control. ICML 48: 1329–1338. https://arxiv.org/abs/1604.06778

9. Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch mode reinforcement learning. J Mach

Learn Res 6: 503–556.

10. Geramifard A, Dann C, Klein RH, et al. (2015) RLPy: A Value-Function-Based Reinforcement

Learning Framework for Education and Research. J Mach Learn Res 16: 1573–1578.

11. Lample G, Chaplot DS (2017) Playing FPS Games with Deep Reinforcement Learning. AAAI

2140–2146. https://doi.org/10.48550/arXiv.1609.05521

12. Littman ML (1994) Markov games as a framework for multi-agent reinforcement learning. Proc

Eleventh Int Conf Mach Learn, 157–163. https://doi.org/10.1016/b978-1-55860-335-6.50027-1

13. Nagabandi A, Kahn G, Fearing RS, et al. (2018) Neural network dynamics for model-based deep

reinforcement learning with model-free fine-tuning. ICRA, 7559–7566.

https://doi.org/10.1109/ICRA.2018.8463189

14. Ribeiro C, Szepesvári C (1996) Q-learning combined with spreading: Convergence and results.

Proc ISRF-IEE Int Conf Intell Cognit Syst, 32–36.

15. Rücker C, Günther T, Wagner FM (2017) pyGIMLi: an open-source library for modelling and

inversion in geophysics. Comput Geosci 109: 106–123.

https://doi.org/10.1016/j.cageo.2017.07.011

Web links

pyGIMLi examples data repository: https://github.com/gimli-org/example-

data/blob/master/traveltime/koenigsee.sgt.

© 2022 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://github.com/gimli-org/example-data/blob/master/traveltime/koenigsee.sgt
https://github.com/gimli-org/example-data/blob/master/traveltime/koenigsee.sgt
http://creativecommons.org/licenses/by/4.0

