
 

 

AIMS Environmental Science, 12(3): 419–434. 

DOI: 10.3934/environsci.2025019 

Received: 20 August 2024 

Revised: 06 January 2025 

Accepted: 08 May 2025 

Published: 19 May 2025 

https://www.aimspress.com/journal/environmental 

 

Research article 

QSAR study and theoretical investigation on the lethality of halogenated 

aliphatic hydrocarbons toward Aspergillus (A.) Nidulans 

Jabir H. Al-Fahemi1,*, Faten A. Aljiffrey1, Elshafie A. M. Gad2 and Mahmoud A. A. Ibrahim3,4,5,* 

 
1 Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi 

Arabia 
2 Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo, Egypt 
3 Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, 

Minia 61519, Egypt 
4 Department of Engineering, College of Engineering and Technology, University of Technology and 

Applied Sciences, Nizwa 611, Sultanate of Oman 
5 School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South 

Africa 

* Correspondence: Email: jhfahemi@uqu.edu.sa, m.ibrahim@compchem.net. 

Abstract: The prediction of Aspergillus (A.) nidulans toxicities (log1/D37) for a set of 55 halogenated 

aliphatic hydrocarbons (HAHs) was thoroughly investigated using density functional theory (DFT) 

computations. Different multiple linear regression (MLR)methods were employed to assess the 

reliability of the proposed quantitative structure-activity relationships (QSAR) model. The obtained 

ELUMO, Egap, molecular polarizability (), and molar refractivity (MR) values offered informative 

indications in determining the toxicity of the HAHs. A promising three-descriptor linear model was 

constructed using 41 molecules as a training set; then, the model was validated on the remaining 14 

molecules. Statistical comparisons between these models and others quoted from the literature were 

presented. Furthermore, the potential causes of the outlier molecules in the proposed QSAR models 

were explored. The most preferable interactions were obviously noticed within the 1-bromo-2-

methylpropane∙∙∙-glucan complex, followed by 2-bromo-2-methylpropane∙∙∙-glucan and 2-chloro-

2-methylpropane∙∙∙-glucan complexes. Compared to other analogs, the higher number of bond paths 

and bond critical points within the 1-bromo-2-methylpropane∙∙∙-glucan complex highlighted its high 

preferability. 
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1. Introduction  

Halogenated aliphatic hydrocarbons (HAHs) are of growing concern because of their effectual 

toxic and carcinogenic features [1,2]. Nevertheless, HAHs are commonly utilized as industrial and 

home solvents, chemical synthesis intermediates, and have a range of other applications. Within the 

literature, HAHs were addressed with a potent versatility to react and covalently bind with DNA, thus 

causing genetic damage in versatile experimental organisms.  

In this regard, developing new models capable of promptly screening for potential hazards of any 

conceivable substance in the aquatic habitat has become an essential demand. Among the developed 

models, there has been a continued interest in estimating the toxicity data via quantitative structure-

activity/-toxicity relationships (QSAR/QSTR) [3–6]. Furthermore, the QSAR model attempts to link 

molecular structures to biological endpoints such as toxicity [7]. These findings are considerably 

distinct from the well-known in vivo data, which would be attributed to a number of toxic action 

mechanisms. In contrast to in vivo observations, in vitro toxicity data are easy to collect and often have 

a direct mechanistic significance. Consequently, the QSAR concept is one of the ligand-based drug 

design strategies that has effectively led to the development of new drug candidates for a wide range 

of diseases [8].  

Based on the literature, the QSAR can be mechanistically meaningful by using suitable molecular 

descriptors to mediate toxicity [9]. Except for the toxic effects caused by receptor binding, toxicity 

might be described as an outcome of the chemical compound's capacity to reach and covalently interact 

at the active site [5]. Considering a common biophysical mechanism, variations in the chemical 

structure of a set of known compounds are linked to toxicity alterations. Thence, the QSAR is utilized 

to extrapolate into other compounds.  

As a point of departure, Crebelli et al. [3] presented a QSAR model based on the molar refractivity 

(MR) and energy gap (Egap) for the prediction of 55 haloalkenes towards Aspergillus (A.) nidulans. 

This regression model was characterized by R2 and F values of 0.64 and 45.5, respectively, and outlined 

the effectual role of the electrophilicity in predicting the aneugenic potential of the aliphatic 

hydrocarbons. Furthermore, the toxicity of 52 halogenated hydrocarbons toward A. nidulans was well-

characterized by Trohalaki et al. using descriptors, including polarizability (), lowest unoccupied 

molecular orbital energy (ELUMO), and molecular volume (V) [4]. The most preferential model was 

detected with an R2 value of 0.79 and an F value of 0.59, thereby utilizing the B3LYP/6-31G** and 

HF/6-31G** levels of theory. Afterward, the lethal effect of 55 aliphatic molecules using descriptors 

as the logarithm of the octanol-water partition coefficient (log P) and the ELUMO was addressed by 

Cronin et al. [10]. Subsequently, this two-descriptors-based regression model was characterized by R2 

and standard error values of 0.615 and 0.413, respectively.  

While QSAR models are widely used, there is a lack of predictive models which specifically 

target the toxicity of HAHs, and this gap necessitates further research. Therefore, the current study 

aims to construct QSAR models to predict A. nidulans toxicity of 55 halogenated aliphatic 
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hydrocarbons. A possible source of outlier molecules in the developed models is proposed along with 

the predictions.  

2. Materials and methods 

2.1. Data set 

The utilized data on A. nidulans toxicity (log1/D37) of 55 halogenated aliphatic hydrocarbons were 

previously measured . In particular, the data set splitting was performed using random division as the 

standard method. Based on the literature [11], the rational division methods produced better statistical 

outcomes for the test sets compared to models that used random division; however, the predictive 

powers of random and rational models are similar. Therefore, the selected halogenated hydrocarbons 

were randomly partitioned into two sets, namely, training and validation sets, which involve 41 and 14 

molecules, respectively. The latter set was herein devoted to thoroughly confirming the accuracy of 

the developed QSTR model. 

2.2. Quantum chemical calculations and selected descriptors 

Herein, all executed quantum chemical calculations were performed using the Amsterdam density 

functional program package (ADF 2010.02) [12,13]. Geometry optimization was first carried out for 

each molecule using the quadruple- Slater basis set with four polarization functions (STO-QZ4P) in 

conjunction with the generalized gradient approximation (GGA) within the PW91 exchange and 

correlation functional [14,15]. The inner electrons within the atomic shells were treated as a frozen-

core approximation to accelerate the computations. In the realm of the DFT calculations, various 

quantum chemical parameters were calculated, including the energies of molecular orbitals (EHOMO 

and ELUMO) along with the energy gap (Egap = ELUMO − EHOMO). Afterward, HyperChem (version 8.0) 

was employed to compute various physical properties, including the surface area grid (S) octanol-water 

partition coefficient (log P), molecular volume (V), molar refractivity (MR), and molecular weight (M). 

Additionally, the molecular ovality (O) [16] was computed as a fundamental indicator to represent how 

the molecular shape approaches a sphere, which can be defined as follows: 

 𝑂 = 𝑆/4 (
3𝑉

4
)

2/3

 (1) 

2.3. Statistical analysis 

For the statistical analysis, a principal component analysis (PCA) and multiple linear regression 

(MLR) were adopted [17–19]. To study the correlations among the variables, the PCA was executed 

using XLSTAT. The PCA method was used to study the individual correlation between the log1/D37 

and the molecular descriptors and excluded any variables that had a trivial effect on the log1/D37 value 

(low R value). The MLR was used to generate linear models where no descriptor was excluded, and 

was performed using SPSS [20]. Due to the vast number of molecular descriptors, a stepwise multiple 

linear regression approach was employed to find the pertinent parameters based on the forward-
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selection and the backward-elimination procedures. Statistical outliers were established as those 

compounds with definite standardized residuals greater than 2. The feature of the developed MLR 

models was judged using the correlation coefficient (R2), the standard error of the estimate (s), the 

adjusted R2 (R2
adj), and Fisher's criterion (F). 

2.4. Electrostatic potential (ESP) analysis and quantum theory of atoms in molecules (QTAIM) 

Calculations 

The versatility of 1-bromo-2-methylpropane (1Br), 2-bromo-2-methylpropane (2Br), and 2-

chloro-2-methylpropane (2Cl) to attractively interact with -glucan (G) was thoroughly assessed and 

comparatively investigated. The geometry optimization calculations were first executed for the 

1Br/2Br/2Cl/G monomers and the 1Br∙∙∙/2Br∙∙∙/2Cl∙∙∙G complexes at the M06-2X/6-31+G* level of 

theory [21]. An electrostatic potential (ESP) analysis was carried out for the optimized systems to 

extract the molecular electrostatic potential (MEP) maps. The electron density envelope with a value 

of 0.002 au was employed to generate the MEP maps, as previously reported in the literature [22]. 

Relying on the optimized complexes, the interaction (Eint) energies were computed. The 

counterpoise correction method was invoked to eliminate the basis set superposition error (BSSE) [23], 

which is illustrated as follows: 

𝐸int = 𝐸𝟏𝐁𝐫/𝟐𝐁𝐫/𝟐𝐂𝐥∙∙∙𝐆 − (𝐸𝟏𝐁𝐫/𝟐𝐁𝐫/𝟐𝐂𝐥 in complex + 𝐸𝐆 in complex) + 𝐸BSSE (2) 

where 𝐸𝟏𝐁𝐫/𝟐𝐁𝐫/𝟐𝐂𝐥∙∙∙𝐆 , 𝐸𝟏𝐁𝐫/𝟐𝐁𝐫/𝟐𝐂𝐥 in complex , and 𝐸𝐆 in complex  refer to the energies of the 

complex, 1Br/2Br/2Cl, and the G structures pertinent to their coordinates in the optimized complexes. 

Moreover, the quantum theory of atoms in molecules (QTAIM) calculations were carried out to 

deeply recognize the studied interactions by extracting the bond paths (BPs) and the bond critical 

points (BCPs). All executed DFT computations were performed using the Gaussian 09 package [24]. 

The QTAIM analysis was conducted by utilizing the Multiwfn 3.7 [25] and visualized by Visual 

Molecular Dynamics (VMD) [26] packages. 

3. Results 

3.1. QSAR for the Lethality of Halogenated Aliphatic Hydrocarbons to A. nidulans 

In order to select the molecular descriptors and to build the QSAR models, the PCA and MLR 

methods were applied. The correlation coefficients (R) between the observed Aspergillus (A.) nidulans 

toxicities (log1/D37) of 41 halogenated aliphatic hydrocarbons and the molecular descriptors are 

gathered in Table 1. The PCA, including the correlation between the A. nidulans toxicities and the 

molecular descriptors, is illustrated in the biplot depicted in Figure 1. The data clusters were depicted 

by exhibiting the scores for the first components (F1) versus the second ones (F2). 



423 

AIMS Environmental Science  Volume 12, Issue 3, 419–434. 

 
Figure 1. Correlation circle of log1/D37 and the computed descriptors. 

According to the data displayed in Figure 1, the molecular weight (MW) and the A. nidulans 

toxicities (log1/D37) were somewhat near to each other and were highly related (R = 0.756). This 

significant correlation coefficient demonstrated that the MW had a prominent influence on the A. 

nidulans toxicities. Furthermore, the surface area grid (S) and molecular volume (V) were 

superimposed on each other, thereby outlining the prominent positive correlation between these 

molecular descriptors with R = 0.997. Additionally, the biplot revealed that the S, V, log P, , and O 

had positive correlations with log1/D37 (0.70  R  0.25). 

Table 1. Correlation coefficients matrix of log 1/D37 and the computed parameters. 

Variables log1/D37  EHOMO ELUMO Egap S V log P MR MW  O 

log 1/D37  1 
          

EHOMO 0.019 1 
         

ELUMO −0.529 0.338 1 
        

Egap −0.561 −0.206 0.851 1 
       

S 0.536 0.090 0.256 0.216 1 
      

V 0.563 0.079 0.223 0.187 0.997 1 
     

log P 0.247 −0.202 0.183 0.303 0.672 0.667 1 
    

MR 0.027 0.107 0.372 0.327 0.650 0.654 0.621 1 
   

MW 0.756 −0.138 −0.753 −0.705 0.250 0.297 −0.041 −0.008 1 
  

 0.694 0.013 −0.001 −0.008 0.934 0.951 0.666 0.650 0.468 1 
 

O 0.297 0.122 0.422 0.371 0.890 0.852 0.612 0.555 − 0.049 0.715 1 
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However, ELUMO and Egap had negative correlations with log1/D37 and were considered as 

important descriptors. Notwithstanding the importance of EHOMO and MR in various QSAR 

studies [27,28], the EHOMO and MR values were herein neglected due to their trivial effect on the 

log1/D37 value, which was attributed to their low correlation coefficients (R  0.03). After excluding 

EHOMO and MR, the preferred regression model was constructed using a backward method based on 

three descriptors (See Eq 3). Particularly, considerable correlations were found between the MW and 

both ELUMO and Egap, with R values of −0.753 and −0.705, respectively.  

log 1/D37 = −3.630 − 9.175𝐸LUMO − 10.052 𝐸gap + 0.016𝑆 (3) 

n = 41, R2 = 0.806, R2
adj = 0.790, s = 0.332, F = 51.261 

where n represents the number of halogenated aliphatic hydrocarbon molecules. 

Toward investigating the statistical significance of the selected descriptors in the considered 

model, the t-test values were calculated for each descriptor. Furthermore, the t-test is defined as the 

regression coefficient for the relevant descriptor divided by its error. The highest t-test value identifies 

the most important descriptors, where a molecular descriptor is considered significant when its t-test 

value exceeds 2. 

In model 1 (See Eq 3), the t-test values were −2.697, −2.871, and 9.589 for ELUMO, Egap, and S, 

respectively. The obtained t-test values showed that all three descriptors played an important role in 

the regression models, with the surface area grid being the most relevant. It is worth mentioning that 

the positive values of the regression coefficient outlined that the molecular descriptors in the QSTR 

model provided a positive behavior towards the toxicity values. Meanwhile, negative values suggested 

that the log1/D37 values diminished by augmenting the value of the computed descriptor. From Eq 3, 

the log1/D37 value was disclosed to decline when the ELUMO and Egap values increased. Notwithstanding, 

the enhanced S value leads, in turn, to an increase in the value of log1/D37. These results were consistent 

with the results obtained using the PCA. The statistical results of Eq 3 for the validation set (14 

molecules) were poor and were characterized by (R2 = 0.443, s = 0.2449, F = 9.5267). 

As mentioned earlier, the EHOMO and MR were found to be essential descriptors for the prediction 

of various biological activities. Consequently, the two aforesaid descriptors were considered, which 

gave rise to using all the calculated descriptors in the construction of the adopted QSAR models, 

bearing in mind that these two insignificant descriptors (EHOMO and MR) could account for the residual. 

Consequently, the preferred model was obtained based on three descriptors, which are described as 

follows: 

log 1/D37 = −1.242 − 9.769𝐸gap − 0.047𝑀𝑅 + 0.329𝛼, (4) 

n = 41, R2 = 0.912, R2
adj = 0.904, s =0.224, F =127.106. 

The t-test values for Egap, MR, and  were −7.080, −7.157, and 15.137, respectively, thus 

indicating the significant contributions of the three considered descriptors to the log1/D37 value, with 

a highly appreciated role for the molecular polarizability descriptor. According to Eq 4, the log1/D37 

decreases along with increasing the Egap and MR. On the other hand, increasing the values of the 

molecular polarizability causes a boost in the value of the log1/D37. These results were in good 

agreement with those obtained using the PCA. As an essential issue, Egap plays decisive roles in the 
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chemical reactivity, biological activity, hydrophobicity, and electrophilicity of chemicals pertinent to 

the living cell activity and the associated mechanistic interactions. In that spirit, the Egap is considered 

one of the most important parameters that can inversely affect the chemical reactivity. 

The physical justification for using molar refractivity and polarizability in the developed QSAR 

models might be understood by considering that most of the biochemical process occurs in aqueous 

media. Therefore, the MR and  of aqueous toxic solutions are informative descriptors, which are 

useful in QSTR studies. As judged by the four statistical criteria (R2, R2
adj, s, and F values), Eq 4 is 

statistically superior to Eq 3. Table 2 compares the observed log1/D37 values for 41 molecules to the 

predictions generated by Eq 4. Furthermore, Figure 2 visually depicts the relationship between these 

expectations and the experimental results of log1/D37. 

 

Table 2. Observed and predicted values of log1/D37 for the training set. Predictions were 

made using Eq 4. 

Molecule name 
log1/D37  

(Observed) 

log1/D37  

(Predicted) 

MAE* 
 Molecule name 

log1/D37  

(Observed) 

log1/D37  

(Predicted) 

MAE* 

Dichloromethane –1.97 –1.96 0.17  1,3-Dichloropropene –0.72 –0.83 0.16 

Chloroform –1.39 –1.36 0.18  1,1,3-Trichloropropene –0.38 –0.43 0.16 

Tetrachloromethane –0.49 –0.82 0.18  
3-Chloro-2-

chloromethylpropene 
–0.43 –0.49 0.17 

1,2-Dichloroethane –1.71 –1.64 0.18  1-Chloro-2-methylpropene –1.10 –0.85 0.17 

1,1,2-Trichloroethane –1.03 –1.12 0.18  Chlorodibromofluoromethane –0.49 0.07 0.17 

1,1,1,2-Tetrachloroethane –0.45 –0.56 0.18  Bromoform –0.72 –0.58 0.14 

Pentachloroethane –0.23 –0.11 0.18  Bromochloromethane –1.79 –1.60 0.14 

Hexachloroethane  0.10 0.27 0.18  Bromotrichloromethane 0.10 –0.05 0.14 

1,1,2-Trichloroethylene –1.05 –0.68 0.19  Bromodichloromethane –1.03 –1.02 0.14 

Tetrachloroethylene –0.08 –0.23 0.18  Chlorodibromomethane –0.46 –0.78 0.15 

1,1-Dichloroethylene –1.40 –1.23 0.18  1-Bromo-2-chloroethane –1.38 –1.26 0.13 

1,2-Dichloropropane –1.19 –1.21 0.18  1-Bromobutane –0.75 –0.95 0.14 

1,3-Dichloropropane –1.02 –1.13 0.19  2-Bromo-1-chloropropane –0.99 –0.84 0.13 

1,2,3-Trichloropropane –0.97 –0.73 0.19  1-Bromo-2-methylpropane –1.26 –0.93 0.12 

2-Chlorobutane –1.28 –1.38 0.19  1-Bromo-4-chlorobutane –0.52 –0.55 0.09 

1,3-Dichlorobutane –0.94 –0.76 0.19  1-Bromo-3-methylbutane –0.49 –0.54 0.10 

1-Chloro-2-methylpropane –1.16 –1.32 0.19  Dibromodichloromethane 0.70 0.61 0.12 

1-Chloropentane –0.70 –0.95 0.19  Dibromomethane –1.33 –1.39 0.13 

1-Chlorohexane –0.18 –0.56 0.19  Tetrabromomethane 2.00 1.79 0.16 

1-Chlorooctane –0.18 0.22 0.18  1,1,2,2-Tetrabromoethane 0.40 0.29 0.11 

2,3-Dichloropropene –0.43 –0.82 0.17      

* MAE stands for mean absolute error. 

 

For a comparison purpose between the developed model (See Eq 4) and those constructed by 

Cronin et al. [10], the QSAR model was built for the whole data set, and the model was characterized 
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by R2 = 0.897, s = 0.219, and F =148.766. The currently developed model was superior to those 

developed by Cronin et al., who reported R2 = 0.615, s = 0.413, and F = 44.2 (Table S1). 

 

Figure 2. Observed values of log1/D37 for 41 molecules vis predictions made by Eq 4. 

3.2. Validation set 

The regression coefficients for the 41 molecules were adopted to compute the log1/D37 for 14 

halogenated aliphatic molecules to assess the predictive performance of the three-variable QSTR 

model (See Eq 4). Table 3 contains the gathered data, which is graphically displayed in Figure 3. 

According to Table 3, the results were labeled with an R2 value of 0.575 and a standard error of 

0.214. Therefore, 2-bromo-2-methylpropane (2Br) had an outlier behavior in the verification set (See 

Figure 3) with a standard residual of –2.167. The mathematical performance of the model was 

marginally improved by excluding this particular compound from the predictive equation (R2 = 0.737, 

s = 0.168). Still, of course, there were no posterior justifications for reselections of the data set. 
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Figure 3. Observed values of log1/D37 for validation set versus predictions made by Eq 4. 

The outlier is represented as a triangle. 

Table 3. Observed and predicted values of log1/D37 for the validation set. Predictions were 

made using Eq 4. 

Molecule name 
log1/D37  

(Observed) 

log1/D37  

(Predicted) 

MAE* 

1,1-Dichloroethane –1.68 –1.61 0.16 

1,1,1-Trichloroethane –1.00 –0.96 0.17 

1,1,2,2-Tetrachloroethane –0.45 –0.70 0.18 

1,2-Dichloroethylene –1.48 –1.11 0.17 

2,2-Dichloropropane –1.28 –1.19 0.15 

1-Chlorobutane –1.16 –1.31 0.16 

2,3-Dichlorobutane –0.94 –0.73 0.16 

2-Chloro-2-methylpropane –1.26 –1.32 0.15 

1,1-Dichloropropene –0.82 –0.89 0.17 

3-Chloro-2-methylpropene –0.88 –0.95 0.19 

2-Bromobutane –1.06 –0.93 0.21 

1-Bromo-3-chloropropane –0.88 –0.82 0.24 

2-Bromo-2-methylpropane –1.41 –0.86 0.33 

1,2-Dibromoethylene –0.96 –0.84 0.12 

* MAE stands for mean absolute error. 

In accordance with the strong statistical significance, the presented QSTR models had a 

substantial reliability and an internal extrapolative capacity. As illustrated in Figure 3, the observed 

log1/D37 values for the verification set were consistent with the projected values. 
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3.3. Further investigations on 2-Bromo-2-Methyl Propane 

Furthermore, additional calculations were performed on 2-bromo-2-methyl propane (2Br) in order 

to clarify the potential causes for its outlier behavior in the QSTR models. Due to the structural 

similarities of 1-bromo-2-methyl propane (1Br) and 2-chloro-2-methyl propane (2Cl) to 2Br, the same 

procedure was performed on 2Cl and 1Br. Several studies have claimed that the outlier molecules can 

emerge for a variety of reasons [29–33]. Outliers, for instance, may be caused by inaccurate molecular 

descriptor values, or they may suggest an error in the experimental toxicities. They could either be the 

result of an uncommon mechanism or a distinct binding type. First, a deep inspection of the values of 

the Egap energy was performed to examine the effect of the stability of the HAHs on the value of log 

1/D37. A stable molecule is indicated by an alkyl halide with a high value of Egap, while a compound 

with a low Egap value has a high effectiveness. Remarkable correlations (R = –0.561) were observed 

between the stability of the alkyl halide and its toxicity. More stable molecules turned out to have a 

high log 1/D37 value. These results were previously outlined using a PCA (See Figure 1). The Egap for 

2Br, 1Br, and 2Cl were 0.187, 0.195, and 0.225 au, respectively. These values indicated that 2Br had 

the lowest energy gap and, therefore, demonstrated the highest efficacy (i.e., lowest stability). On the 

other hand, 2Cl turned out to be the most stable one. The log 1/D37 values of 2Br, 1Br, and 2Cl were 

−1.41, −1.26, and −1.26, respectively. The identical results of log1/D37 for the latter two molecules 

may suggest errors in the experimental toxicities' values. 

3.3.1. Interactions of halide alkyls with α-glucan 

The structural compositions of A. nidulans cell walls have been studied and reported in various 

studies [34–38]. The cell wall is necessary for fungi to survive in their natural habitat [34]. Fungi cell 

walls account for approximately one-quarter of the total fungal biomass [35], and approximately one-

third of the fungal genome is engaged in cell wall formation and maintenance [36]. A carbohydrate 

investigation of the A. nidulans wall concluded that it contains roughly 40% α-glucan and β-

glucan [34,37,38]. In this study, α-glucan was utilized to explore the binding interactions between the 

A. nidulans cell wall and the selected halide alkyls. 

3.3.2. Electrostatic potential (ESP)analysis 

An electrostatic potential (ESP) analysis was performed to unveil the nucleophilic and 

electrophilic regions over the molecular systems. By employing the ESP analysis, the molecular 

electrostatic potential (MEP) maps of the optimized monomers were extracted utilizing a 0.002 au 

electron density envelope. Figure 4 displays the MEP maps for the optimized geometries of 1Br, 2Br, 

2Cl, and G. 
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Figure 4. MEP maps of 1-bromo-2-methylpropane (1Br), 2-bromo-2-methylpropane 

(2Br), 2-chloro-2-methylpropane (2Cl), and -glucan (G). The color scale is extended 

from the red (–0.01 au) to the blue (0.01 au) scope. 

As depicted in Figure 4, the molecular surfaces with relative electrophilic and nucleophilic 

regions over the molecular surface of the studied systems were conspicuously observed by the presence 

of blue-coded surfaces (i.e., positive ESP) and red-coded surfaces (i.e., negative ESP), respectively. 

Notably, negative ESP regions were observed over the surfaces of the Br, Cl, and O atoms of the 

investigated molecules. On the other hand, the positive ESP areas were found around the surfaces of 

the H atoms. The obtained findings paraded the supreme penchant of the 1Br, 2Br, and 2Cl molecules 

to attractively interact with the G molecule through hydrogen bonding interactions. 

3.3.3. Energetic manifestations 

The preferability of the 1Br, 2Br, and 2Cl molecules to interact with the G molecule was herein 

thoroughly addressed through the 1Br∙∙∙/2Br∙∙∙/2Cl∙∙∙G complexes. First, geometry optimization 

calculations were performed. Using optimized complexes, the interaction energy (Eint) values were 

computed. Figure S1 shows the optimized geometries of the studied complexes within all the plausible 

configurations and their Eint values. Relying on the negative Eint values, the most preferable 
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configurations of the 1Br∙∙∙/2Br∙∙∙/2Cl∙∙∙G complexes were selected and gathered in Figure 5. 

 

Figure 5. Optimized complexes within the most preferable configurations of the 1Br∙∙∙, 

2Br∙∙∙, and 2Cl∙∙∙G complexes. Interaction energy (Eint) values are in kcal/mol. 

As shown in Figure S1, the 1Br, 2Br, and 2Cl molecules showed a superior potentiality to interact 

with the G molecule through the depicted configurations with respectable negative interaction energy 

values. Notably, the stability of the scouted complexes was generally explained as an upshot to the 

presence of numerous hydrogen bonds, which were found to vary in numbers and distances. It is worth 

noting that the preferable interactions within the studied complexes were ascribed to the 1Br∙∙∙G 

complex, followed by 2Br∙∙∙G and 2Cl∙∙∙G complexes (Figure 5). Numerically, Eint of the 1Br∙∙∙, 2Br∙∙∙, 

and 2Cl∙∙∙G complexes were –10.49, –10.21, and –9.99 kcal/mol, respectively. 

3.3.4. Quantum theory of atoms in molecules (QTAIM) analysis 

To gain further insight into the origin of the studied interactions, a quantum theory of atoms in 

molecules (QTAIM) analysis was executed for the optimized 1Br∙∙∙/2Br∙∙∙/2Cl∙∙∙G complexes within 

the most preferable configurations. In that spirit, the BPs and BCPs were generated and are illustrated 

in Figure 6. 
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Figure 6. QTAIM plots of the most preferable configurations of the optimized 1Br∙∙∙, 

2Br∙∙∙, and 2Cl∙∙∙G complexes. 

As shown in Figure 6, the occurrence of interactions within the investigated complexes was 

assured by the presence of BPs and BCPs (i.e., hydrogen bonds). The higher number of the BPs and 

BCPs within the 1Br∙∙∙G complex over the other analogs could interpret its higher preferability in 

comparison to the others. This observation was in line with the interaction energy affirmations. 

4. Conclusions 

Aspergillus (A.) nidulans toxicities (log1/D37) were precisely predicted for a set of 55 halogenated 

aliphatic hydrocarbons (HAHs) using DFT calculations. Besides, the individual correlations between 

a series of evaluated descriptors and the A. nidulans toxicities (log1/D37) were unveiled. The 

importance of quantum-chemical parameters along with various physical properties, including the 

surface area grid (S), molecular volume (V), molar refractivity (MR), molecular weight (MW), and 

molecular ovality (O) were investigated to predict the A. nidulans toxicities of halogenated aliphatic 

hydrocarbons. A potential three-variable QSTR model was trained using 41 molecules and 

subsequently validated for a set of 14 compounds. Based on the Egap, MR, and , the linear model had 

correlation coefficient (R2) values of 0.912 and 0.575 for the training and the validation sets, 

respectively. The generated QSAR model could be used for the log1/D37 predictions of HAHs provided 

in this paper; however, more research would be required to test more aliphatic compounds for an 

external validation. The most preferred interactions were clearly identified within the 1-bromo-2-

methylpropane∙∙∙-glucan complex. The greater number of bond pathways and bond critical sites 

within the 1-bromo-2-methylpropane∙∙∙-glucan complex over other analogs affirmed its significant 

favorability. 
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