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Abstract: The prediction of Aspergillus (A.) nidulans toxicities (log1/D37) for a set of 55 halogenated
aliphatic hydrocarbons (HAHs) was thoroughly investigated using density functional theory (DFT)
computations. Different multiple linear regression (MLR)methods were employed to assess the
reliability of the proposed quantitative structure-activity relationships (QSAR) model. The obtained
Evrumo, Egap, molecular polarizability (&), and molar refractivity (MR) values offered informative
indications in determining the toxicity of the HAHs. A promising three-descriptor linear model was
constructed using 41 molecules as a training set; then, the model was validated on the remaining 14
molecules. Statistical comparisons between these models and others quoted from the literature were
presented. Furthermore, the potential causes of the outlier molecules in the proposed QSAR models
were explored. The most preferable interactions were obviously noticed within the 1-bromo-2-
methylpropane---a-glucan complex, followed by 2-bromo-2-methylpropane---a-glucan and 2-chloro-
2-methylpropane---a-glucan complexes. Compared to other analogs, the higher number of bond paths
and bond critical points within the 1-bromo-2-methylpropane- - a-glucan complex highlighted its high
preferability.
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1. Introduction

Halogenated aliphatic hydrocarbons (HAHs) are of growing concern because of their effectual
toxic and carcinogenic features [1,2]. Nevertheless, HAHs are commonly utilized as industrial and
home solvents, chemical synthesis intermediates, and have a range of other applications. Within the
literature, HAHs were addressed with a potent versatility to react and covalently bind with DNA, thus
causing genetic damage in versatile experimental organisms.

In this regard, developing new models capable of promptly screening for potential hazards of any
conceivable substance in the aquatic habitat has become an essential demand. Among the developed
models, there has been a continued interest in estimating the toxicity data via quantitative structure-
activity/-toxicity relationships (QSAR/QSTR) [3—6]. Furthermore, the QSAR model attempts to link
molecular structures to biological endpoints such as toxicity [7]. These findings are considerably
distinct from the well-known in vivo data, which would be attributed to a number of toxic action
mechanisms. In contrast to in vivo observations, in vitro toxicity data are easy to collect and often have
a direct mechanistic significance. Consequently, the QSAR concept is one of the ligand-based drug
design strategies that has effectively led to the development of new drug candidates for a wide range
of diseases [8].

Based on the literature, the QSAR can be mechanistically meaningful by using suitable molecular
descriptors to mediate toxicity [9]. Except for the toxic effects caused by receptor binding, toxicity
might be described as an outcome of the chemical compound's capacity to reach and covalently interact
at the active site [5]. Considering a common biophysical mechanism, variations in the chemical
structure of a set of known compounds are linked to toxicity alterations. Thence, the QSAR is utilized
to extrapolate into other compounds.

As a point of departure, Crebelli et al. [3] presented a QSAR model based on the molar refractivity
(MR) and energy gap (Egap) for the prediction of 55 haloalkenes towards Aspergillus (A.) nidulans.
This regression model was characterized by R? and F values of 0.64 and 45.5, respectively, and outlined
the effectual role of the electrophilicity in predicting the aneugenic potential of the aliphatic
hydrocarbons. Furthermore, the toxicity of 52 halogenated hydrocarbons toward 4. nidulans was well-
characterized by Trohalaki et al. using descriptors, including polarizability (&), lowest unoccupied
molecular orbital energy (ELumo), and molecular volume () [4]. The most preferential model was
detected with an R? value of 0.79 and an F value of 0.59, thereby utilizing the B3LYP/6-31G** and
HF/6-31G** levels of theory. Afterward, the lethal effect of 55 aliphatic molecules using descriptors
as the logarithm of the octanol-water partition coefficient (log P) and the Erumo was addressed by
Cronin et al. [10]. Subsequently, this two-descriptors-based regression model was characterized by R?
and standard error values of 0.615 and 0.413, respectively.

While QSAR models are widely used, there is a lack of predictive models which specifically
target the toxicity of HAHs, and this gap necessitates further research. Therefore, the current study
aims to construct QSAR models to predict A. nidulans toxicity of 55 halogenated aliphatic
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hydrocarbons. A possible source of outlier molecules in the developed models is proposed along with
the predictions.

2. Materials and methods

2.1. Data set

The utilized data on A. nidulans toxicity (log1/Ds37) of 55 halogenated aliphatic hydrocarbons were
previously measured . In particular, the data set splitting was performed using random division as the
standard method. Based on the literature [11], the rational division methods produced better statistical
outcomes for the test sets compared to models that used random division; however, the predictive
powers of random and rational models are similar. Therefore, the selected halogenated hydrocarbons
were randomly partitioned into two sets, namely, training and validation sets, which involve 41 and 14
molecules, respectively. The latter set was herein devoted to thoroughly confirming the accuracy of
the developed QSTR model.

2.2. Quantum chemical calculations and selected descriptors

Herein, all executed quantum chemical calculations were performed using the Amsterdam density
functional program package (ADF 2010.02) [12,13]. Geometry optimization was first carried out for
each molecule using the quadruple-& Slater basis set with four polarization functions (STO-QZ4P) in
conjunction with the generalized gradient approximation (Gga) within the PW91 exchange and
correlation functional [14,15]. The inner electrons within the atomic shells were treated as a frozen-
core approximation to accelerate the computations. In the realm of the DFT calculations, various
quantum chemical parameters were calculated, including the energies of molecular orbitals (Enomo
and Erumo) along with the energy gap (Egap = ELumo — Enomo). Afterward, HyperChem (version 8.0)
was employed to compute various physical properties, including the surface area grid (S) octanol-water
partition coefficient (log P), molecular volume (¥), molar refractivity (MR), and molecular weight (M/).
Additionally, the molecular ovality (O) [16] was computed as a fundamental indicator to represent how
the molecular shape approaches a sphere, which can be defined as follows:

2/3

0= S/47r<j_—ﬂ) 1)

2.3. Statistical analysis

For the statistical analysis, a principal component analysis (PCA) and multiple linear regression
(MLR) were adopted [17-19]. To study the correlations among the variables, the PCA was executed
using XLSTAT. The PCA method was used to study the individual correlation between the logl/D37
and the molecular descriptors and excluded any variables that had a trivial effect on the logl/D37 value
(low R value). The MLR was used to generate linear models where no descriptor was excluded, and
was performed using SPSS [20]. Due to the vast number of molecular descriptors, a stepwise multiple
linear regression approach was employed to find the pertinent parameters based on the forward-
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selection and the backward-elimination procedures. Statistical outliers were established as those
compounds with definite standardized residuals greater than 2. The feature of the developed MLR
models was judged using the correlation coefficient (R?), the standard error of the estimate (s), the
adjusted R* (R%.y), and Fisher's criterion (F).

2.4. Electrostatic potential (ESP) analysis and quantum theory of atoms in molecules (QTAIM)
Calculations

The versatility of 1-bromo-2-methylpropane (1Br), 2-bromo-2-methylpropane (2Br), and 2-
chloro-2-methylpropane (2Cl) to attractively interact with a-glucan (G) was thoroughly assessed and
comparatively investigated. The geometry optimization calculations were first executed for the
1Br/2Br/2Cl/G monomers and the 1Br---/2Br---/2Cl'--G complexes at the M06-2X/6-31+G* level of
theory [21]. An electrostatic potential (ESP) analysis was carried out for the optimized systems to
extract the molecular electrostatic potential (MEP) maps. The electron density envelope with a value
0f 0.002 au was employed to generate the MEP maps, as previously reported in the literature [22].

Relying on the optimized complexes, the interaction (Ein) energies were computed. The
counterpoise correction method was invoked to eliminate the basis set superposition error (BSSE) [23],
which is illustrated as follows:

Eint = E1gr/2Br/201-6 — (E1Br/2Br/2¢1 in complex + EG in complex) + EBss )

where ElBr/ZBr/ZCl---G: ElBr/ZBr/ZCl in complex » and EG in complex refer to the energies of the
complex, 1Br/2Br/2Cl, and the G structures pertinent to their coordinates in the optimized complexes.

Moreover, the quantum theory of atoms in molecules (QTAIM) calculations were carried out to
deeply recognize the studied interactions by extracting the bond paths (BPs) and the bond critical
points (BCPs). All executed DFT computations were performed using the Gaussian 09 package [24].
The QTAIM analysis was conducted by utilizing the Multiwfn 3.7 [25] and visualized by Visual
Molecular Dynamics (VMD) [26] packages.

3. Results

3.1. QSAR for the Lethality of Halogenated Aliphatic Hydrocarbons to A. nidulans

In order to select the molecular descriptors and to build the QSAR models, the PCA and MLR
methods were applied. The correlation coefficients (R) between the observed Aspergillus (A.) nidulans
toxicities (logl/Ds7) of 41 halogenated aliphatic hydrocarbons and the molecular descriptors are
gathered in Table 1. The PCA, including the correlation between the A. nidulans toxicities and the
molecular descriptors, is illustrated in the biplot depicted in Figure 1. The data clusters were depicted
by exhibiting the scores for the first components (F1) versus the second ones (F2).
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Figure 1. Correlation circle of log1/D37 and the computed descriptors.

According to the data displayed in Figure 1, the molecular weight (MW) and the A. nidulans
toxicities (logl/D37) were somewhat near to each other and were highly related (R = 0.756). This
significant correlation coefficient demonstrated that the MW had a prominent influence on the A.
nidulans toxicities. Furthermore, the surface area grid (S) and molecular volume (V) were
superimposed on each other, thereby outlining the prominent positive correlation between these
molecular descriptors with R = 0.997. Additionally, the biplot revealed that the S, V, log P, «, and O
had positive correlations with log1/D37 (0.70 ) R ) 0.25).

Table 1. Correlation coefficients matrix of log 1/D37 and the computed parameters.

Variables logl/D37  Enomo Erumo FEeap S V log P MR MW a (0]
log 1/D37 1
Enomo 0.019 1
Erumo —-0.529 0.338 1
Egap —0.561 —0.206 0.851 1
S 0.536 0.090 0.256 0.216 1
v 0.563 0.079 0.223 0.187 0997 1
log P 0.247 —0.202 0.183 0.303 0.672  0.667 1
MR 0.027 0.107 0.372 0.327 0.650 0.654  0.621 1
MW 0.756 —0.138 —0.753 —0.705 0250 0297  —0.041 —0.008 1
a 0.694 0.013 —0.001 —0.008 0.934 0951 0.666 0.650 0.468 1
0.297 0.122 0.422 0.371 0.890 0852  0.612 0.555 -0.049 0715 1
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However, Erumo and Egp had negative correlations with logl/D3; and were considered as
important descriptors. Notwithstanding the importance of Enomo and MR in various QSAR
studies [27,28], the Enomo and MR values were herein neglected due to their trivial effect on the
log1/D37 value, which was attributed to their low correlation coefficients (R ( 0.03). After excluding
Enomo and MR, the preferred regression model was constructed using a backward method based on
three descriptors (See Eq 3). Particularly, considerable correlations were found between the MW and
both Erumo and Egap, with R values of —0.753 and —0.705, respectively.

log1/D3; = —3.630 — 9.175E ymo — 10.052 Egyp, + 0.0168 3)

n=41, R*=0.806, R%qj = 0.790, s = 0.332, F = 51.261
where n represents the number of halogenated aliphatic hydrocarbon molecules.

Toward investigating the statistical significance of the selected descriptors in the considered
model, the #-test values were calculated for each descriptor. Furthermore, the #-test is defined as the
regression coefficient for the relevant descriptor divided by its error. The highest #-test value identifies
the most important descriptors, where a molecular descriptor is considered significant when its t-test
value exceeds |2].

In model 1 (See Eq 3), the #-test values were —2.697, —2.871, and 9.589 for Erumo, Eeap, and S,
respectively. The obtained #-test values showed that all three descriptors played an important role in
the regression models, with the surface area grid being the most relevant. It is worth mentioning that
the positive values of the regression coefficient outlined that the molecular descriptors in the QSTR
model provided a positive behavior towards the toxicity values. Meanwhile, negative values suggested
that the log1/Ds37 values diminished by augmenting the value of the computed descriptor. From Eq 3,
the log1/Ds7 value was disclosed to decline when the ELumo and Egap values increased. Notwithstanding,
the enhanced S value leads, in turn, to an increase in the value of log1/D37. These results were consistent
with the results obtained using the PCA. The statistical results of Eq 3 for the validation set (14
molecules) were poor and were characterized by (R? = 0.443, s = 0.2449, F = 9.5267).

As mentioned earlier, the Enomo and MR were found to be essential descriptors for the prediction
of various biological activities. Consequently, the two aforesaid descriptors were considered, which
gave rise to using all the calculated descriptors in the construction of the adopted QSAR models,
bearing in mind that these two insignificant descriptors (Enomo and MR) could account for the residual.
Consequently, the preferred model was obtained based on three descriptors, which are described as
follows:

log1/D3, = —1.242 — 9.769Eg,, — 0.047MR + 0.329, ()

n=41, R*=0.912, R%qj = 0.904, s =0.224, F =127.106.

The t-test values for Egap, MR, and o were —7.080, —7.157, and 15.137, respectively, thus
indicating the significant contributions of the three considered descriptors to the logl/D37 value, with
a highly appreciated role for the molecular polarizability descriptor. According to Eq 4, the log1/D37
decreases along with increasing the Egp and MR. On the other hand, increasing the values of the
molecular polarizability causes a boost in the value of the logl/D37. These results were in good
agreement with those obtained using the PCA. As an essential issue, Egap plays decisive roles in the
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chemical reactivity, biological activity, hydrophobicity, and electrophilicity of chemicals pertinent to
the living cell activity and the associated mechanistic interactions. In that spirit, the Eg,p is considered
one of the most important parameters that can inversely affect the chemical reactivity.

The physical justification for using molar refractivity and polarizability in the developed QSAR
models might be understood by considering that most of the biochemical process occurs in aqueous
media. Therefore, the MR and « of aqueous toxic solutions are informative descriptors, which are
useful in QSTR studies. As judged by the four statistical criteria (R?, R%j, s, and F values), Eq 4 is
statistically superior to Eq 3. Table 2 compares the observed logl/D37 values for 41 molecules to the
predictions generated by Eq 4. Furthermore, Figure 2 visually depicts the relationship between these
expectations and the experimental results of log1/D37.

Table 2. Observed and predicted values of log1/D37 for the training set. Predictions were

made using Eq 4.
logl/Ds;  logl/Ds;  MAE® logl/Ds;  logl/Dsy;  MAE®
Molecule name Molecule name
(Observed) (Predicted) (Observed) (Predicted)
Dichloromethane -1.97 -1.96 0.17 1,3-Dichloropropene -0.72 -0.83 0.16
Chloroform -1.39 -1.36 0.18 1,1,3-Trichloropropene —0.38 —0.43 0.16
Tewrachloromethane 049 082 018 o0 043 -049 0.7
chloromethylpropene

1,2-Dichloroethane -1.71 -1.64 0.18 1-Chloro-2-methylpropene —1.10 —0.85 0.17
1,1,2-Trichloroethane -1.03 -1.12 0.18 Chlorodibromofluoromethane—0.49 0.07 0.17
1,1,1,2-Tetrachloroethane —0.45 -0.56 0.18 Bromoform -0.72 —0.58 0.14
Pentachloroethane -0.23 —-0.11 0.18 Bromochloromethane -1.79 -1.60 0.14
Hexachloroethane 0.10 0.27 0.18 Bromotrichloromethane 0.10 —-0.05 0.14
1,1,2-Trichloroethylene  —1.05 —0.68 0.19 Bromodichloromethane —-1.03 —-1.02 0.14
Tetrachloroethylene —0.08 -0.23 0.18 Chlorodibromomethane -0.46 -0.78 0.15
1,1-Dichloroethylene -1.40 -1.23 0.18 1-Bromo-2-chloroethane -1.38 -1.26 0.13
1,2-Dichloropropane -1.19 -1.21 0.18 1-Bromobutane —0.75 —0.95 0.14
1,3-Dichloropropane —-1.02 —-1.13 0.19 2-Bromo-1-chloropropane  —0.99 —0.84 0.13
1,2,3-Trichloropropane  —0.97 —-0.73 0.19 1-Bromo-2-methylpropane —1.26 —-0.93 0.12
2-Chlorobutane -1.28 —-1.38 0.19 1-Bromo-4-chlorobutane -0.52 -0.55 0.09
1,3-Dichlorobutane -0.94 -0.76 0.19 1-Bromo-3-methylbutane  —0.49 -0.54 0.10
1-Chloro-2-methylpropane—1.16 -1.32 0.19 Dibromodichloromethane  0.70 0.61 0.12
1-Chloropentane -0.70 -0.95 0.19 Dibromomethane -1.33 -1.39 0.13
1-Chlorohexane —0.18 -0.56 0.19 Tetrabromomethane 2.00 1.79 0.16
1-Chlorooctane -0.18 0.22 0.18 1,1,2,2-Tetrabromoethane  0.40 0.29 0.11
2,3-Dichloropropene -0.43 —0.82 0.17

* MAE stands for mean absolute error.

For a comparison purpose between the developed model (See Eq 4) and those constructed by
Cronin et al. [10], the QSAR model was built for the whole data set, and the model was characterized
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by R* = 0.897, s = 0.219, and F =148.766. The currently developed model was superior to those
developed by Cronin et al., who reported R* = 0.615, s = 0.413, and F = 44.2 (Table S1).

- 3.00

- 2.00

3.00 2.00 1.00 5 -1. -2.00 -3.00

log 1/D;, (Predicted)

- -2.00

- -3.00
log 1/D,, (Observed)

Figure 2. Observed values of log1/D37 for 41 molecules vis predictions made by Eq 4.

3.2. Validation set

The regression coefficients for the 41 molecules were adopted to compute the logl/D37 for 14
halogenated aliphatic molecules to assess the predictive performance of the three-variable QSTR
model (See Eq 4). Table 3 contains the gathered data, which is graphically displayed in Figure 3.

According to Table 3, the results were labeled with an R* value of 0.575 and a standard error of
0.214. Therefore, 2-bromo-2-methylpropane (2Br) had an outlier behavior in the verification set (See
Figure 3) with a standard residual of —2.167. The mathematical performance of the model was
marginally improved by excluding this particular compound from the predictive equation (R*> = 0.737,
s =0.168). Still, of course, there were no posterior justifications for reselections of the data set.
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Figure 3. Observed values of log1/D37 for validation set versus predictions made by Eq 4.
The outlier is represented as a triangle.

Table 3. Observed and predicted values of log1/D37 for the validation set. Predictions were

made using Eq 4.
Molecule name log1/D37 log1/D37 MAE’
(Observed) (Predicted)
1,1-Dichloroethane -1.68 -1.61 0.16
1,1,1-Trichloroethane —-1.00 -0.96 0.17
1,1,2,2-Tetrachloroethane —0.45 -0.70 0.18
1,2-Dichloroethylene —-1.48 —-1.11 0.17
2,2-Dichloropropane —-1.28 -1.19 0.15
1-Chlorobutane —-1.16 —-1.31 0.16
2,3-Dichlorobutane -0.94 -0.73 0.16
2-Chloro-2-methylpropane -1.26 —-1.32 0.15
1,1-Dichloropropene —0.82 —0.89 0.17
3-Chloro-2-methylpropene —0.88 —0.95 0.19
2-Bromobutane —-1.06 —0.93 0.21
1-Bromo-3-chloropropane —0.88 —0.82 0.24
2-Bromo-2-methylpropane -1.41 —0.86 0.33
1,2-Dibromoethylene -0.96 —0.84 0.12

* MAE stands for mean absolute error.
In accordance with the strong statistical significance, the presented QSTR models had a
substantial reliability and an internal extrapolative capacity. As illustrated in Figure 3, the observed

log1/D37 values for the verification set were consistent with the projected values.
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3.3. Further investigations on 2-Bromo-2-Methyl Propane

Furthermore, additional calculations were performed on 2-bromo-2-methyl propane (2Br) in order
to clarify the potential causes for its outlier behavior in the QSTR models. Due to the structural
similarities of 1-bromo-2-methyl propane (1Br) and 2-chloro-2-methyl propane (2Cl) to 2Br, the same
procedure was performed on 2Cl and 1Br. Several studies have claimed that the outlier molecules can
emerge for a variety of reasons [29-33]. Outliers, for instance, may be caused by inaccurate molecular
descriptor values, or they may suggest an error in the experimental toxicities. They could either be the
result of an uncommon mechanism or a distinct binding type. First, a deep inspection of the values of
the Egp energy was performed to examine the effect of the stability of the HAHs on the value of log
1/D37. A stable molecule is indicated by an alkyl halide with a high value of Egap, while a compound
with a low Egp value has a high effectiveness. Remarkable correlations (R = —0.561) were observed
between the stability of the alkyl halide and its toxicity. More stable molecules turned out to have a
high log 1/D37 value. These results were previously outlined using a PCA (See Figure 1). The Eg,p for
2Br, 1Br, and 2Cl were 0.187, 0.195, and 0.225 au, respectively. These values indicated that 2Br had
the lowest energy gap and, therefore, demonstrated the highest efficacy (i.e., lowest stability). On the
other hand, 2Cl turned out to be the most stable one. The log 1/D37 values of 2Br, 1Br, and 2Cl were
—1.41, —1.26, and —1.26, respectively. The identical results of logl/D37 for the latter two molecules
may suggest errors in the experimental toxicities' values.

3.3.1. Interactions of halide alkyls with a-glucan

The structural compositions of A. nidulans cell walls have been studied and reported in various
studies [34—-38]. The cell wall is necessary for fungi to survive in their natural habitat [34]. Fungi cell
walls account for approximately one-quarter of the total fungal biomass [35], and approximately one-
third of the fungal genome is engaged in cell wall formation and maintenance [36]. A carbohydrate
investigation of the A. nidulans wall concluded that it contains roughly 40% a-glucan and p-
glucan [34,37,38]. In this study, a-glucan was utilized to explore the binding interactions between the
A. nidulans cell wall and the selected halide alkyls.

3.3.2.  Electrostatic potential (ESP)analysis

An electrostatic potential (ESP) analysis was performed to unveil the nucleophilic and
electrophilic regions over the molecular systems. By employing the ESP analysis, the molecular
electrostatic potential (MEP) maps of the optimized monomers were extracted utilizing a 0.002 au
electron density envelope. Figure 4 displays the MEP maps for the optimized geometries of 1Br, 2Br,
2Cl1, and G.
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Figure 4. MEP maps of 1-bromo-2-methylpropane (1Br), 2-bromo-2-methylpropane
(2Br), 2-chloro-2-methylpropane (2Cl), and a-glucan (G). The color scale is extended
from the red (—0.01 au) to the blue (0.01 au) scope.

As depicted in Figure 4, the molecular surfaces with relative electrophilic and nucleophilic
regions over the molecular surface of the studied systems were conspicuously observed by the presence
of blue-coded surfaces (i.e., positive ESP) and red-coded surfaces (i.e., negative ESP), respectively.
Notably, negative ESP regions were observed over the surfaces of the Br, Cl, and O atoms of the
investigated molecules. On the other hand, the positive ESP areas were found around the surfaces of
the H atoms. The obtained findings paraded the supreme penchant of the 1Br, 2Br, and 2Cl molecules
to attractively interact with the G molecule through hydrogen bonding interactions.

3.3.3. Energetic manifestations

The preferability of the 1Br, 2Br, and 2CI molecules to interact with the G molecule was herein
thoroughly addressed through the 1Br---/2Br---/2Cl---G complexes. First, geometry optimization
calculations were performed. Using optimized complexes, the interaction energy (Ein) values were
computed. Figure S1 shows the optimized geometries of the studied complexes within all the plausible
configurations and their Ein¢ values. Relying on the negative Ein values, the most preferable
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configurations of the 1Br---/2Br---/2Cl---G complexes were selected and gathered in Figure 5.
Em:=-10.49 Ene=-10.21 Eini=-9.99

;’&;)v

L@ »

| 3 ::”“0' ‘o

322, 07,

&

1Br--G 2Br-G 2C1+G

Figure 5. Optimized complexes within the most preferable configurations of the 1Br--,
2Br-, and 2CI--G complexes. Interaction energy (Ein) values are in kcal/mol.

As shown in Figure S1, the 1Br, 2Br, and 2Cl molecules showed a superior potentiality to interact
with the G molecule through the depicted configurations with respectable negative interaction energy
values. Notably, the stability of the scouted complexes was generally explained as an upshot to the
presence of numerous hydrogen bonds, which were found to vary in numbers and distances. It is worth
noting that the preferable interactions within the studied complexes were ascribed to the 1Br--G
complex, followed by 2Br---G and 2Cl---G complexes (Figure 5). Numerically, Ei of the 1Br---, 2Br--,
and 2Cl'--G complexes were —10.49, —10.21, and —9.99 kcal/mol, respectively.

3.3.4.  Quantum theory of atoms in molecules (QTAIM) analysis
To gain further insight into the origin of the studied interactions, a quantum theory of atoms in
molecules (QTAIM) analysis was executed for the optimized 1Br---/2Br--/2Cl---G complexes within

the most preferable configurations. In that spirit, the BPs and BCPs were generated and are illustrated
in Figure 6.
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2C1-G

Figure 6. QTAIM plots of the most preferable configurations of the optimized 1Br--,
2Br--, and 2CI---G complexes.

As shown in Figure 6, the occurrence of interactions within the investigated complexes was
assured by the presence of BPs and BCPs (i.e., hydrogen bonds). The higher number of the BPs and
BCPs within the 1Br-*G complex over the other analogs could interpret its higher preferability in
comparison to the others. This observation was in line with the interaction energy affirmations.

4. Conclusions

Aspergillus (A.) nidulans toxicities (logl/D37) were precisely predicted for a set of 55 halogenated
aliphatic hydrocarbons (HAHs) using DFT calculations. Besides, the individual correlations between
a series of evaluated descriptors and the A. nidulans toxicities (logl/D37) were unveiled. The
importance of quantum-chemical parameters along with various physical properties, including the
surface area grid (S), molecular volume (¥), molar refractivity (MR), molecular weight (MW), and
molecular ovality (O) were investigated to predict the 4. nidulans toxicities of halogenated aliphatic
hydrocarbons. A potential three-variable QSTR model was trained using 41 molecules and
subsequently validated for a set of 14 compounds. Based on the Egap, MR, and ¢, the linear model had
correlation coefficient (R?) values of 0.912 and 0.575 for the training and the validation sets,
respectively. The generated QSAR model could be used for the log1/Ds37 predictions of HAHs provided
in this paper; however, more research would be required to test more aliphatic compounds for an
external validation. The most preferred interactions were clearly identified within the 1-bromo-2-
methylpropane---a-glucan complex. The greater number of bond pathways and bond critical sites
within the 1-bromo-2-methylpropane---a-glucan complex over other analogs affirmed its significant
favorability.
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