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Abstract: Different geophysical data sets such as receiver functions, surface wave dispersion mea-
surements, and first arrival travel times, provide complementary information about the Earth structure.
To utilize all this information, it is desirable to perform a joint inversion, i.e., to use all these datasets
when determining the Earth structure. In the ideal case, when we know the variance of each measure-
ment, we can use the usual Least Squares approach to solve the joint inversion problem. In practice, we
only have an approximate knowledge of these variances. As a result, if a geophysical feature appears
in a solution corresponding to these approximate values of variances, there is no guarantee that this
feature will still be visible if we use the actual (somewhat different) variances.
To make the joint inversion process more robust, it is therefore desirable to repeatedly solve the joint in-
version problem with different possible combinations of variances. From the mathematical viewpoint,
such solutions form a Pareto front of the corresponding multi-objective optimization problem.
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1. Introduction

In this paper, we describe how to combine multiple geophysical datasets for the purpose of assisting
in better determining physical properties of the Earth structure. The need for combining different
datasets comes from the fact that different datasets provide complementary information about the Earth
structure. By jointly inverting multiple geophysical datasets, we combine these complementary pieces
of information and thus, we get a more accurate description of the Earth structure; see, e.g., (Vozoff and
Jupp 1975, Julia et al. 2000, Shen et al. 2003, Colombo and De Stefano 2007, Maceira and Ammon
2009, Shearer 2009, Stein and Wysession 2003).

Specifically, we combine receiver functions, surface wave dispersion measurements, and P-wave
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travel times. The need to use different datasets comes from the fact that there are two types of seis-
mic waves that travel through the Earth: the body waves and the surface waves. Both types of waves
provide different sensitivities and information about the Earth structure, since they are sampling, cor-
respondingly, the interior and surface of the Earth. The information collected from the body waves
travels deeper into the Earth and translates into teleseismic P-wave receiver functions. In order to ob-
tain information about the Earth surface, surface waves are analyzed, in our case, by means of surface
waves dispersion. Receiver functions resolve discontinuities (impedance contrasts) in seismic veloc-
ities, and provide good measurement of crustal thickness, without providing a good average of shear
wave velocity. On the other hand, we have surface (Love and Rayleigh) waves whose energy is con-
centrated near the Earth’s surface, and provide good average of absolute shear wave velocity, without a
good shear-wave velocity contrasts in layered structures (Julia et al. 2000, Maceira and Ammon 2009,
Shearer 2009, Stein and Wysession 2003, Cho et al. 2007, Obrebski et al. 2010). Therefore these
two data sets provide complementary information about the Earth structure. Seismic first-arrival travel
times are complementary to the other datasets because the travel time enable us to recover the causative
slowness of the Earth structure (Lees and Vandecar 1991).

For each dataset, we usually know the relative variance (uncertainty of data) of different measure-
ment results from this dataset, and thus, we can use the Least Squares method to find the corresponding
Earth model. For multiple datasets, we can sometimes still use the Least Squares Method to process all
these datasets – provided that we know the variances of different measurements from different datasets.
In practice, however, we usually only have an approximate knowledge of these variances. So, instead
of producing a single model, several models corresponding to different possible variances are gener-
ated. If all these models – corresponding to different possible values of variances – contain a certain
geophysical feature, then we can be certain that this feature is also present in the actual Earth model
(which corresponds to the actual (unknown) values of the variances).

From the mathematical viewpoint, the task of computing all these models is equivalent to comput-
ing the Pareto front of the corresponding Multi-Objective Optimization problem (Kozlovskaya 2000),
where different objective functions correspond to different datasets.

In addition to producing all these models, it is also desirable to produce a ”typical” model, so that
we only look for features which are present on this typical model. In this paper, we use methods
for selecting such a typical model as described in (Sambridge 1999a, Sambridge 1999b, Kozlovskaya
2000).

This paper has the following structure. In Section 2, we describe, in detail, the need for multi-
objective optimization. In Section 3, we show how to solve the corresponding optimization problems.
In Section 4, we briefly describe the corresponding geophysical datasets. The results of applying
multi-objective optimization technique to these datasets are shown and discussed in Section 5. Finally,
Section 6 contains conclusions.

2. Need for Multi-Objective Optimization

2.1. Inverse Problems: Brief Reminder

In many real-life situations, we are interested in the values of the quantities x1, x2, . . . , which
are difficult (or even impossible) to measure directly. For example, in geophysics, one of our main
objectives is to find the shear velocities xi at different 3-D points i (i.e., at different depths and at
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different geographic locations). To find these values, we measure easier-to-measure quantities y1, y2,
etc., which are related to x = (x1, . . . , xn) by a known relation y = F(x), and then use the measured
quantities y = (y1, . . . , ym) to find the desired values x.

In particular, in geophysics, to find shear velocities xi, we can calculate the teleseismic receiver
functions yRF , surface wave dispersion velocities yS W , travel times yTT , etc. For each of these types of
data, if we know the velocity model x, then we can predict the Earth’s response by using the corre-
sponding (known) operator F: yRF = FRF(x), yS W = FS W(x), yTT = FTT (x), etc.

Measurements are never absolutely accurate, there is always some measurement inaccuracy, there
is always some level of noise preventing us from measuring the corresponding quantities exactly. A
usual way to estimate parameters in the presence of noise is to use the Least Squares method, i.e., to
find the values x that minimize the expression

m∑
i=1

(Fi(x) − yi)2

σ2
i

, (1)

where σi is the standard deviation of the noise (measurement inaccuracy) of the i-th measurement.
In some cases, all the available data points come from measurements of the same type, obtained

by using the same methodology and similar instrumentation. For example, we may only have travel
times, or only surface wave dispersion velocities. In such cases, it is reasonable to assume that all these
measured values have the same accuracy, i.e., that σi = const. Under this assumption, minimizing the
expression (1) is equivalent to minimizing the sum of the squares

‖F(x) − y‖2 def
=

m∑
i=1

(Fi(x) − yi)2. (2)

2.2. Need to Take Constraints into Account

Sometimes, the models x obtained by an appropriate minimization are not physically meaningful.
For example, in geophysics, some models x predict higher velocities in the crust and lower veloci-
ties in the mantle, contrary to known geophysical models. In other cases, when we expect a smooth
dependence on a signal on time, the reconstructed signal x can exhibit abrupt non-physical changes.

To avoid such non-physical solutions, it is desirable to explicitly take into account the corresponding
constraints. For example, in most practical problems, there are known physical bounds on the values
of the quantities xi. In particular, in geophysics, for each depth, we can approximate the lower bound
and the upper bound on possible values of shear velocity xi at this depth.

In precise terms, for every i, we know the bounds ai and bi such that ai ≤ xi ≤ bi.
Restrictions on smoothness can be described as known bounds ∆i j on the difference between the

values xi and x j for nearby points of time or at nearby spatial locations: −∆ ≤ xi − x j ≤ ∆i j.
Under the corresponding constraints, the optimization problem (2) takes the form

min
x
‖F(x) − y‖2

s.t. g(x) ≥ 0. (3)

where g(x) is a vector consisting of the corresponding constraints. For example, to describe bounds ai

and bi on the values xi, we use constraints xi − ai ≥ 0 and bi − xi ≥ 0.
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Constraints corresponding to smoothness can also be expressed in the form g(x) ≥ 0, with the
corresponding components of the vector g(x) having the form ∆i j − (xi − x j) and (xi − x j) − (−∆i j).

Comment. Traditionally, researchers avoid non-physical non-smooth velocity models by adding a
regularization term λ‖Lx‖2 to the minimized function; see, e.g., (Tikhonov and Arsenin 1977). The
problem with this term is that it is not clear how to select λ, and different values of λ lead to different
solutions; see, e.g., (Hansen 2010, Vogel 2002). Because of this problem, in this paper, instead of using
regularization, we explicitly formulate constraints that need to be satisfied. For example, the desired
smoothness is described as a bound on the differences xi − x j.

2.3. Joint Inversion: Idealized Case

As noted earlier, measurements of different type usually provide complementary information and it
is, therefore, beneficial to use measurement results of all the types.

When we use measurements of different types t, t′, etc., then while it is reasonable to assume that all
the measurements i of the same type t have the same standard deviation σi = σt, standard deviations of
measurements of different types are, in general, different: σt , σt′ . Let us first consider the idealized
case, when we assume that we know the accuracy σt of measurements of type t.

In this case, we can still use the Least Squares expression (1) to find the desired model x. By
grouping together measurements of different type, we can rewrite the expression (1) in the following
form:

m∑
i=1

(Fi(x) − yi)2

σ2
i

=

T∑
t=1

∑
i∈t

(Fi(x) − yi)2

(σt)2 =

T∑
t=1

1
(σt)2 ·

∑
i∈t

(Fi(x) − yi)2

 (4)

where T is the total number of different types of measurements, and the notation i ∈ t indicates that the
i-th measurement is of type t.

We can rewrite this expression as
T∑

t=1

c2
t · ‖F

t(x) − yt‖2, (5)

where ct
def
=

1
σt , yt is the list (tuple) consisting of all measurements of type t, and F t(x) is the list

consisting of all the corresponding values Fi(x).
To find the desired solution x, we must minimize this expression under the constraint g(x) ≥ 0.

2.4. Reformulation of the Problem

The more measurements of a given type t we have, the larger the contribution of these measurements

to the solution. In general, all the terms
(Fi(x) − yi)2

σ2
i

in the sum (4) are approximately of the same type,

so we can conclude that the joint contribution of all the measurements of type t is proportional to the
number mt of all measurement results of this type.

To compare the importance of measurements of different types, it is useful to define relative impor-
tance as a ratio of the importance mt of this type to the overall value

∑
t′

mt′ , i.e., as ηt
def
=

mt∑
t′

mt′
. These

influence parameters ηt are non-negative numbers that add up to 1.
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To better understand the minimized expression (5), it makes sense to show the explicit dependence
on the influence parameters. This can be done, e.g., by making sure that each term in the new formula
is proportional to ηt; this way we will see that the larger the influence parameter, the larger the influence
of this term. To do that, we replace each term c2

t with ηt · k2
t . From the condition that c2

t = ηt · k2
t , we

conclude that k2
t =

c2
t

ηt
. Since ct =

1
σt and ηt =

mt∑
t′

mt′
, we have

kt =

√
c2

t

ηt
=

√
1

(σt)2 · mt
·

√∑
t′

mt′ . (6)

Thus, each term c2
t = ηt · k2

t has the form c2
t = w2

t ·C, where wt
def
=

√
ηt

(σt)2 · mt
and C def

=
∑
t′

mt′ . So, the

minimized expression (5) takes the form

C ·
T∑

t=1

w2
t · ‖F

t(x) − yt‖2. (7)

The location of the minimum does not change if we divide all the values of a function by the same
positive coefficient C. Therefore, minimizing the expression (7) is equivalent to minimizing a simpler
expression

T∑
t=1

w2
t · ‖F

t(x) − yt‖2. (8)

2.5. General Case: A Description

In the previous sections, we considered the ideal case, when we know the exact variance σ2
i of each

measurement i. In this case, we can use the usual Least Squares approach to solve the joint inversion
problem.

In practice, we only have an approximate knowledge of these variances. For example, for each
measurement type t, we only know an approximate value σ̃ t of the corresponding standard deviation
σt.

A traditional approach to such situations is to use these approximate values σ̃ t and solve the cor-
responding optimization problem. The problem with this approach is that, if a geophysical features
appears in the solution corresponding to these approximate values of variances, there is no guarantee
that this feature will still be visible if we use the actual (somewhat different) variances.

It is desirable to separate artifacts that are due to the specific choice of variances from the phenom-
ena that occur no matter what variances we use. For this purpose, we wish to repeatedly solve the joint
inversion problem with different possible combinations of variances. If a certain geological feature is
visible in all these solutions, then we can be confident that this feature is also present in the actual
solution corresponding to the actual (unknown) values of the variances – i.e., that it is the feature of
the actual Earth structure.
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2.6. General Case: Analysis of the Problem

In the previous sections, we described the need to minimize the expression

T∑
t=1

1
(σt)2 · ‖F

t(x) − yt‖2 (9)

under the condition g(x) ≥ 0, where σt are the known standard deviations. We showed that this

equivalent to minimizing the expression (8), where wt =

√
ηt

(σt)2 · mt
and ηt =

mt∑
t′

mt′
.

In situations when we only know an approximate value σ̃ t, the traditional approach would be to use
this approximate value, i.e., to minimize the expression

T∑
t=1

1

(σ̃ t)2 · ‖F
t(x) − yt‖2, (10)

or, equivalently, to minimize the expression (8), in which

wt =

√
ηt

(σ̃ t)2
· mt

, (11)

with the same values ηt =
mt∑

t′
mt′

of the influence parameters.

As we have mentioned, a more appropriate approach is to minimize expressions (9) corresponding
to all possible combinations of standard deviations σt. Let us show that:

• each such constraint minimization problem can be equivalently reformulated into the form (8)
with the weights (11) if we select different values of the influence parameters ηt > 0, and that
• for each combination of influence parameters ηt > 0 with

∑
t
ηt = 1, there exist values σt > 0

for which the corresponding optimization problem (8) is equivalent to the original optimization
problem (9).

Indeed, for each combination of values σt, let us take

ηt
def
=

1
c
·

mt ·
(
σ̃ t)2

(σt)2 ,

where the normalization coefficient c is chosen as

c def
=

∑
t

mt ·
(
σ̃ t)2

(σt)2 .

In this case, ηt > 0 and
∑
t
ηt = 1. For the corresponding weights (11), we get

w2
t =

ηt

(σ̃ t)2
· mt

=
c

(σt)2 . (12)
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Thus, minimizing the expression (8) is equivalent to minimizing the expression

c ·
T∑

t=1

1
(σt)2 · ‖F

t(x) − yt‖2,

which, in its turn, is equivalent to minimizing the expression (9).
Vice versa, for each combination of weights ηt > 0 for which

∑
t
ηt = 1, we can take

σt =

√
mt

ηt ·
∑
t′

mt′
· σ̃ t. (13)

For these standard deviations σt, the expression (9) takes the form

T∑
t=1

(w′t)
2 · ‖F t(x) − yt‖, (14)

where we denoted
(w′t)

2 def
=

∑
t′

mt′ ·
ηt

(σ̃ t)2
· mt

. (15)

From the formula (11), we conclude that w2
t =

ηt

(σ̃ t)2
· mt

and thus, that the formula (15) takes the form

(w′t)
2 = C · w2

t , where C def
=

∑
t′

mt′ . Thus, the expression (14) takes an equivalent form

C ·
T∑

t=1

w2
t · ‖F

t(x) − yt‖, (16)

and the minimization of this expression is indeed equivalent to minimizing the expression (8).
The equivalence is proven.

Comment. The above analysis holds when we know the approximate values σ̃ t of the corresponding
accuracies σt, but we know no guaranteed bounds on these accuracies. In some practical situations, in
addition to the approximate values σ̃ t, we also know the bounds σt and σ t, for which σt ≤ σt ≤ σ t.
In this case, instead of all possible values ηt of the corresponding influence parameter, we only need to
consider possible values – and we can use the above formulas relating ηt with σt to transform bounds
on σt into the corresponding bounds on ηt.

2.7. General Case: Resulting Optimization Problem

So, we arrive at the following equivalent reformulation of our problem: for all possible combination
of influence factors ηt > 0 for which

∑
t
ηt = 1, we compute the weights

wt =

√
ηt

(σ̃ t)2
· mt

,
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and then minimize the expression
T∑

t=1

w2
t · ‖F

t(x) − yt‖2

under the corresponding constraints g(x) ≥ 0.
This minimization problem can be reformulated as

min
x
‖F(x) − y‖2, (17)

where

F(x) = W



F1(x)
F2(x)
. . .

F t(x)
. . .

FT (x)


∈ Rm, y = W



y1

y2

. . .

yt

. . .

yT


∈ Rn

and W = diag(wt) is a diagonal matrix whose elements will be called weights.
In particular, when we reconstruct the values of shear velocities from Receiver Functions (RF),

Surface Waves (SW), and Travel Times (TT), the corresponding minimize functional J(x) takes the
form

J = w2
RF

∥∥∥FRF(x) − yRF
∥∥∥2

+ w2
S W

∥∥∥FS W(x) − yS W
∥∥∥2

+ w2
TT

∥∥∥FTT (x) − yTT
∥∥∥2
,

i.e., equivalently, form (17), with

F(x) = W


FS W(x)
FRF(x)
FTT (x)

 ∈ Rm, y = W


yS W

yRF

yTT

 ∈ Rn

and

W = diag(wi),wi =

√
η1

(σ̃i)
2 p
, i = 1, . . . , p,wi =

√
η2

(σ̃i)
2 q
, i = p + 1, . . . , p + q,

wi =

√
1 − (η1 + η2)

(σ̃i)
2 r

i = p + q + 1, . . . , p + q + r, (18)

σ̃i is the approximate standard deviation of each point, and p, q, and r are the number of RF, SW, and
TT observations (Sosa et al. 2013).

2.8. Relation to Multi-Objective Optimization

When we have observations of only one type t, then, to find the corresponding model, we minimize
the function

∥∥∥F t(x) − yt
∥∥∥2

. Minimizing this function is equivalent to minimizing the expression

ft(x) def
=

1

(σ̃ t)2
· mt

·
∥∥∥F t(x) − yt

∥∥∥2
.
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In situations when we have observations of different type, and when we only know the approximate
values σ̃ t of the corresponding accuracies, we need to minimize expressions (8), i.e., equivalently,
expressions of the type ∑

t

ηt · ft(x). (19)

corresponding to all possible combinations ηt > 0 for which
∑
t
ηt = 1.

It is known that, under reasonable conditions, the resulting set of solutions can be described in terms
of the corresponding multi-objective optimization problem (MOP), namely, the problem of optimizing

f (x) def
= ( f1(x), f2(x), . . . , ft(x), . . . , fT (x)).

For solving multi-objective problems, a natural idea is to generate the Pareto optimal set (also known
as Pareto front), i.e., the set of all the values x for which it is not possible to improve all the criteria
fi(x). In precise terms, the Pareto optimal set P(x) is defined as

P(x) = {x ∈ Ω : @x′ ∈ Ω ( f (x′) < f (x)), (20)

where Ω is the set of all possible solutions that satisfy the corresponding constraints, and f (x′) < f (x)
means that

∀t ( ft(x′) ≤ ft(x)) &∃t ( ft(x′) < ft(x)). (21)

Under reasonable conditions, elements of the Pareto set can be obtained by finding the minima of all
the functions (19) corresponding to all possible weights ηt adding to 1, and, vice versa, each such
minimum is an element of the Pareto set P(x).

In these terms, we can say that what we want in the general case, when we only know the approxi-
mate values of the corresponding accuracies, is to find the Pareto set of the multi-objective problem in
which we minimize the criteria

ft(x) = const ·
∥∥∥F t(x) − yt

∥∥∥2

corresponding to measurements of different types t.
In particular, in our geophysical example, we want to minimize the three criteria fFR(x) = const ·

‖FRF(x) − yRF‖2, fS W(x) = const · ‖FS W(x) − yS W ||2, and fTT (x) = const · ‖FTT (x) − yTT ‖2.

2.9. How to Generate a “Typical” Solution

When we have data of several types, and we only know approximate values of the corresponding
accuracies, our recommendation is to generate solutions corresponding to all possible combinations of
actual accuracies. The number of such solutions is huge, and meaningfully analyzing all these solutions
is difficult. It is therefore desirable to select, among these solutions, a solution which is, in some sense,
typical.

The expectation is that, in general, this “typical” solution will only have features that all other
solutions have. Thus, when we look for features common for all possible solutions, a good idea is to
first analyze this typical solution, and then to check whether the features that we found on this solution
are indeed present in all other solutions as well.

In multi-objective optimization, there are several possible ways of generating such a “typical”
solution; see, e.g., (Sambridge 1999a, Sambridge 1999b, Kozlovskaya 2000). For example, once
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F=w1F1+w2F2

min(w1F1+w2F2)

solution closest to “ideal point”

set of feasible solutions

“ideal point”

Pareto set

Figure 1. Illustration of the solution set or Pareto front, which is, defined as the weights
times the perspective objective functions.

we find all solutions x corresponding to different combinations, then, for each criterion ft, we can
find the smallest value f min

t and the largest value f max
t .The smallest values form an ideal point

f min = ( f min
1 , . . . , f min

t , . . . , f min
T ). We then select a solution x which is the closest to this ideal point.

Specifically, we normalize each differences ft(x) − f min
t (x) to the interval (0,1) by dividing it by

f max
t (x) − f min

t (x), and then we minimize the corresponding normalized distance. In other terms, we
select a solution x for which the distance

d2( f min, f (x)) =

T∑
t=1

(
ft(x) − f min

t (x)
f max
t (x) − f min

t (x)

)2

(22)

is the smallest possible.

3. Solving the Corresponding Constraint Optimization Problems

In the proposed approach, we need to solve several minimization problems, corresponding to dif-
ferent combinations of the influence parameters ηt. For each such combination, we need to find the
value ‖F(x)− y‖2 under the constraint g(x) ≥ 0. Let us show how to solve the corresponding constraint
optimization problems.

3.1. Linearization

In most practical situations, we know the approximate values x1 of the corresponding quantities x,
i.e., values for which x ≈ x0. Since these values are close to each other, the difference x − x0 is small
and thus, we can expand the functions F(x) and g(x) into Taylor series in this difference and safely
ignore terms which are quadratic (or higher order), and only keep the first order Taylor approximation.
Once we solve this first-order approximation problem, we get a better approximation x1. We can use
this approximation as the basis of a new linearization and get an even more accurate approximation,
etc.
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On each of these iterations, we start with an approximate model xk, and then we use the first order
Taylor approximation of the operators F and g around xk:

F(x) ≈ F(xk) + F′(xk)∆x = F(xk) + F′(xk)(x − xk), (23)

g(x) ≈ g (xk) + ∇gT (xk)(x − xk), (24)

where F′(xk) is the matrix formed by the partial derivatives of F and ∇g is the matrix formed by the
partial derivatives of different components of g(x).

Substituting the expressions (23) and (24) in the corresponding constraint optimization problem, we
get the following linearized constraint optimization problem:

min
x

1
2
‖F′(xk)x + r(xk)‖

2

s.t. g(xk) + ∇gT (xk)(x − xk) ≥ 0, (25)

where r(xk)
def
= F(xk) − y − F′(xk)xk.

3.2. Primal Dual Interior-Point Method

To solve the linearized problem (25), we will use the Primal Dual Interior-Point method; see, e.g.,
(Sosa et al. 2013, Nocedal and Wright 2006). To use this method, we first reformulate our problem in
a standard form as follows:

min
x

1
2
‖F′(xk)x + r(xk)‖

2

s.t. g(xk) + ∇gT (xk)(x − xk) − s = 0 (26)

s ≥ 0

where components of s ∈ R2n are called slack variables.
Then we define the Lagrange function associated to problem (26) as:

l(xk, z, s,w) =
1
2
‖F′(xk)x + r(xk)‖

2
− (g(xk) + ∇gT (xk)(x − xk) − s)T z − sT w (27)

with the Lagrangian multipliers z,w ∈ R2n, (z,w) ≥ 0. For a given perturbation parameter µ > 0, the
perturbed Karush-Kuhn-Tucker (KKT) or necessary conditions are given by:

F̂(xk, z, s,w) =


F′(xk)T (F′(xk)x + r(xk)) − ∇gT (xk)z

g(xk) + ∇gT (xk)(x − xk) − s
z − w

S We − µe

 = 0, (28)

where
F̂ : Rn+2n+2n −→ Rn+2n+2n S = diag(s1, . . . , s2n), W = diag(w1, . . . ,w2n) (29)

and e = (1, . . . , 1) ∈ R2n.
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The formula (28) implies, in particular, that z − w = 0, and thus z = w. Hence the perturbed KKT
system (28) is rewritten as

F̂(x, z, s,w) =


F′(xk)T (F′(xk)x + r(xk)) − ∇gT (xk)z

g(xk) − s
S Ze − µe

 = 0; (30)

thus the Jacobian associated to (30) is then computed as

F′


x
z
s

 =


F′(xk)T F′(xk) −∇gT (xk) 0nxn

∇g(xk) 0nxm −Imxm

0mxn S Z



∆x
∆z
∆s

 = −


∇xl(x, z, s)
g(xk) − s
S Ze − µe


The system (31) can be simplified further by eliminating the third block of equations as follows.

From the last block of equation in (31), we have

S ∆z + Z∆s = −S Ze + µe,

therefore
Z∆s = −S Ze + µe − S ∆z

∆s = −s + µZ−1e − Z−1S ∆z,

and then

∇gT (xk)∆x − ∆s = ∇gT (xk)∆x + s − µZ−1e + Z−1e + Z−1S ∆z = −∇gT (xk)x + s

∇gT (xk)∆x + Z−1S ∆z = µZ−1e − g(xk)

which allow us to write the reduced linear system[
−F′(xk)T F′(xk) ∇gT (xk)
∇g(xk) Z−1S

] [
∆x
∆z

]
=

[
∇xl(x, z, s)

Z−1µe − g(xk)

]
4. Geophysical Datasets

4.1. Receiver Functions

A receiver function is simply a time series representation of the Earth’s response relative to an
incoming P-wave propagating near a recording station. A representation of a receiver function is
indicated in figure 2, with different incoming P-to-S converted waves and a time series representation
of the Earth response underneath a seismic station. Positive or negative spike amplitudes represent
positive or negative seismic velocity contrast. A receiver function technique can model the structure
of the earth by using seismograms from three component (vertical, north, and east) seismic stations
from teleseismic earthquakes. The receiver function technique takes advantage of the fact that part of
the energy of seismic P waves is converted into S waves at discontinuities along the ray path (Bashir
et al. 2011, Dzierma et al. 2011), and has been utilized in many studies; see, e.g., (Wilson et al. 2005,
Wilson and Aster 2005, Bailey et al. 2012, Hansen et al. 2013). For data collection and processing,
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Figure 2. (Left) Illustration of a simplified ray diagram, which identifies the Ps, con-
verted phases, which comprise the receiver function for a single layer. (Right) Vertical
and radial seismograms and the corresponding receiver function resulting from the de-
convolution of the vertical component from the radial component.

we use the Standing Order for Data (SOD) (Owens et al. 2004, Bailey et al. 2012) to request three
component seismograms for P-wave arrivals and for events with a minimum magnitude 5.5, depth in
the range of 1–600 km, and an epicentral distance ranging from 30◦ to 95◦; see, e.g., (Bailey et al.
2012).

Receiver functions were first applied in the late 1970s at solitary stations to obtain local one-
dimensional structural estimates (Langston 1981). Since then, there was an increase in the number of
stations deployed seismic experiments. It is now possible to generate detailed two or three-dimensional
images of structures, such as the Moho and upper mantle transition zone discontinuities near 410 km
and 670 km depth; see, e.g., (Wilson 2003).

Receiver functions are derived using deconvolution (Liggoria and Ammon 1991), a mathemati-
cal method used to filter a signal and isolate the superimposed harmonic waves. Specially, receiver
functions are calculated by deconvolving the vertical component of a seismogram from the radial
component, resulting in the identification of converted phases where there is an impedance contrast
(crustal-mantle boundary) (Shearer, 2009).

4.2. Surface Wave Dispersion

Surface waves in general differ from body waves in many respects: they travel slower, lower fre-
quencies, largest amplitudes, and their velocities are in fact dependent on frequency (Shearer 2009).
The surface wave velocities vary with respect to depth being sampled by each period of the surface
wave. The sampling by each period of the surface wave is known as dispersion (Shearer 2009). Valu-
able information can be inferred by measuring surface wave dispersion because it will allow you to
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Figure 3. Example of surface wave Rayleigh waveforms for all stations used for this re-
search. Dashed red line illustrates the window of where the phase curve passes through
the stations.

be able to better understand the Earth’s crustal and mantle velocity structure (Laske Masters and Reif
2000, Obrebski et al. 2010, Sosa et al. 2013). In particular, Love and Rayleigh wave group dispersion
observations generally account for average velocity structure as a function of depth (Julia et al. 2000,
Maceira and Ammon 2009). The dispersion curves for surface waves are extracted from station records
of three component seismograms for different frequencies and distances, by using reduction algorithms
that rely on spectral analysis techniques. The important fact here is that, based on Rayleigh’s principle,
surface wave velocities are more sensitive to S wave velocity, although they are also theoretically sen-
sitive to P wave velocity and density. Figure 4 provides an example of teleseismic Rayleigh waveforms
for the 12/01/2010 event. The Rayleigh’s principle states that the phase velocity perturbation, denoted

by
δc
c

, can be viewed as a function of (Kα,Kβ,Kρ), the sensitivity coefficients for P wave velocity, S
wave velocity and density, respectively, i.e.,

δc(T )
c(T )

=

∫ (
Kα

δα(z)
α(z)

+ Kβ

δβ(z)
β(z)

+ Kρ

δρ(z)
ρ(z)

)
(31)

where T is the period and z is the depth. By investigating sensitivity function variation in depth, the
relative contribution of each property to dispersion can be shown. This subject is beyond the scope of
our work, thus we just mention here that such analysis allows geophysicists to show that the relative
contribution of P wave velocity, and density to dispersion is smaller than the one for S wave velocity
(Julia et al. 2000). That is, surface wave dispersion is much more sensitive with respect to S wave
velocity, and therefore we have established the dependence of this data set on shear wave velocity.

For this research, a Matlab-based software package – that automatically downloads, analyzes, and
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Figure 4. Surface wave phase map (Rayleigh) from USArray data used for this research.
Red colors indicate low phase velocities and blue colors as high phase velocities for the
Texas region.

measures phase as well as amplitude of surface waves to generate surface-wave tomography maps
– was used to construct figure 5 describing tomographic images of the Texas region. The Automated
Surface-Wave Phase-Velocity Measuring System (ASWMS) was the matlab package developed by (Jin
and Gaherty, 2014) that developed this automated cross-correlation based method to generate surface-
wave tomography of the entire U.S. The ASWMS tool was used to see what geological signatures that
we can resolve using surface wave phase data.

4.3. Delay Travel Times

For this research, we used TauP toolkit (τ(p)) and Antelope (BRTTO) database program to acquire
the delayed travel times from the Array Network Facility (ANF) seismic catalog. Figure 6, shows
an example of some of the delayed travel time data used for this study that were acquired from the
ANF seismic catalog. The TauP toolkit program that we used to acquire the delayed travel times, uses
the spherical Earth geometry into the computation. The TauP toolkit uses the relation of Snell’s law,

AIMS Geosciences Volume 2, Issue 1, 63–87



78

Figure 5. Example plot shows P-delay times for different USArray Stations that were
used for this research from a earthquake during 09/15/2011. (Second) plot shows the
difference between the predicted and measured travel times and illustrates the P-wave
delay.

according to which, for each ray k, the ratio
sin ik j

xk j
=

∆Tk

lk j
remains constant along the k-th ray, i.e.,

does not depend on j. This ratio is known as the constant ray parameter, and is usually denoted by pk.
We use this law to compute delayed travel times ∆Tk (i.e., components of the vector FTT (x)):

∆Tk =

n∑
j=0

h j

xk j cos(ik j)
, (32)

where h j is the thickness of the j-th layer.
By using the Snell’s law as mentioned earlier, the incidence angle ik j can be rewritten as:

ik j = sin−1(pkx j) (33)

Equation (32) can be rewritten as

∆Tk =

n∑
j=0

h j

xk j cos(ik j)
=

n∑
j=0

h j(xk j cos(sin−1(pkxk j)))−1 (34)

Using Snell’s law and rewriting equation (32), we obtained the partial derivatives which are needed
to use the primal dual interior point method mentioned earlier:

∂∆Tk

∂xk j
=

−h j

x2
k j cos(sin−1(pkxk j))2

cos(sin−1(pkxk j)) −
(pkxk j)2√

1 − (pkxk j)2

 (35)
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Figure 6. (Left) Single data inversion of receiver functions and synthetic rift model.
(Right) joint inversion using receiver functions and travel times to obtain a better esti-
mate of the rift model (target model).

Table 1. Relative RMS and residuals errors comparison for MOP joint inversion of
surface waves and receiver function when travel times are added.

MOP Joint Inversion RMS Residual Error
RF & SW 0.00878717 0.00284017

RF & SW & TT 0.00739198 0.00030573

When ray paths between the source and the receiver are short enough, Earth’s curvature is known
to be negligible, which provides us with the importance of utilizing equation (35) for our computation
of partial derivatives of T .

5. Results and Discussion

Based on the joint inversion results using multiple geophysical datasets, the compatiability of the
datasets provides better estimates of the target model based on numerical experiments with the datasets
and the synthetic rift model. In order to illustrate how receiver functions and surface wave dispersion
velocities complement each other, we present in figures 6-8 the inversion results for the data sets created
from the rift velocity model.

In figure 6, the joint inversion of both RFs and TT data sets gives a better approximation to the
target model as expected based on the compatiablity between the two datasets. The single inversion of
receiver functions (left top) identifies the velocity interfaces (fig 6), while single inversion of surface
waves (fig 7) gives information on the average velocities at different depths. For figure 7, the joint
inversion of SWs and TT also provides a better approximation of the target model indicated in red.

The joint inversion of RFs, SWs, and TT provides more accuracy and compatiability when perform-
ing joint inversion of the three geophysical datasets as shown in figure 8.

A synthetic rift velocity model that we developed was used as our initial test for the MOP joint
inversion scheme. For the MOP joint inversion scheme, a comparison was done with the rift velocity
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Figure 7. (Left) Single data inversion of surface wave dispersion measurements and syn-
thetic rift model. (Right) joint inversion using surface wave dispersion measurements
and travel times to obtain a better estimate of the rift model (target model).

Figure 8. Joint inversion using receiver functions, surface wave dispersion measure-
ments, and travel times to obtain a better estimate of the rift model (target model).
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Figure 9. 1-D joint inversion results for a synthetic 1-D orogen velocity model. The
target velocity model in purple is the rift velocity model. The black color represents the
initial orogen model. The other colors represent the improvement of the 1-D shear wave
velocity models matching with the target model (purple).

model and the initial velocity test model. The synthetic rift model was the best velocity model used
for this joint inversion scheme. Different synthetic Earth velocity models were used but overall, the
rift model was the best. Numerous test were performed to test the compatiablity and complementary
nature of the multiple geophysical datasets based from the results in figures 9-11. The algorithm
used to perform the joint inversion of the multiple geophysical datasets using the multi-objective joint
inversion scheme was written in FORTRAN 77 and coupled with a C code that performs the Multi-
Objective Optimization method, based on the work of [25].

6. Conclusion

We apply an inversion scheme that expands a joint-inversion constraint least-squares (LSQ) algo-
rithm used to characterize a one-dimensional Earth’s structure. We utilize the Multi-Objective Opti-
mization technique to perform joint inversion of multiple data sets (receiver functions, surface wave
dispersion, and travel times) to develop 3-D shear wave models like in figure 12 (e.g., Thompson et
al., submitted for publication). By jointly inverting these three geophysical data sets, we improve the
model’s accuracy. In the ideal situation when we know the relative accuracy of different datasets, we
can formulate the joint inversion problem as a (single) least-square optimization problem. In prac-
tice, however, we only know approximate values of these accuracies; so, for inversion, we use the
Multi-Objective Optimization Problem (MOP) approach. Different combination of weights were in-
corporated in the MOP inversion scheme in order to map the Pareto Set (Solution Space) corresponding
to receiver functions, surface wave dispersion measurements, and travel times. From the Pareto Set,
the MOP technique performs a direct search method that selects the most feasible solution from a set of
alternative solutions from the model space (Sambridge 1999a, Sambridge 1999b, Kozlovskaya 2000).
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Figure 10. 1-D joint inversion results for a synthetic 1-D continental velocity model. The
target velocity model in purple is the rift velocity model. The black color represents the
initial continental model. The other colors represent the improvement of the 1-D shear
wave velocity models matching with the target model (purple).
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Figure 11. 1-D joint inversion results for a synthetic 1-D archean velocity model. The
target velocity model in purple is the rift velocity model. The black color represents
the initial archean model. The other colors represent the improvement of the 1-D shear
wave velocity models matching with the target model (purple).
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Figure 12. 3-D shear wave model of the Texas region from the surface to 300km depth.
The 3-D shear wave model is the final product obtain by the MOP joint inversion scheme
using the three geophysical datasets: receiver functions, surface wave dispersion mea-
surements, & travel times. Red colors represent low shear wave velocities (4 km/s) and
blue colors represent high shear wave velocities (5 km/s). DB: Delaware Basin, MB:
Midland Basin, GE: Grensville Orogeny, SOA: South Oklahoma Aulcagen, LU: Llano
Uplift, BFZ: Balcones Fault Zone.
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For future work, we plan to incorporate gravity into our inversion scheme to obtain a more constrained
Earth structure and to better determine physical properties of the Earth structure.
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Appendix

Joint Inversion Algorithm (Two Datasets)

1. Given an initial velocity model (Vs)0 = x0 RF observations yRF , S W dispersion observations
yS W , and a max. number of iterations l.
2. for η = 0, 0.1, 0.2, . . . , until 1.0 do
3. Evaluate yRF ,yS W

4. for k = 0, 1, 2, . . . , until l do
5. Evaluate F(xk),F′(xk) and compute b = F(xk) − y − F′(xk)xk

6. Solve Equation (15) by using PDIP method.
7. if ‖F(xk) − y‖ ≤ ε then
8. break
9. end if
10. Go to Step 4
11. end for
12. end for

Joint Inversion Algorithm (Three Datasets)

1. Given an initial velocity model (Vs)0 = x0 RF observations yRF , S W dispersion observations
yS W , yTT and a max. number of iterations l.
2. for η = 0, 0.1, 0.2, . . . , until 1.0 do
3. Evaluate yRF ,yS W

4. for k = 0, 1, 2, . . . , until l do
5. Evaluate F(xk),F′(xk) and compute b = F(xk) − y − F′(xk)xk
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6. Solve Equation (15) by using PDIP method.
7. if ‖F(xk) − y‖ ≤ ε then
8. break
9. end if
10. Go to Step 4
11. end for
12. end for
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