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Abstract：This study intends to investigate the performance of boosted regression tree (BRT) and 

frequency ratio (FR) models in groundwater potential mapping. For this purpose, location of the 

springs was determined in the western parts of the Mashhad Plain using national reports and field 

surveys. In addition, thirteen groundwater conditioning factors were prepared and mapped for the 

modelling process. Those factor maps are: slope degree, slope aspect, altitude, plan curvature, 

profile curvature, slope length, topographic wetness index, distance from faults, distance from rivers, 

river density, fault density, land use, and lithology. Then, frequency ratio and boosted regression 

tree models were applied and groundwater potential maps (GPMs) were produced. In the last step, 

validation of the models was carried out implementing receiver operating characteristics (ROC) 
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curve. According to the results, BRT had area under curve of ROC (AUC-ROC) of 87.2%, while it 

was seen that FR had AUC-ROC of 83.2% that implies acceptable operation of the models. 

According to the results of this study, topographic wetness index was the most important factor, 

followed by altitude, and distance from rivers. On the other hand, aspect, and plan curvature were 

seen to be the least important factors. The methodology implemented in this study could be used for 

other basins with similar conditions to cope with water resources problem. 

Keywords: ground water potential; boosted regression trees; frequency ratio; GIS; Iran 

 

1. Introduction 

Groundwater problems have been identified as the most important challenges of the 21st 

century in the world [1,2]. Considering the increase of demand for fresh water resources, two 

appropriate tools are being used by the engineers and planners for an efficient management and 

production of groundwater resources [3]. Geographic information system (GIS) can be used in the 

decision making process in water resource management as it is a powerful tool [4]. Several 

researchers have applied a combination of GIS and remote sensing (RS) tools for evaluation of 

groundwater potential mapping in medium to regional scale [3–5]. With the progresses of the RS 

and GIS techniques and software, mapping of groundwater potential has become an easy and 

efficient procedure [5]. However, in developing and threshold countries like Iran, there is a severe 

lack of precise and complete dataset, for that reason, remote sensing data is necessary for 

understanding the groundwater condition and subsequently its management. In this respect, many 

researchers have used different models and methods, for example, Oh et al. [3], Ozdemir [6,7], 

Manap et al. [8], Pourtaghi and Pourghasemi [9], Naghibi et al. [10] used FR model. Other statistical 

models such as, weights-of-evidence [7, 9], logistic regression [6], evidential belief function [11–13] 

models have been implemented for groundwater assessment. More recently, some researchers used 

data mining algorithms such as boosted regression trees (BRT), classification and regression trees, 

random forests, k nearest neighbor (KNN), linear discriminant analysis (LDA), quadric discriminant 

analysis (QDA), and multivariate adaptive regression splines (MARS), support vector machine (SVM), 

artificial neural network (ANN), flexible discriminant analysis, penalized discriminant analysis 

models in ground water potential mapping [14–17]. Data mining as a group of applied artificial 

intelligence can be clarified as the extraction of information from a dataset and relate the input and 

output variables [18]. Data mining models are able to deal with non-linear issues such as landslide 

and groundwater studies [14,19]. These models can be used for classification, regression and in 

some cases for survival studies. In this study BRT model was used for a two-condition classification 

problem which was existence or non-existence of the springs in the study area. In addition, it is 

worth mentioning that in the literature, some physically-based models are used to address the 
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incidence of springs in massifs of crystalline rocks and at catchment scale, and have contributed to 

clarify the role of rock structure and flow circuits in the incidence of springs [20,21]. 

Recently, data mining approaches are getting extremely popular because of their high 

performance and strong features. Investigation of the literature shows that FR as a probabilistic 

model has been used in different studies for groundwater potential mapping. These studies have 

reported the results of this model acceptable. BRT, on the other hand, has been used in lower 

number of studies. This research aims to compare the performance of FR and BRT as probability 

based and data mining based approaches to determine which one of these approaches can provide 

better results. A thorough literature review reveals that several researchers have reported different 

importance and contribution of the GCFs in groundwater modelling. For example, some studies 

have reported high importance of altitude, plan curvature, and profile curvature [17], while other 

studies have depicted high contribution of altitude, TWI, slope angle, and fault density [15]. Thus, it 

can be seen that there are some differences between these two studies which could be related to 

different characteristics of the watersheds, and the modelling procedure implemented in the 

mentioned studies. Therefore, this research intends to (i) investigate and compare the performance 

of data mining based BRT and probabilistic based FR models, (ii) investigate the relationship 

among the thirteen conditioning factors, and (iii) determine the contribution of the conditioning 

factors.  

2. Material and Methods 

2.1. Study Area 

The study area is situated in the western parts of the Mashhad Plain which consists of 

Torghabeh and Shandiz residential areas located between 36° 04′ 17″ and 36° 30′ 36″ latitudes, 

and 59° 02′ 32″ and 59° 33′ 48″ longitudes. The study area covers approximately 1,268 km
2 
(Figure 1). 

The altitude of the study area varies from 1,045 to 2,944 m (average = 1,615 m). Four land use 

classes can be seen in the study area such as agriculture, orchard, rangeland, and residential area. 

Among these land use classes, rangeland covers the most part of the area. In this region, people 

exploit groundwater resources by well, spring and qanat, and use water resources in different 

sections such as farming, drinking water, and livestock. 
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Figure 1. Location of the study area in Iran showing the DEM with training and validation data of 

the springs. 
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2.2. Spring Characteristics 

In the study area, 155 springs were detected and mapped at 1: 50,000-scale by field surveys and 

national reports by Iranian Department of Water Resources Management [22] (Figure 1). Then, the 

reported spring data were randomly grouped [3,6-7] into two classes of 109 (70%), and 46 (30%). 

These two groups were employed in modelling and evaluating of the groundwater potential maps 

(GPM). Discharge of the springs ranges between 0.1 and 60 lit/s with an average of 3.6 lit/s. The pH 

of the water in springs changes from 5.2 to 8.4 with an average of 7.3. From 155 springs in the study 

area, 12 springs are seasonal and other springs are permanent. Water of these springs is used in 

different sections such as agriculture, drinking water, and livestock. 

2.3. Data Preparation 

The main factors affecting groundwater potential were selected based on literature review [3,6,7]. 

However, other researchers [20,21] have mentioned that a few factors influence groundwater 

potential such as geological parameters (i.e. length of fractures, the stress field orientation and the 

deformational regimes) and recharge system. These factors are slope degree, slope aspect, altitude, 

plan curvature, profile curvature, slope length, topographic wetness index, distance from rivers and 

faults, river density, fault density, land use, and lithology. A DEM having 30×30 m grid size was 

derived from the 1: 50,000-scale topographic maps of the studied area. This layer was employed to 

produce slope degree, slope aspect, altitude, slope length (LS), topographic wetness index (TWI), 

profile and plan curvature factors. Classification of the conditioning factors was arranged based on 

the methods encountered in the literature review [10,15,17]. 

Slope degree was produced and categorized into four classes with 0, 5, 15, and 30 as 

separators (Figure 2a). Slope aspect map was prepared and classified into nine classes (Figure2b). 

Altitude map was prepared based on the 30-m DEM and categorized into 5 groups of (< 1,400, 1, 

401–1,800,1,801–2,200,2,201–2,400, and >2,400) (Figure 2c). 

In addition, two curvature maps including plan and profile curvature maps which has been 

reported as important conditioning factors on groundwater potential were used. A contour line which 

is created at the crossing between the horizontal plane and terrain surface is called plan curvature 

(Figure 2d) [23–25]. Profile curvature is defined as curvature of the flow (Figure 2e) [23,25,26]. These 

layers were calculated in the system for automated geoscientific analyses (SAGA) software and were 

used in this study as conditioning factors. 

In addition, two other DEM-derived factors of LS and TWI were produced using the SAGA 

software and used in the modelling process. The equation for calculating LS factor was defined by 

Moore and Burch [27] and used in this study (Figure 2f). Pourghasemi et al. [28] mentioned that 

there is a direct relationship between LS and the water that gathers at the bottom of the region. TWI 

was calculated using the equation defined by Moore et al. [29] and was classified and used in the 

current study (Figure 2g).  
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River and fault related factors were reported to have influence on the spring occurrence as well 

as the groundwater potentiality [10]. In this case, four factors were prepared and used such as 

distance layers of rivers and faults and density layers of the rivers and fault. One hundred, and two 

hundred and fifty meter intervals were considered in classifying two distance layers of river and 

fault (Figure 2h–i). In the case of river density and fault density, since there is jump in density layers, 

natural break classification scheme was implemented to classify them [30,31] (Figure 2j–k). 

In order to create the land use map of the western parts of the Mashhad Plain, maximum 

likelihood, a supervised classification algorithm and Landsat satellite images of the year 2014 were 

implemented by Iranian forest, rangeland and watershed management organization [32]. Land use 

layer comprises four different classes of agriculture, orchard, rangeland and residential areas (Figure 2l). 

A 1:100,000-scale geological map was employed for preparing the lithology layer of the 

western parts of the Mashhad Plain [33]. The lithology layer includes thirteen groups that are 

represented in Figure. 2m, and Table 1. 

Table 1. Lithological characteristics of the study area. 

Class Lithological characteristics 

Group 1 Claystone, sandstone 

Group 2 Granite-aplite 

Group 3 Gravel fan 

Group 4 Interbedded radiolarite slate and ultrabasic rocks 

Group 5 Leucogranite 

Group 6 Limestone recrystallized dolomitic 

Group 7 Marl, red-brown, gypsiferous 

Group 8 Quartz conglomerate 

Group 9 Recent alluvium 

Group 10 Sandstone, shale, conglomerate 

Group 11 Sandstone, slate crystalized limestone 

Group 12 Shale, phyletic, dark grey 

Group 13 Terraces 
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Figure 2. (a) slope degree, (b) slope aspect, (c) altitude, (d) plan curvature, (e) profile curvature, 

(f) slope length (LS), (g) topographic wetness index (TWI), (h) distance from river, (i) distance 

from fault, (j) river density, (k) fault density, (l) land use, and (m) lithology. 

2.4. Modelling of the Groundwater Potentiality Using FR and BRT Models 

Figure 3 displays the methodological flowchart of the current research. 
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Figure 3. Flowchart of the methodology implemented in this study including selection of the 

conditioning factors, dependent factor classification, modelling process, and evaluation 

method in this study 

2.4.1. Multicollinearity Analysis by Variance Inflation Factor and Tolerance 

Multicollinearity denotes the non-independence of GCFs which can be seen in datasets due to 

their high correlation [34]. For analyzing the multicollinearity issue, two indices such as variance 

inflation factor (VIF) and tolerance were computed for GCFs. VIFs greater than 10 or tolerance less 

than 0.1 show that there is multicollinearity and the factor should be removed from next steps of the 

modelling process [35,36]. 

2.4.2. Frequency Ratio (FR) 

FR model can be used to compute the relationship among the input and output factors of the 

model which in this study are conditioning factors and spring location [3]. The results of this model 

can be understood easily and application of this model is simple [37,38]. To compute the FR for 

classes of each input factor, number of springs in each class and area related to each class was 

determined by ArcGIS 9.3. In the next stage, the FR equation can be used as below [39]: 
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                                                                                                              (1) 

Where, S depicts the number of springs in each class, TS shows the total number of springs, P 

represents the number of pixels in each class, and TP depicts the total number of pixels. At last, FR 

values for all of the factors will be summed and a final GPM will be produced by Equation 2: 

                                                                                 

                                                                                   

                                                                                                                        (2) 

A FR value of 1 depicts an average value, while a greater value than 1 shows higher correlation and 

potential of each class [40]. 

2.4.3. Boosted Regression Tree (BRT) 

Another relatively new data mining model which was used for groundwater potentiality 

modelling in this study is boosted regression trees. BRT uses two powerful techniques such as 

gradient boosting and classification and regression tree (CART) [41,42], and was introduced by 

Friedman [43]. Boosting is used to improve model accuracy by averaging many rules as an 

alternative of obtaining a single one with higher accuracy [44]. Decision trees include two types of 

classification and regression. In regression trees, the target or output variable can have continuous 

values. The rules are decision rules which could be different decision rules in tree-based models 

based on the relationship between the output and input factors and the modelling procedure as well. 

Boosting gradient technique employs a weighted average of results gained from prediction of 

various samples [45]. In BRT, three parameters require to be optimized including number of trees or 

number of boosting iterations, interaction depth or max tree depth, and shrinkage [46]. The 

shrinkage shows the contribution of the trees in the grown model [47]. The size of the individual 

trees is determined by a parameter called the interaction depth [48]. 

For tuning BRT, a grid of these parameters was employed and a 10-fold cross validation 

method was implemented. This grid contains interaction depths of 1, 5, and 9, shrinkages of 0.001, 

0.005, 0.01, 0.05, and 0.1, and number of trees of 100 to 1,000 with 100 intervals. BRT also 

determines the importance of the conditioning factors in the modelling process. This is done by 

measuring the final (tree) performances associated to the use of the given covariate and then 

normalizing with respect to the highest contributor [49]. In this study, BRT was optimized 

employing caret and generalized boosted regression models scripts in the R statistical software, and 

caret and gbm packages [46, 50,51]. Considering the above mentioned grid, the model runs on data 

and the accuracy index will be calculated as shown in Figure 6. Finally, the CARET (Classification 

and Regression Training) package selects the best combination of the three mentioned parameters in 

BRT, and this final model will be employed in the prediction step. The CARET is a package which 
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provides different models and algorithms for classification and regression issues [46]. In this 

package, two indices of accuracy and Kappa are calculated for the training procedure and selection 

of the best parameters for the final model. Accuracy, and Cohen’s Kappa index, can be computed as 

below [52]: 

         
     

           
                                                                                                           (3) 

      
         

      
                                                                                                                        (4) 

                                                                                                                                   (5) 

                                                                                         (6) 

where, n is a proportion of pixels from the total number of training pixels that is accurately 

categorized. FP denotes false positive, TP shows true positive, TN represents true negative, and FN 

denotes false negative. 

3. Validation of the Models Performance Using Receiver Operating Characteristics 

(ROC) Curve 

In the modeling procedure, one of the most important steps to achieve scientific significance is 

validation process. In many studies, ROC curve has been used to assess the efficiency of the 

groundwater potential mapping [4,9,53]. This curve is known as a common index for predication of 

accuracy of the models in classification problems [54]. Area under the mentioned curve illustrates the 

capability of the method to foresee whether a phenomenon happens or not [55]. In this study, ROC 

and AUC values were plotted and calculated using SPSS 20. For calculating ROC, a dataset including 

validations spring locations and non-spring locations were used. For ROC analysis, proportion of the 

springs and non-springs need to be determined. The researchers are arguing about the best proportion 

of presence and absence to use for validation process which is called cutoff value [56]. A cutoff of 0.5 

is used when springs and non-springs have the same number in the validation step [56]. Lombardo et 

al. [57] suggested a balance proportion, while Heckman et al. [58] suggested an imbalance proportion 

relating the cutoff to the data. In fact, the selection of the proportion between spring and non-spring 

cases extremely impacts any classification algorithm. Considering the literature review and suggestion 

of Lombardo et al. [57], a validation dataset consisting of 46 springs and 46 non-springs with the same 

size as other layers (i.e. 30 m) was selected. In BRT which determines the probability of spring 

occurrence, a value greater than 0.5 shows high potential of the groundwater, while in frequency ratio, 

a high value of FR shows higher potential of the groundwater. This needs to be mentioned that non 

spring locations were determined by Hawth’s tools extension in ArcGIS 9.3 based on a random 

algorithm. The results of this curve are represented in Figure 4. Based on the results, BRT had AUC of 

ROC value of 87.2%, while it was seen that FR had AUC of ROC value of 83.2% which shows higher 

capability of the BRT model than FR in this research. 
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Figure 4. Receiver operating characteristics (ROC) curve and area under curve calculated for 

FR and BRT models; a higher area under curve shows better performance of the model. 

4. Results and discussion 

The results of multicollinearity are presented in Table 2. According to the results, it can be seen 

that VIF values are less than 10 and tolerance values are greater than 0.1; thus, it can be evident that 

there is no multicollinearity problem in this study. 

Table 2. Multi-collinearity analysis for selecting appropriate GCFs for the modelling process. 

GCFs 
Collinearity statistics 

Tolerance Variance inflation factor (VIF) 

Altitude 0.517 1.934 

Slope aspect 0.844 1.185 

Fault density 0.326 3.063 

Distance from faults 0.362 2.761 

Land use 0.753 1.328 

Lithology 0.705 1.418 

LS 0.427 2.341 

Plan curvature 0.609 1.641 

Profile curvature 0.743 1.346 

River density 0.453 2.209 

Distance from rivers 0.452 2.213 

Slope angle 0.356 2.811 

TWI 0.392 2.552 
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Table 3 displays the result of the frequency ratio for different factors employed as input. A 

higher FR, in this case, shows higher probability of spring occurrence and groundwater 

potentiality [4,47]. Results implied that slope degree class (5–15) has a high FR value, slope 

aspect classes (east, and south) have the highest values, altitude class (1,800–2,200) has the 

highest values of 1.25, plan curvature class (concave) had the highest value of 1.34, profile 

curvature class (<-0.001) showed the highest value of 1.45, slope length class (>60) have the highest 

value of 1.49, TWI class (>12) has the highest value of 2.64, distance from rivers class (100–200) 

has the highest value of 2.56, distance from faults class (250–500, and <250) have the highest values 

of 1.68, and 1.67, respectively, river density class (<0.31) has the highest value of 1.59, fault density 

class (8.37–15.70) has the highest value of 1.31, land use class (rangeland) has the highest value 1.17, 

and lithology class (6 and 8) have the highest values of 11.45, and 6.11, respectively. Overall, the 

results of the FR model exhibit a relatively reverse relationship between spring occurrence and 

groundwater conditioning factors such as altitude and river density in the study area. Lower altitudes 

include lower slope areas with more developed drainage system which could be a reason for the 

observed reverse relationship between altitude and spring occurrence. In the respect of river density, 

higher river densities show higher concentration of the water flow and subsequently higher amount 

of infiltration. On the other hand, a direct relationship was seen between TWI and groundwater 

potentiality. TWI shows the water intent to gather at any point of the watershed, therefore a higher 

TWI could be referred to a higher amount of infiltration. The findings of this study also showed a 

reverse relationship between distance from faults and spring occurrence which could be the result of 

the influence of the faults on the fracture springs. In the GPM produced by FR, classes range and 

area percentage of each class are shown in Figure 5a and Table 5. According to Table 5, low, 

moderate, high, and very high classes cover 30.40, 19.44, 19.17, and 0.98 % of the study region, 

respectively. 

Table 3. Spatial relationship between each conditioning factor and spring locations using 

frequency ratio (FR) model considering number of pixels, percentage of pixels, number of 

springs, and percent of the springs. 

Conditioning 

factor and class 

No. of 

Pixels 
% of Pixels 

No. of 

Springs 
% of Springs 

Frequency 

Ratio (FR) 

Slope Degree 

0-5 313126 22.22 23 21.10 0.95 

5-15 536896 38.10 61 55.96 1.47 

15-30 453814 32.20 21 19.27 0.60 

>30 105306 7.47 4 3.67 0.49 

Slope aspect 

Flat 772 0.05 0 0.00 0.00 

North 223581 15.87 15 13.76 0.87 

Northeast 226364 16.06 15 13.76 0.86 
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East 229760 16.30 24 22.02 1.35 

Southeast 198182 14.06 15 13.76 0.98 

South 144804 10.28 14 12.84 1.25 

Southwest 92496 6.56 4 3.67 0.56 

West 114300 8.11 7 6.42 0.79 

Northwest 178883 12.69 15 13.76 1.08 

Altitude (m) 

<1400 110085 7.81 1 0.92 0.12 

1400-1800 709457 50.35 60 55.05 1.09 

1800-2200 354494 25.16 34 31.19 1.24 

2200-2400 182685 12.96 11 10.09 0.78 

>2400 52421 3.72 3 2.75 0.74 

Plan curvature (100/m) 

Concave 451969 32.07 47 43.12 1.34 

Flat 542376 38.49 48 44.04 1.14 

Convex 414797 29.44 14 12.84 0.44 

Profile curvature (100\m) 

< ( −0.001) 639818 45.40 72 66.06 1.45 

(−0.001)–( −0.001) 203673 14.45 15 13.76 0.95 

> (0.001) 565651 40.14 22 20.18 0.50 

Slope length (LS) (m) 

0-20 537886 38.17 26 23.85 0.62 

20-40 266643 18.92 23 21.10 1.12 

40-60 188324 13.36 12 11.01 0.82 

>60 416289 29.54 48 44.04 1.49 

Topographic wetness index (TWI) 

<8 71347 5.06 2 1.83 0.36 

8_12 1137227 80.70 66 60.55 0.75 

>12 200568 14.23 41 37.61 2.64 

Distance from rivers (m) 

<100 76011 5.39 10 9.17 1.70 

100–200 65759 4.67 13 11.93 2.56 

200–300 72512 5.15 9 8.26 1.60 

300–400 62611 4.44 3 2.75 0.62 

>400 1132249 80.35 74 67.89 0.84 

Distance from faults (m) 

<250 94430 6.70 12 11.01 1.64 

250–500 92160 6.54 12 11.01 1.68 

500–750 90281 6.41 3 2.75 0.43 

75–1000 90736 6.44 2 1.83 0.28 

>1000 1041535 73.91 80 73.39 0.99 
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River density (Km/Km
2
) 

<0.31 300817 21.35 37 33.94 1.59 

0.31–0.78 466377 33.10 39 35.78 1.08 

0.78–1.27 438029 31.08 22 20.18 0.65 

1.27–2.51 203919 14.47 11 10.09 0.70 

Fault density (Km/Km
2
) 

<2.72 377803 26.81 29 26.61 0.99 

2.72–8.37 639444 45.38 44 40.37 0.89 

8.37–15.70 216981 15.40 22 20.18 1.31 

15.70–26.80 174914 12.41 14 12.84 1.03 

Land use 

Agriculture 91627 6.50 0 0.00 0.00 

Orchard 325287 23.08 19 17.43 0.76 

Rangeland 990485 70.29 90 82.57 1.17 

Residential area 1743 0.12 0 0.00 0.00 

Lithology 

Group1 451 0.03 0 0.00 0.00 

Group2 1058 0.08 0 0.00 0.00 

Group3 132749 9.42 2 1.83 0.19 

Group4 32272 2.29 1 0.92 0.40 

Group5 16504 1.17 0 0.00 0.00 

Group6 10164 0.72 9 8.26 11.45 

Group7 6740 0.48 0 0.00 0.00 

Group8 12703 0.90 6 5.50 6.11 

Group9 72799 5.17 11 10.09 1.95 

Group10 64056 4.55 8 7.34 1.61 

Group11 43328 3.07 1 0.92 0.30 

Group12 846210 60.05 65 59.63 0.99 

Group13 170108 12.07 6 5.50 0.46 
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Figure 5. GPMs produced by (a) FR and (b) BRT models classified into four classes of low, 

moderate, high, and very high, and distribution of the validation springs in different classes. 

The results of the BRT model showed that the final BRT model included number of trees 

(Boosting iterations) of 500, interaction depth of 5, and shrinkage of 0.005 (Figure 6). The final 

BRT model had accuracy and kappa values of 0.73, and 0.47, respectively. In addition, the 

importance of the conditioning factors was determined using BRT model (Table 4). The results of 

BRT model showed that TWI, and altitude were the most important factors, while aspect and plan 

curvature had the lowest importance in groundwater potential modelling. Also, it was seen that 

lithology had not any effect on the modelling process in the current study. Figure 5b shows the 

final GPM produced by BRT model indicating that low, moderate, high, and very high classes 

cover 36.83, 29.57, 19.79, and 13.81 % of the study region, respectively (Table 5). 

The findings of this study suggest that BRT and FR methods are appropriate tools for 

groundwater assessment. BRT had better performance than FR model, but their AUC of ROC 

values were both more than 80% which shows their acceptable performance in groundwater 

potential mapping. The BRT as a model that uses regression and gradient boosting algorithms [59] 

have some advantages and disadvantages. BRT is capable to select the conditioning factors, i t can 

identify the interactions, and it is capable to fit an accurate function for classification [47]. In 

addition, one point which makes the BRT models robust is that it can remove predictor variable 

which have large number of missing values [60]. However, there are some disadvantage in the 

BRT model. For example, interpretation of the BRT model is difficult, and computation of the 



109 

AIMS Geosciences  Volume 3, Issue 1, 91-115 

model can take a long time [60]. The results of the FR model showed that there is a relatively 

reverse relationship between spring occurrence and groundwater conditioning factors such as 

altitude and river density in the study area. On the other hand, a direct relationship was seen 

between TWI and groundwater potentiality. Moreover, this research attempted to define the 

importance of different groundwater conditioning factors in groundwater modelling. According to 

the results of this study, TWI was the most important factor, followed by altitude, and distance 

from rivers. On the other hand, aspect, and plan curvature were seen to be the least important 

factors. In addition, the results showed that lithology had not any effect on groundwater modelling 

using the BRT model. Naghibi and Pourghasemi [12] reported that altitude, distance from faults, 

SPI, and fault density represented the highest contribution to groundwater potential assessment. In 

another research, Naghibi et al [17] stated that altitude, slope, plan curvature, and profile 

curvature were the most important influencing factors. Comparing the results of the current 

research and the two above mentioned studies, it can be seen that only altitude was seen as an 

important factor, while other factors have different ranks and importance in different studies. This 

fact can be related to different hydro-geological, climatic, and topographical features of the 

watersheds. Furthermore, different algorithms and techniques employed in the implemented 

models could lead to these variations. 

Table 4. Importance of the conditioning factors on groundwater potentiality using BRT model. 

Factor Importance 

TWI 100 

Altitude 89.65 

Distance from rivers 48.70 

Rivers density 28.85 

Distance from faults 18.21 

Faults density 16.11 

Slope degree 12.57 

Profile curvature 11.70 

LS 9.61 

Land use 7.51 

Plan curvature 5.19 

Aspect 1.16 

Lithology 0 
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Table 5. The distribution of the spring potential values and areas with respect to  

the groundwater occurrence potential zones produced by FR and BRT models. 

Class/Model FR BRT 

Range Area (%) Range Area (%) 

Low 6.72–12.02 30.40 0–0.25 36.83 

Moderate 12.02–14.18 19.44 0.25–0.43 29.57 

High 14.18–19.30 19.17 0.43–0.64 19.79 

Very high 19.30–29.73 0.98 >0.64 13.81 

 

Figure 6. The results of the BRT model training for selecting its best parameters of 

shrinkage, interaction depth, and boosting iterations for applying the final model.  

5. Conclusion 

In order to obtain the objectives of this study, at first, a dataset of spring locations and 

groundwater conditioning factors was provided. Springs were classified into two groups of training 

and validation and groundwater conditioning factors are slope degree, slope aspect, altitude, plan 
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curvature, profile curvature, slope length, topographic wetness index, distance from river, distance 

from fault, river density, fault density, land use, and lithology. Utilizing the training springs and 

groundwater conditioning factors, BRT and FR models were applied and GPMs were produced. At 

last, ROC and AUC were employed to appraise the capability of the methods in groundwater 

modelling. The results of this research showed that BRT and FR models are good tools for 

groundwater assessment. BRT had better performance than FR model, but their AUC of ROC values 

were both more than 80% which shows their acceptable performance. The results also showed that 

TWI was the most important factor, followed by altitude, and distance from rivers, while aspect, and 

plan curvature factors were seen to be the least important factors. In addition, the results showed that 

lithology had not any effect on groundwater modelling using the BRT model. The methodology 

produced in this study could be used for groundwater exploitation plans to decrease the costs and 

time needed for these projects in watersheds having similar conditions. 
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