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Abstract: Hydrological models are used for various purposes, including flow forecasting, flood 

forecasting and short and long term water management. However, models suffer from uncertainties 

from different sources, such as parameterisation, input data errors and process descriptions. The 

choice of a hydrological model depends on the purpose of its utilisation and data availability. The 

objectives of this study are, firstly, to investigate the consequences (uncertainty) of using simple 

versus a complex hydrological model to predict discharge and to quantify the uncertainty of results 

owing to differences between hydrological models, and secondly, to investigate the effects of using 

simple versus complex hydrological models in climate change studies. The complexity of each 

hydrological model is defined based on input data requirements, number of parameters and the level 

of description of the hydrological processes in the model. Model responses are compared using five 

hydrological models, ranging from conceptual-lumped to physically-based fully-distributed 

(HYMOD, HBV, HydroMAD, TopNet WaSiM-ETH) employing data from the Waiokura catchment, 

in the North Island of New Zealand. Climate change scenarios for three emission scenarios (B1, 

A1B and A1F1) have been assessed and using the models for three different time periods: “current” 

(1980–1999), “2040 condition” (2030–2049) and “2090 condition” (2080–2099). It was found that 

different models need different amounts of input data and time for the set up and the calibration and 

validation. The analysis of the climate change scenarios shows that the resulting discharges differ 
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significantly between the selected models. This uncertainty indicates a need to carefully choose the 

model for a given application. Based on the results from the different scenarios, we conclude that a 

simple to moderately complex model is probably sufficient for most climate change studies; for 

more realistic results, using a multi-model ensemble is preferable, as it will reduce uncertainty due 

to model structure and complexity. 

Keywords: uncertainty; hydrologic modelling; climate change 

 

1. Introduction 

Climate change is expected to exacerbate current stresses on water resources due to, for 

instance, population growth, land-use changes and urbanisation. Changes in precipitation and 

temperature lead to changes in runoff and water availability and hydrological models are extremely 

useful in predicting these changes [1]. However, one must account for the large uncertainties 

associated with forecasting discharge with such hydrological models. Hydrological models differ in 

their complexities. In a case study, Orth, et al. [2] investigated model performance with respect to 

model complexity and concluded that added complexity does not necessarily lead to improvement in 

model performance, as performance can vary widely depending on the hydrological variables (e.g. 

runoff vs. soil moisture) or hydrological conditions (floods vs. droughts) investigated. 

Hydrological models are used for a wide range of applications such as water management or 

flood forecasting [3]. These models use generally simple representations of physical processes 

within a catchment. A well calibrated hydrological model can give reasonable results for short-term 

forecasting, but is seldom accurate for forecasting of climate change impacts. There has been always 

a debate among the hydrological modelling community about the applicability of conceptual and 

physically based models for climate change studies. Michaud and Sorooshian [4] studied different 

factors including input data, initial conditions, model assumptions or parameter values, that can 

affect the accuracy of rainfall-runoff simulations. They found that results from a simple distributed 

model were just as acceptable as those from complex distributed models. However, when calibration 

is not performed, a complex model can perform better than a simple model. Ludwig et al. [5] 

examined the level of uncertainty when hydrological models of different structure and complexity 

are driven by the same climatological boundary conditions and demonstrated that a physically-based 

model ought to be employed for climate change impact assessment. However, physically-based 

distributed models are difficult to apply because of high data demand, complex process descriptions 

and wide parameter spaces. To date several hydrological models have been widely used 

internationally as tools to assess climate change effects in the watersheds of interest. These range 

from simple conceptual lumped models to physically based distributed models. For example the 
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HBV model [6–12], HYMOD ([13–16], Hydromad [17], TOPMODEL [14,16], SWAT [12,18,19], 

WaSiM-ETH [20–22], or TopNet [23–25]. 

For water resources agencies, the level of complexity of hydrological models may limit their 

applicability due to high data demand and computational cost. On the other hand, simple models 

may provide adequate results at reduced cost. Hence the choice of either a simple or a complex 

model should not only be based on sophistication, but also on purpose of utilisation and data 

availability. For example, physically based distributed models can be useful for detailed 

assessments of surface flow and other water balance applications, whereas for assessing climate 

change impacts, a conceptual model may be employed [26]. 

This study has two main objectives. Firstly, to investigate the consequences (uncertainty) of 

using simple versus complex hydrological models to predict discharge and to quantify the 

uncertainty of results owing to differences between such hydrological models. Secondly, to 

investigate the effects of using simple versus complex hydrological models in climate change 

studies. The complexity of each hydrological model is defined by (i) its input data requirements, 

(ii) the number of parameters and (iii) the level of description of the hydrological processes in the 

model. Model responses are compared for five hydrological models, ranging from 

conceptual-lumped to physically-based fully-distributed models, namely HYMOD, HBV, 

HydroMAD, TopNet and WaSiM-ETH, thereby using data from the Waiokura catchment in the 

North Island of New Zealand. All five hydrological models of different complexity are used to 

investigate the effects of climate on catchment hydrology. Three emission conditions (B1, A1B, 

and A1F1) based on the IPCC IV publication were studied. Discharges obtained from the 

hydrological models for the three scenarios were analysed for three different time periods: 

“current” (1980–1999), “2040 condition” (2030–2049) and “2090 condition” (2080–2099). 

2. Study Area and Data 

2.1. Study area 

This study was carried out in the Waiokura catchmnet, located on the south-west coast of the 

North Island of New Zealand (Figure 1). The catchment is exposed to weather systems from the 

Tasman Sea, with high winds, but few climate extremes. Summer (December, January and 

February) has least extremes. Extreme events occur rather in winter (June, July and August). The 

region receives some 2000 hours of sunshine per year [27]. The upper (North) parts of the 

catchment receive as much as 50% more rainfall than the lower parts with 1800 mm in the 

headwaters and 1170 mm near the outlet. Annual precipitation is about 1250 mm with more 

rainfall in winter than summer. Mean temperature is between 21 oC and 26 oC in the summer and 

between 10 oC and 14 oC in the winter. The Waiokura catchment has a very distinct seasonal flow 

patterns: high in winter and low in summer. The headwaters of this catchment descend steeply from 
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Mount Taranaki, before gradually levelling off towards the coastal plains. The Waiokura 

catchment is characterised by ephemeral streams and very high drainage density. The catchment 

has an area of 22.5 km2, and is divided into 31 sub-catchments, defined by first order streams 

according to the Strahler classification. Physical, climatic and hydrological characteristics of the 

study area are listed in Table 1. 

Table 1. Physical, climatic and hydrological characteristics of the study area. 

Area (km2) 22.5 

Mean elevation (m) 183 

Range elevation (m) 10–361 

Slope (%) 1–20 

Dominant land use (% of wcatchmnet area) Grazed dairy pasture (99%) 

Soil type Volcanic origin – Egmont brown loam 

Prevailing wind direction Northwest 

Monthly average rainfall 

(mm) 

Summer (Jan-Mar) 100 

Winter (Jun-Aug) 135 

Average air temperature 

(°C) 

Summer (Jan-Mar) 21–26 

Winter (Jun-Aug) 10–14 

Annual average sunshine (h) 2000 

Rainfall (mm y-1) 1250 

Flow range (m3/s) 0.026–7.864 

Mean flow (m3/s) 0.469 

Median flow (m3/s) 0.391 

95 percentile flow (m3/s) 1.042 

Specific yield (mm km-2 y-1) 31.4 
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Figure 1. Location map, land use and 30 m DEM for Waiokura 

catchment in the North Island of New Zealand. Elevations are in metres. 
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2.2. Data 

Data used in this study include daily rainfall, potential evapotranspiration, vapour pressure, 

maximum and minimum air temperature, soil temperature, relative humidity, solar radiation, wind 

speed and soil moisture. Data were obtained from the National Climate Database (CLIDB) and 

Virtual Climate Station Network (VCSN) of New Zealand. VCSN provides daily climate data 

interpolated on an approximately 5-km grid covering New Zealand. The interpolation method used 

is a thin-plate smoothing spline model and is based on data observations from climate stations [28]. 

The catchment characteristic data were obtained from the River Environment Classification 

(REC) [29]. REC provides physical characteristics, such as topography, geology and land cover 

for each New Zealand river network. REC information is available as Geographic Information 

System (GIS) layer. Geology data were obtained from the Land Resources Inventory, and land 

cover data from the 1997 version of the Land Cover Database [30]. 

2.3. Climate change data 

General Circulation Model (GCM) simulations prepared by the IPCC Fourth assessment were 

used to prepare New Zealand climate change scenarios. Twelve global climate models of the IPCC 

report satisfactorily predict the climate in the New Zealand and South Pacific region. Model changes 

are statistically downscaled to provide spatial detail over New Zealand [31]. For statistical 

downscaling, historical observations are used to develop regression equations that relate local 

climate fluctuations to changes at the larger scale. These historical observations are then replaced by 

the model changes in the regression equations to produce fine-scale projections [31]. The resolution 

of the downscaled changes is approximately 5 km by 5 km (on a 0.05° grid) covering New Zealand. 

Climate change datasets are related to the 1980–1999 period (1st January 1980 to 31st December 

1999) which is abbreviated here as “1990”. Climate change effects are investigated for two 20-year 

future periods: 2030–2049 (1st January 2030 to 31st December 2049), termed “2040” hereafter, and 

2080–2099 (1st January 2080 to 31st December 2099), termed “2090” hereafter. 

Statistical downscaling is applied to the projections obtained from 12 GCM simulations where 

emissions follow the A1B “middle-of-the-road” emissions scenario. The A1B scenario gives an 

intermediate level of warming by the end of the century and has more GCM output data available 

than any other scenario. Projections from the A1B scenario were rescaled using the known 

differences on the global scale between the A1B and other scenarios, to produce predictions for each 

individual emission scenario [31]. 

For the two future time periods studied here, three greenhouse gas emission scenarios were 

considered: B1 (low emission, 600 ppm eq-CO2), A1B (medium emission, 850 ppm eq-CO2) and 

A1F1 (high emission, 1550 ppm eq-CO2). 



473 

AIMS Geosciences Volume 3, Issue 3, 467-497. 

The A1 scenario assumes a very rapid economic growth, a peak of global population in 

mid-century and a rapid introduction of new and more efficient technologies. A1 is divided into 

three groups, where each represents an alternative direction of technological change. We choose just 

two scenarios of this main scenario: the A1FI scenario that assumes a fossil-fuel intensive future 

world and the A1B scenario, which assumes a balance across all sources. The B1 scenario assumes 

the same global population as A1, but describes a world which converges with more rapid changes 

in economic structures toward service and information economy [32]. 

For each emission scenario, an average dataset from the 12 GCM simulations was used for 

hydrological modelling. Each simulation with an emission scenario is then compared with the “1990” 

baseline simulation, in order to assess the resulting water discharge in the Waiokura catchment 

according to the chosen emission scenario choice. 

3. Methodology 

3.1. Hydrological models used 

To demonstrate the influence of the choice of a certain hydrological model on forecast 

uncertainty different hydrological models, which have different representations of process 

description, parameter space and spatial representation, were employed. Specifically, these are a 

conceptual lumped model (HYMOD), a semi-distributed conceptual model (HBV), a conceptual 

lumped model (HydroMAD), a semi-distributed physically-based model (TopNet), and a 

physically-based distributed model (WaSiM-ETH). Appendix A lists the parameters of each 

hydrological model. A brief description of each model follows. 

3.1.1. HYMOD 

The HYdrologic MODel (HYMOD) is a lumped conceptual model. This model has two main 

components, rainfall excess and two series of linear tanks in parallel. A modified version of the 

model was used. A degree day based snow module was added to the model. This module depends 

on three parameters, which are the degree-day factor DD, precipitation/degree-day relation (Dew) 

and threshold temperature for snow melt initiation Ttt. Soil moisture content depends on the 

maximum storage capacity (Cmax) and the degree of spatial variability of soil moisture capacity 

within the catchment (β). Excess water from the soil zone flows into quick-flow tanks and 

groundwater, according to a partitioning factor which distributes the flow between a fast reservoir 

and slow reservoirs (α). The flow is distributed into three linear reservoirs in series which represent 

the fast runoff component and a slow-flow tank representing groundwater flow in parallel to the 

other flows. Reservoirs are characterised by their residence times Rs and Rq [13,33]. Figure 2 

provides a schematic representation of this model. 
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Figure 2. Schematic representation of HYMOD framework [33]. 

3.1.2. HBV 

HBV (Hydrologiska Byråns Vattenbalansavdelning) [52] is a conceptual, semi-distributed 

model, which was developed by the Swedish Meteorological and Hydrological Institute (SMHI). 

This model has three main components: a snow accumulation and melt routine, a soil moisture 

accounting routine and a runoff response routine. The snowmelt routine is based on the degree-day 

method. Soil moisture accounting is achieved by computing an index of wetness of the entire 

catchment and takes account of interception and soil moisture storage. This routine is based on a 

modification of the bucket theory, which assumes a statistical distribution of storage capacities in a 

basin. This routine is controlled by two parameters, a shape coefficient which is the relative 

contribution to runoff or increase in soil moisture storage from a millimetre of rain or snowmelt and 

secondly the maximum soil storage in the basin. A model for evapotranspiration takes account of water 

loss and depends on LP, a parameter which is a soil moisture value above which evapotranspiration 

reaches its potential value. Runoff generation routing transforms the effective precipitation (i.e. 

excess water from the soil moisture zone and direct precipitation) to discharge. The runoff routine is 

based on two conceptual reservoirs, an upper non-linear and a lower linear reservoir, which 

represent quick runoff and slow runoff, respectively. Routing between sub-basins is calculated using 

the Muskingum method [34]. A schematic representation of this model is shown in Figure 3. 
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Figure 3. Schematic representation of HBV framework [52]. 

3.1.3. HYDROMAD 

The HYDROlogical Modelling Assessment and Development (HydroMAD) [35] is a modelling 

framework with a range of soil moisture accounting modules and routing functions. The 

HydroMAD R software package is used in this study. The class of hydrological models considered 

were spatially-aggregated conceptual models. There are two main components, a Soil Moisture 

Accounting (SMA) module and a routing or a unit hydrograph module. The SMA module converts 

rainfall and temperature into effective rainfall, which is converted into streamflow by the routing 

module (Figure 4). 

 

Figure 4. Description of HydroMAD framework [35]. 
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The nine SMA models presented below, along with the exponential components transfer 

function as a routing model (EXPUH) [36], are used in this study. 

CWI: The IHACRES Catchment Wetness Index (CWI) model uses a temperature-dependent 

drying rate to estimate a wetness index, which defines the runoff ratio. 

CMD: The IHACRES Catchment Moisture Deficit (CMD) model calculates the effective 

rainfall by taking account of evapotranspiration and catchment moisture deficit. The effective 

rainfall is calculated from input rainfall by using a mass balance approach [37]. 

Sacramento model: The Sacramento model was developed by the US National Weather 

Service. It is the most complex model of the package. Two soil zones, upper and lower, are defined. 

The upper zone contains interception storage while the lower zone represents the bulk of the soil 

moisture and longer groundwater storage. In each soil zone, two moisture storages are represented, 

tension water and free water. A special aspect of the model lies in the representation process of the 

percolation from the upper zone to the lower zone. Evapotranspiration is computed using each part 

of the model according to a hierarchy of priorities. A mass balance approach is used to calculate the 

effective rainfall from lateral drainage that contributes from each of the soil zones [38]. 

GR4J: The Génie Rural à 4 paramètres Journalier (GR4J) model is a daily lumped 

four-parameter rainfall-runoff model. Firstly, the net rainfall and net potential evapotranspiration is 

determined and a production store is filled. The effective rainfall is divided into two flow 

components: 90% by a unit hydrograph and a non-linear routing store and 10% by a single unit 

hydrograph. A groundwater exchange is incorporated between the two components [39]. 

AWBM: The Australian Water Balance Model (AWBM) is a conceptual model. It is developed 

from concepts of saturation overland flow (i.e. excess rainfall after reaching the surface storage 

capacity of the catchment) and generation of runoff. Catchments are divided into three different areas 

with different storage. The effective rainfall is the sum of excess water in each area [40]. 

BUCKET model: The single-bucket (BUCKET) model takes account of interception, 

saturation excess runoff and subsurface flow [35]. 

SNOW: A degree-day snow (SNOW) model is essential in cold regions to estimate the 

snowmelt input to be used in streamflow forecasting. A daily snowmelt discharge series and an 

estimate of the water stored in the snow pack are produced in this model [41], which is coupled with 

the CMD soil moisture model. 

Scalar model: The scalar model is a benchmark model which uses a constant runoff ratio. The mass 

balance with streamflow allows estimation of the constant fraction of rainfall which reaches the stream. 

Intensity model: The intensity model uses a runoff ratio generated by raising rainfall to a 

power. It increases up to a full runoff level. 

Runoff ratio model: The runoff ratio model scales the rainfall to a runoff coefficient, 

estimated by a moving average of the data. 

dbm model: The dbm model is the typical initial model used in Data-Based Mechanistic 

modelling. The observed streamflow raised to a power defines an index of antecedent wetness. 
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Rainfall is scaled by using this index [35]. 

The dbm and runoff ratio models cannot be used for prediction as the SMA module uses 

streamflow data. So, they were not used for climate change analysis. 

Routing: Routing discharge is an exponential component, transfer function model. It is a linear 

transfer function which translates an input time series U into an output series X. The unit 

hydrograph is described by exponential decaying components. Each component is defined by its 

recession rate, α, and peak response, β. For the SMA models, two components are used, slow and 

quick components where these components are in a parallel configuration. 

The total simulated flow is the sum of the quick and the slow components: 

ܺሺݐሻ ൌ 	ܺ௦ሺݐሻ ൅	ܺ௤ሺݐሻ           (1) 

Where, X is total simulated flow. t is time step. Xs and Xq are simulated quick and slow flow 

respectively. 

The slow and quick flows are defined respectively by: 

ܺ௦ሺݐሻ ൌ	∝௦ ܺ௦ሺݐ െ 1ሻ ൅	ߚ௦	ܷሺݐሻ      (2) 

ܺ௤ሺݐሻ ൌ	∝௤ ݐሺݍ െ 1ሻ ൅	ߚ௤	ܷሺݐሻ        (3) 

These parameters can be interpreted in terms of time constants ߬	and fractional volumes, v, and 

are defined as: 

߬ ൌ 	 ିଵ

୪୭୥	ሺఈሻ
        (4) 

ݒ ൌ 	 ఉ

ሺଵିఈሻ
       (5) 

3.1.4. TOPNET 

TopNet is a physically-based and semi-distributed model developed based on the 

TOPMODEL [42] concepts. It has two main components: a water balance for each sub-catchment 

and streamflow routing for each sub-catchment. The water balance model represents storages and 

fluxes of water in the canopy, snowpack, and unsaturated and saturated soil zones. A catchment is 

divided into sub-catchments linked by a river network. Then a kinematic wave is used to model the 

output discharge through the digital stream network. The routing component has three sources of 

runoff from each sub-catchment: saturation excess runoff from excess precipitation, infiltration 

excess runoff and base flow within the saturated zone. Saturation excess runoff occurs in the 

saturated portion of the catchment when soil water storage reaches its capacity. Infiltration runoff 

excess occurs in the uninfluenced and influenced portions of the catchment when the effective 

rainfall exceeds the infiltration rate. 
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TopNet uses TOPMODEL concepts for the representation of the soil moisture deficit using a 

topographic index to model the dynamics of variable source areas contributing to saturation excess 

runoff [43,44]. 

The input data are rainfall and temperature (minimal and maximal) at hourly time steps for 

each sub-basin, relative humidity, shortwave radiation, wind speed, and mean sea level pressure. A 

schematic representation of this model is shown in Figure 5. 

 

Figure 5. Schematic representation of TopNet framework [44]. 

3.1.5. WASIM-ETH 

The Water Balance Simulation Model (WaSiM-ETH) is a physically-based distributed model 

developed at the Swiss Federal Institute of Technology in Zurich. It is used for runoff forecasting or 

modelling of substance transport. 

Two versions of this model exist. Version 1 uses the conceptual TOPMODEL-approach in the 

soil model. This approach describes flow components between and within the saturated and 

unsaturated zone by fluxes to and out of several reservoirs. Several parameters have no physical 

meaning because it has a conceptual base. Version 2 uses the RICHARDS-equations for describing 

the water flow within the unsaturated soil [45]. Here, we use version 1. 

WaSiM-ETH is able to simulate the water fluxes on a small scale for a large catchment. The 

spatial resolution is given by an input grid (30 m × 30 m in this study). Temporal resolution can range 

from one minute to a few days, depending on the time resolution of the meteorological data. The 

minimum input data are time series of temperature and precipitation, and grid information about 

topography, land use and soil type [46]. The Figure 6 shows the structure of the WaSiM-ETH model. 
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Several combinations of sub-models can be chosen individually depending on data availability 

and purpose of study. Several methods exist to perform the spatial interpolation of meteorological 

data. In this study, the inverse distance weighting interpolation is used. Then, to calculate the 

potential evaporation and transpiration different methods can be chosen for the evapotranspiration 

module. Data available are hourly data so the Penman-Monteith method is used. However, this 

method requires more detailed input data than other methods. 

 

Figure 6. Structure of WaSiM-ETH using TOPMODEL-approach [53,54]. 

3.2. Complexity of models 

Model complexity is defined in this work based on model type, number of parameters to be 

calibrated, input requirements, time needed to prepare and set up models and time needed to make a 

single run. Table 2 lists the different types of the models used in this study. Based on Table 2 

WaSiM-ETH is the most complex model followed by TopNet. The simplest model of all is the 

runoff rainfall ratio model. HBV, HYMOD, TopNet were calibrated using the RObust Parameter 

Estimation (ROPE) algorithm [47]. WaSiM-ETH was calibrated using Shuffled Complex Evolution 

(SCE-UA) [48]. All the models of the HydroMAD package were calibrated using functions from the 

Bell Labs PORT library [35]. 
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Table 2. Details for each hydrological model. 

Model name Model type 

No. of 
parameters 
that need to 
be calibrated

Input requirements Output  Time step
NSE 

Calibration
NSE 

Validation
Time to 
calibrate

Time taken 
for one run 
(for 6 years) 

Time to 
prepare 
inputs 

Scalar 
Conceptual - 

Lumped 
4 Precipitation, temperature

Discharge, 
intermediate state 

Daily 0.47 0.58 < 1 hour 3 min < 1 hour 

Runoff ratio  
Conceptual - 

Lumped 
1 

Precipitation, temperature, 
observed discharge 

Discharge Daily 0.77 0.83 < 1 hour 3 min < 1 hour 

Australian Water 
Balance Model  

(AWBM) 

Conceptual - 
Lumped 

5 Precipitation, temperature
Discharge, 

intermediate state 
Daily 0.69 0.78 < 1 hour 3 min < 1 hour 

Intensity  
Conceptual - 

Lumped 
6 Precipitation, temperature

Discharge, 
intermediate state 

Daily 0.47 0.58 < 1 hour 3 min < 1 hour 

Data-Based Mechanistic 
(DBM) 

Conceptual - 
Lumped 

6 
Precipitation, temperature, 

observed discharge 
Discharge, 

intermediate state 
Daily 0.79 0.80 < 1 hour 3 min < 1 hour 

IHACRES Catchment 
Moisture Deficit (CMD)

Conceptual - 
Lumped 

7 Precipitation, temperature
Discharge, 

intermediate state 
Daily 0.71 0.82 < 1 hour 3 min < 1 hour 

Génie Rural à 4 
paramètres Journalier 

(GR4J)  

Empiric - 
Lumped 

4 Precipitation, temperature
Discharge, 

intermediate state 
Daily 0.78 0.19 < 1 hour 3 min < 1 hour 

Single-bucket  
Conceptual - 

Lumped 
8 Precipitation, temperature

Discharge, 
intermediate state 

Daily 0.72 0.82 < 1 hour 3 min < 1 hour 

IHACRES Catchment 
Wetness Index (CWI) 

Conceptual - 
Lumped 

9 Precipitation, temperature
Discharge, 

intermediate state 
Daily 0.78 0.62 < 1 hour 3 min < 1 hour 

Degree-day factor 
snowmelt  

Conceptual - 
Lumped 

13 Precipitation, temperature
Discharge, 

intermediate state 
Daily 0.73 0.72 < 1 hour 3 min < 1 hour 

Sacramento  
Deterministic 

- Lumped 
16 Precipitation, temperature

Discharge, 
intermediate state 

Daily 0.47 0.60 < 1 hour 3 min < 1 hour 
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Table 2. Details for each hydrological model (continuous). 

Model name Model type 

No. of 
parameters 
that need to 
be calibrated

Input requirements Output 
Time 
step 

NSE 
Calibration

NSE 
Validation

Time to 
calibrate

Time 
taken for 
one run 
(for 6 
years) 

Time to 
prepare 
inputs 

Hymod Conceptual-Lumped 8 
Precipitation, 
temperature, 

evapotranspiration 
Discharge daily 0.74 0.80 3 hours < 5 min < 3 hours 

Hydrologiska Byråns 
Vattenbalansavdelning 

(HBV) 

Conceptual-Semi 
-distributed 

10 

Precipitation, 
temperature (daily and 

mean per month), 
potential of evaporation 

(daily and mean per 
month) 

Discharge daily 0.74 0.8 3 hours < 5 min < 3 hours 

TopNet 
Physically-based - 
Semi-distributed 

15 

Precipitation, relative 
humidity, shortwave 

radiation, temperature 
min/max, wind speed, 

mean sea level pressure

Discharge, snow 
water equivalent, 

canopy storage, soil 
moisture, depth to the 

water table, 
infiltration excess 

runoff, evaporation 
from soil… 

hourly 0.73 0.85 2–3 days
10 min 

(on Linux) 
> 3 days 

Waterbalance 
Simulation Model 

(WaSiM-ETH) 

Physically-based 
-Distributed 

9 

Precipitation, 
temperature, relative 
humidity, shortwave 

radiation, wind speed, 
land use, soil type, soil 

parameters, DEM 

Discharge, base flow, 
infiltration excess 

runoff, total runoff …
hourly -0.11 -2.09 

> 10 
days 

2 - 3 h > 7 days 
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3.3. Evaluation criteria 

To measure the performance of each model, an objective function, the Nash-Sutcliff 

Efficiency [49] was used for calibration and evaluation. This objective function gives the proportion 

of the variance of the data explained by the model [50]. Its value ranges from -∞ to 1: 

ܧܵܰ ൌ 1 െ	
∑ ሺ௤೚್ೞሺ௧ሻି௤ೞ೔೘ሺ௧ሻሻమ
ಿ
೟సభ

∑ ሺ௤೚್ೞሺ௧ሻି௤೚್ೞതതതതതതሻమಿ
೟సభ

     (6) 

where qobs(t) and qsim(t) are the observed and simulated discharge at time step t respectively, 

 .௢௕௦തതതതത is the mean observed discharged over the entire simulation period of length Nݍ

NSE compares the mean square error generated by a particular model simulation to the 

variance of the target output sequence. A value of NSE = 1 indicates perfect agreement between 

observed and modelled discharges, a value greater than 0 means than the simulated runoff gives a 

good estimate of the observed runoff and a NSE value < 0 means that the model doesn’t represent 

the observed discharged well [51]. 

3.4. Data preparation 

Daily input data from 2001 to 2011 were used to calibrate and validate the models. Firstly, 

the calibration was carried out for the period 11 May 2001 to 11 May 2006. Then, the validation 

was performed for the period, 12 May 2006 to 07 January 2011. For all conceptual models, daily 

data are used, whereas hourly data are used for physically-based models. For HydroMAD, both 

calibration and validation included a 3-month warm-up period. Data from this period are not used 

to assess model performance. 

The hydrological models differ with respect to the time required to process input data to run 

these models. Input data for simple models such as HydroMAD are a time series of temperature, 

precipitation and observed discharge. Then the R package is used to run different SMA and the 

output data can be easily post-processed. Details about running the model are given by Andrews, 

et al. [35]. 

For hydrological models like HYMOD and HBV, a FORTRAN code is used to run them. 

Time series of temperature, precipitation and observed discharge in text file format is provided to 

the model. 

For TopNet, input data are times series of precipitation, temperature, wind, solar radiation, 

relative humidity, potential evapotranspiration, mean sea level pressure and observed discharge. 

The input to the model is provided in netcdf file format. TopNet is widely used for hydrological 

modelling applications in New Zealand and uses nationally available data bases. Consequently, 
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processing for this model is simple, as the study is carried out on a New Zealand catchment. 

However, to setup the model elsewhere it would take considerably longer. 

It was most time consuming to process the input data for WaSiM-ETH and set up the model. 

Land use and soil cover, digital elevation model, catchment boundaries, sub-catchment boundaries 

must be provided and prepared using ArcGIS. Tanalys pre-process software was used to prepare 

the input files. To set-up a complex model like WaSiM-ETH requires a long time compared to 

other models in this study. 

4. Results and Discussion 

4.1. Comparison of model results in reproducing historical records 

The performance of the hydrological models was evaluated by statistical and visual comparisons 

of observed and simulated discharges. Table 3 gives a summary of model performance for both the 

calibration and validation time periods. From Table 3, we see that, during calibration, except for 

the models Sacramento, Scalar, Intensity and WaSiM-ETH, all the models have acceptable NSE 

values. During validation, GR4J has the highest NSE value followed by TopNet, runoff ratio, 

bucket, cmd, dbm, HYMOD and HBV. However, the WaSiM-ETH performance was not 

acceptable as NSE is negative for both calibration and validation. 

Mean daily flow (Table 3) is well reproduced by all the models except snow and cwi, which 

give overestimated values for the validation time period. At the same time, a complex model like 

WaSiM-ETH gives a very high mean value for both the calibration and the validation period. 

Values of maximum daily flow (Table 3) are underestimated during the calibration time 

period and validation time periods by most models except a few simple models like cwi, dbm and 

snow, which provide a maximum daily value close to the observed value. 

Figure 7 compares measured daily runoff over the calibration period with model flow 

against the observed flow for all models. The scatter plot in Figure 7 supports the result that high 

flows are underestimated by all hydrological models. It can be seen that the peak flow of 3.2 m3/s 

is underestimated by most of the models except for WaSiM-ETH where the peak flow is closer 

to the observed value. However, the WaSiM-ETH model overestimates low flows. AWBM, 

bucket, runoff ratio, TopNet, HBV and HYMOD model outputs are best correlated with 

observed values. 

The model output comparison of mean annual streamflow, monthly streamflow and flow 

duration curves for the period from August 2001 to January 2011 is shown in Figure 8. It can be 

seen that mean annual and mean monthly streamflow patterns are well reproduced by all models 

except WaSiM-ETH, which overestimates observations. Sacramento, scalar and intensity models 

provide mean monthly flows that are less variable over time than the observed values. For the 

months of January to May, mean monthly flows are overestimated, and for the months from July 
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to October they are underestimated. Snow, runoff ratio, HBV, HYMOD, dbm models 

reproduced the best mean monthly flows. Monthly streamflows from TopNet reproduced the 

patterns of observed runoff, but for the months of August to October they are underestimated. 

Table 3. Comparison of models regarding their capability to reproduce historical 

discharges in the Waiokura catchment. 

 Calibration Validation 

 

Mean daily 

flow (m3/s) 

Maximum daily 

flow (m3/s) 
NSE 

Mean daily 

flow (m3/s) 

Maximum daily 

flow (m3/s) 
NSE

observed 0.48 3.20 0.44 2.12 

cmd 0.46 1.56 0.71 0.46 1.52 0.82

cwi 0.48 1.42 0.78 0.57 2.27 0.62

gr4j 0.41 1.57 0.78 0.41 1.94 0.89

awbm 0.47 1.65 0.69 0.46 1.51 0.78

bucket 0.46 1.33 0.72 0.46 1.38 0.82

sacramento 0.46 1.30 0.47 0.42 0.97 0.60

snow 0.47 1.86 0.73 0.53 1.98 0.72

scalar 0.48 1.18 0.47 0.45 1.01 0.58

intensity 0.48 1.18 0.47 0.45 1.01 0.58

runoff ratio 0.48 1.47 0.77 0.45 1.72 0.83

dbm 0.48 1.99 0.79 0.47 2.13 0.8 

HBV 0.49 1.43 0.74 0.49 1.73 0.8 

TopNet 0.44 1.37 0.73 0.42 1.78 0.85

Hymod 0.50 1.47 0.74 0.48 1.86 0.80

WaSiM-ET 0.67 2.42 -0.11 0.84 3.23 -2.0
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Figure 7. Scatter plots of modelled and observed daily discharge for  
each hydrological model for the period from August 2001 to January 2011.
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Figure 8. Streamflow modelled for the period from August 2001 to January 2011: mean 

annual streamflow (top), mean monthly flows (middle), and flow duration curves (bottom). 

Table 4 presents the values of rainfall-runoff ratio for each model. These models provide a 

similar rainfall-runoff ratio except WaSiM-ETH, which yields a rainfall-runoff ratio higher than the 

observed value. The values reflect the fact that land use cover of the catchment is pre-dominantly 
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short grass (Figure ). The soil is permeable and a great part of the rainfall is intercepted or infiltrated 

before it reaches the river. About 40% of the rainfall is converted into runoff. The runoff-ratio value 

of WaSiM-ETH reflects a soil with low permeability. The high rainfall runoff ratio probably results 

from an overestimation of flow by WaSiM-ETH model. This likely originated from the parameters 

provided to the model in the land use and soil table. The saturated conductivity and van-Genuchten 

parameters values were provided based on literature. Based on the results of the models, it can be 

concluded that, in a small catchment, a simple model can represent the catchment equally well as a 

complex model like WaSiM-ETH. 

Overall, the results show that TopNet, HBV, runoff ratio, HYMOD and dbm reproduce 

historical runoff series satisfactorily. Simple to moderate complex models can model discharge with 

acceptable results. A Similar conclusion was reached by Orth, et al. [2]. 

Table 4. Rainfall-runoff ratio for daily streamflow from August 2001 to January 2011. 

Observed 0.43 Scalar 0.44 

Cmd 0.44 intensity 0.44 

Cwi 0.49 runoffratio 0.44 

gr4j 0.39 Dbm 0.45 

Awbm 0.44 HBV 0.46 

Bucket 0.43 TopNet 0.41 

Sacramento 0.42 Hymod 0.46 

Snow 0.47 WaSiM-ETH 0.71 

4.2. Comparison of model results in predicting hydrological response to changed climate 

Table 5 presents the precipitation change over 1990 conditions for the various climate change 

scenarios in 2040 and 2090. The mean daily rainfall increases little under climate change scenarios 

for both 2040 and 2090 conditions. However, the maximum daily rainfall increases from a low to 

high emission scenario (from B1 to A1FI) and it is higher in 2090 conditions than 2040 conditions. 

Table 5. Mean daily rainfall and maximum daily rainfall for the 1990 baseline and the B1, 

A1B and A1FI emission scenarios in 2040 and 2090. 

1990 

conditions

2040 conditions 2090 conditions 

B1 A1B A1FI B1 A1B A1FI

Mean daily rainfall [mm] 3.0 3.1 3.1 3.1 3.1 3.1 3.1 

Maximum daily rainfall [mm] 93.7 99.6 107.0 112.6 102.8 105.8 121.7
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The mean daily temperature and maximum daily temperature over 1990 conditions for the 

different emission scenarios and future periods are presented in Table 6. It can be seen that the mean 

and maximum daily temperature increase from the lower to the higher emission scenarios and from 

the 2040 period to the 2090 period. 

Table 6. Mean daily temperature and maximum daily temperature changes for the 1990 

baseline and the B1, A1B and A1FI emission scenarios in 2040 and 2090. 

1990 

conditions

2040 conditions 2090 conditions 

B1 A1B A1FI B1 A1B A1FI

Mean daily temperature [°C] 12.5 13.1 13.4 13.8 13.8 14.5 15.4

Maximum daily temperature [°C] 22.6 23.3 23.7 24.2 24.1 25.0 26.0

The precipitation change in 2040 and 2090 conditions over 1990 conditions are shown in 

Figure . Here the percentage change in the precipitation is less in the B1 scenario compared to the 

others. There is a slight increase in the percentage change from 2040 to 2090. For A1FI the 

percentage change in precipitation is very high for both time periods (2040, 2090). 

 

Figure 9. Relative change in precipitation for the three climate changeemission scenarios. 
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Table 7 presents mean daily flows for 1990, 2040 and 2090 conditions for the three emission 

scenarios. It can be seen that there are two trends, one is evidenced by the cmd, cwi, awbm, bucket, 

snow and HYMOD models, which predict that mean flows decrease from the lower to the higher 

emission scenario as mean values for 2090 conditions are lower than mean values for 2040 

conditions. The other trend is given by Sacramento, scalar and intensity, whereby the mean flow 

increases sin similar fashion for the 2040 conditions and 2090 conditions. The lower value 

corresponds to the lower emission scenario and the higher value to the higher emission scenario. 

The mean value for TopNet presents the two trends: for 2040 conditions, the mean value increases 

from lower to higher emission scenarios, and for 2090 conditions, the mean value decreases from 

lower to higher emission scenarios. WaSiM-ETH mean values are higher than the mean values of 

other hydrological models. 

Table 7. Mean flows (m3/s) predicted by different hydrological models for various 

emission scenarios under climate change. 

 1990 

conditions 

2040 conditions 2090 conditions 

B1 A1B A1FI B1 A1B A1FI 

cmd 0.22 0.21 0.20 0.20 0.20 0.18 0.17 

cwi 0.27 0.25 0.24 0.23 0.23 0.21 0.19 

awbm 0.19 0.18 0.17 0.16 0.16 0.14 0.13 

bucket 0.23 0.22 0.22 0.21 0.20 0.19 0.18 

sacramento 0.27 0.28 0.28 0.29 0.28 0.28 0.29 

snow 0.17 0.16 0.15 0.15 0.14 0.13 0.12 

scalar 0.34 0.35 0.35 0.35 0.35 0.35 0.35 

intensity 0.34 0.35 0.35 0.35 0.35 0.35 0.35 

HBV 0.26 0.27 0.27 0.27 0.27 0.27 0.28 

TopNet 0.41 0.41 0.41 0.41 0.41 0.40 0.40 

Hymod 0.23 0.23 0.23 0.23 0.22 0.21 0.20 

Wasim 1.00 0.99 0.99 1.00 1.00 1.00 1.00 

Table 8 presents the maximum daily flow for each emission condition and scenarios. In general, 

all maximum daily flows increase from lower to higher emission scenarios, with the lower value for 

2040 conditions and B1 emission scenario and the higher value for 2090 conditions and the A1FI 

emission scenario, except for the cwi model, where maximum daily flows decrease from lower to 

higher emission scenarios. If we exclude the results of WaSiM-ETH, we see that TopNet gives the 

highest maximum daily flow of all models. This again illustrates that if a single model (assuming 
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more complex is good) like TopNet is used decision makers may not be provided with important 

indications about future flows. 

Table 8. Maximum daily flows (m3/s) predicted by different hydrological models for 

various emission scenarios under climate change. 

 1990 

conditions 

2040 conditions 2090 conditions 

B1 A1B A1FI B1 A1B A1FI 

cmd 1.37 1.40 1.41 1.43 1.42 1.46 1.51 

cwi 1.42 1.40 1.39 1.38 1.37 1.37 1.40 

awbm 1.45 1.47 1.48 1.49 1.48 1.52 1.57 

bucket 1.23 1.26 1.26 1.28 1.27 1.29 1.32 

sacramento 1.01 1.05 1.07 1.10 1.09 1.13 1.19 

snow 1.63 1.68 1.71 1.74 1.72 1.78 1.86 

scalar 1.02 1.05 1.07 1.09 1.08 1.12 1.16 

intensity 1.02 1.05 1.07 1.09 1.08 1.12 1.16 

HBV 1.52 1.59 1.63 1.67 1.66 1.74 1.84 

TopNet 2.16 2.22 2.22 2.18 2.21 2.19 2.23 

Hymod 1.08 1.12 1.14 1.18 1.16 1.22 1.29 

Wasim  5.37 5.21 6.04 5.43 5.37 5.37 5.53 

A comparison of daily runoff changes between runoff modelled for 2040 and 2090 conditions 

is shown in Figure . It is evident that Sacramento, scalar, intensity, HBV, TopNet and HYMOD are 

hydrological models that have less runoff change for 2040 conditions with the B1 scenario, and 

differences are higher with the A1FI scenario. The other models show a significant runoff difference, 

whereas the precipitation change for the B1 emission scenarios and 2040 conditions is small. For 

2090 conditions, runoff changes of all models are higher, but always with models with less 

precipitation change. WaSiM-ETH distinguishes itself from other models by having runoff changes 

which decrease when emission scenarios increase. Runoff changes for WaSiM-ETH are almost 

non-existent for the A1FI scenario.
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Figure 10. Comparison of daily changes in simulated runoff for 2040  
conditions (upper) and 2090 conditions (lower) for each emission scenario.
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Sacramento, scalar, intensity, HBV, TopNet and HYMOD are models which provide simulated 

streamflow which follow patterns of precipitation change. The other models assessed her react more 

strongly to changing climate conditions. This shows that for climate change impact assessment those 

models with less complexity gives more reliable results than models with more complexity. These 

results are agree with those of Ludwig, et al. [5]. 

Table 9 presents the rainfall-runoff ratio in 1990, 2040 and 2090 conditions for each climate 

change scenario. The rainfall-runoff ratios for 1990 conditions for all models are lower than those 

estimated using historical records (i.e. 0.43 from observed records), except for the scalar and 

intensity models. Generally, the values of this coefficient decrease under climate change conditions. 

We have seen previously that mean daily rainfall is predicted to stay constant, so this trend indicates 

that less rainfall will become runoff under climate change conditions. 

Table 9. Rainfall-runoff ratios for various emission scenarios under climate change. 

 1990 

conditions 

2040 conditions 2090 conditions 

B1 A1B A1FI B1 A1B A1FI 

cmd 0.27 0.26 0.25 0.25 0.24 0.23 0.22 

cwi 0.34 0.31 0.30 0.29 0.28 0.26 0.24 

awbm 0.24 0.22 0.21 0.20 0.20 0.18 0.16 

bucket 0.30 0.28 0.27 0.26 0.26 0.24 0.22 

sacramento 0.35 0.35 0.35 0.36 0.35 0.36 0.36 

snow 0.22 0.20 0.19 0.18 0.18 0.17 0.15 

scalar 0.44 0.44 0.43 0.44 0.43 0.44 0.44 

intensity 0.44 0.44 0.43 0.44 0.43 0.44 0.44 

HBV 0.33 0.34 0.34 0.34 0.33 0.34 0.35 

TopNet 0.52 0.52 0.51 0.52 0.51 0.51 0.50 

Hymod 0.29 0.29 0.28 0.28 0.27 0.26 0.25 

Wasim 1.27 1.25 1.24 1.26 1.24 1.27 1.25 

5. Conclusions 

In this study, we investigated the impact of the choice of simple versus complex models with 

respect to reproducing historical discharge records and the effect of the model choice on 

hydrological climate change assessments. We studied several hydrological models with different 

level of complexity. Conceptual and lumped models (simple) yield equally good results in 

predicting catchment discharges as distributed and physically-based models (complex) in the 

Waiokura catchment. Those simple models reproduce historical records well and the prediction of 
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hydrological response to climate change are consistent with meteorological data patterns. The main 

advantage of simple models is that they require fewer input data and are easier to set up and run as 

opposed to complex models such as WaSiM-ETH and TopNet. Furthermore, in the case of 

physically-based models, data are sometime not available and adoption of literature values may not 

be representative of the real state of the catchment. For example, in the Waiokura catchment, the 

calibrated value of WaSiM-ETH was very poor. For this model the time to fulfil all data 

requirements is rather extensive for an adequate representation of the basin. Additionally, calibration 

of parameters for complex models requires more time because of the number parameters that need 

calibration and there is more uncertainty owing to, for example, input errors, and parameterisation 

errors. TopNet, which is a moderately complex and physically-based model can give better results 

than a complex model. This occurred in the Waiokura for TopNet because readily accessible input 

data was available. However, too simple a model sometimes cannot be sufficient for the given 

purpose. For example, even if the runoff ratio model gives good results for historical events, we 

cannot use this model to predict streamflow under a climate change context, since observed 

discharge is required in this case. Models like HydroMAD, HBV and HYMOD give reliable results 

for historical records and sensible results for predictions of hydrological response to climate change 

in the Waiokura. Results from this study show that models should be chosen based on the purpose of 

the hydrological modelling work. Finally, we infer, based on our results from different scenarios, 

that a simple to moderately complex model is sufficient for predicting impacts of climate change. 

Ideally it would be better to use a multi-model ensemble, as this will reduce uncertainty due to 

model structure and complexity. 
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