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Abstract: Environmental, geotechnical, agriculture, and water resources engineers all rely on accurate 

measurements of soil moisture content. The most widely used technique for determining soil moisture 

content is the electromagnetic method, which employs dielectric models to relate soil dielectric 

properties to its moisture levels. This paper introduces an innovative electromagnetic sensor designed 

to measure the dielectric properties of moist soil. The dielectric properties of seventeen coarse-grain 

soil samples and seventy-five samples with both coarse and fine grains at varying moisture contents, 

textures, and densities were measured. The findings were used to evaluate the effectiveness of the 

existing most common theoretical and empirical models for soil moisture measurement. The results 

show that all existing models have difficulties with accurately quantifying the soil moisture content. 

In response, this study developed three new types of dielectric models: a theoretical volumetric model, 

a general empirical model that addresses the shortcomings of existing models, and an artificial neural 

network (ANN) model, which demonstrated a higher potential for accurately predicting soil moisture 

content. The best new theoretical volumetric model was the power model, with a power of 0.9 for the 

dielectric constant and 1.4 for the loss factor. The best new general empirical model developed in this 

study considered soil density, texture, and moisture, achieving correlation coefficients of 97.6% for 

the dielectric constant and 97.2% for the loss factor. The developed ANN models to predict the 

dielectric properties of moist soil provided high correlation coefficients of more than 98.5%. 
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1. Introduction  

The uppermost layer of the Earth's crust is made up of soil, which is a mixture of organic matter, 

minerals, water, air, and living things. The environment and human societies depend on the functions 

and services provided by the dynamic soil system. Soil is the premise for nourishment and biomass 

generation. Soil stores, and changes a huge assortment of substances, including water, inorganic, and 

natural compounds. Soil gives crude materials for human utilization [1]. It too serves as the premise 

for human exercises such as scene and heritage. It is also critical for our technical and socio-economic 

foundation, to deliver materials for their usage and support [2]. For the construction of buildings, the 

fields of agriculture, hydrology, meteorology, and civil and geotechnical engineering depend heavily 

on the moisture content of the soil [3]. Expanding the capabilities of well-established sensors and 

modeling methods to estimate soil moisture presents a challenge [4]. For a wide range of applications, 

such as better irrigation scheduling forecasting and breaking down rainfall into its runoff and 

infiltration components, data regarding soil moisture is required. One important factor that influences 

the engineering behavior of soils, particularly cohesive soils, is their moisture content. Soil moisture 

content also affects the pollution transport through soil material and the potential contamination of 

groundwater. As a result, one of the most important tasks in an experimental study in the fields of 

geotechnical and environmental engineering is to monitor and determine the moisture content [5].  

There are several methods for measuring the water content of soil, both direct and indirect. A 

fundamental calibration technique used to compare various methods with one another is the standard 

method (gravimetric method) [6]. This technique is frequently used to calculate the moisture content 

of soil. A known-volume soil sample must be oven-dried for several hours at 105 degrees Celsius until 

reaches constant weight. The weight of the oven dry condition is subtracted from the initial field soil 

weight to determine the water content. The percentage of water by volume or weight can be used to 

express the moisture content. Even though it's a standard procedure and can provide a high level of 

accuracy, it takes a long time, costs a lot of money, destroys samples, and can't measure moisture over 

time or for large field investigations. Put simply, soil moisture measurements using the gravimetric 

method are impractical for hydrological and agricultural applications where frequent, large-scale in-

situ observations are necessary. They are also less suitable for validating remote sensing products, 

which require data collected within a narrow time window aligned with satellite overpasses. 

The indirect methods are invasive method called non-destructive testing (NDT). NDT approaches 

capable of directly gauging moisture levels, yielding precise outcomes with increased accuracy and 

resolution, are crucial for deepening our grasp of soil water dynamics and accurately determining its 

moisture content [7]. Several NDT methods have been developed to measure soil moisture content. 

The most available used NDT methods include: 

• Neutron method: This method uses a relatively expensive radioactive source that requires a trained 

operator. It is also hazardous to the health and environment [8]. 

• Gamma-ray method: This is a non-destructive radioactive method. The application of this 

technique in the field is limited due to its high cost and complexity of use [9–10]. 

• Gypsum block method: This is a type of electrochemical cell. The primary constraint of this 

methodology is the gypsum block's dissolution and degradation, which necessitates periodic 

recalibration [11]. 

• Tensiometer method: Without upsetting the soil, it can provide continuous measurements of soil 

moisture. However, investigation has shown that tensiometers are not appropriate for use in dry 

soils. The use of this method in research is restricted by its high maintenance requirements [11]. 
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• Time domain reflectometer (TDR): TDR is a non-destructive method that requires comparatively 

less labor; the instrument is safe to use, portable, and easy to install. The environment affects TDR 

probes. Therefore, gaps between the soil and the probe could cause inaccurate measurements. In 

extremely salinized soils, its applicability is restricted [12]. 

• Remote sensing methods: The electromagnetic energy that is reflected or emitted from the soil 

surface is necessary for the remote sensing of soil moisture. Although it is expensive and complex, 

remote sensing works best for larger areas that must be uniformly and repeatedly covered. 

Determining the water content of soil in dense vegetation is still a challenging task [13]. 

• Pressure plate method: Estimating the field capacity, permanent wilting point, and moisture 

content at various pressures is typically done using this method. At low water potentials, the 

apparatus is prone to errors. The approach overestimates [14]. 

• Ground penetrating radar (GPR): The transmission and reflection of electromagnetic waves 

through soil is the basis for GPR measurements. GPR is a high-resolution, quick, and non-

destructive method that can cover a wide area and go beyond the surface layer. Because of the 

large sizes of the antennas, their use is restricted to steep and rocky slopes. GPR is challenging to 

use in forests because trees act as reflectors, producing inaccurate data [15–16]. Electromagnetic 

electrode method: This technique is heavily utilized for determining the moisture content of soil 

and for many other applications involving diverse fields and materials [17–21]. The electrode can 

be easily modified to fit the testing conditions using this straightforward method. Moreover, this 

electrode method is portable, low price, and capable of operating across a large frequency range. 

Numerous investigations were carried out to apply this philosophy to soil pollution, water quality, 

concrete moisture, and wood testing for strength and moisture [22–28]. The methods used to 

determine soil moisture content are summarized in Table 1, which also highlights the advantages 

and limitations of each method. 

Soil moisture plays a key role in various hydrological applications, each requiring measurements 

across different spatial scales, from point measurements at monitoring stations to field, watershed, and 

regional scales. Accurate soil moisture readings at these scales are critical to meet the technical needs 

of tasks like state initialization, data assimilation, model parameter optimization, and model 

validation [29]. Yet, obtaining a representative average soil moisture value beyond the point scale is 

challenging. The distribution of soil moisture across different scales is influenced by factors such as 

soil texture, vegetation, terrain, and variations in precipitation [30]. Therefore, in-situ soil moisture 

measurements at multiple locations within the selected scale are essential for a reliable average 

estimate. 

The most popular technique for determining the moisture content of soil and various other 

materials are the electromagnetic methods. The interaction between electromagnetic waves and soil 

material depends on the complex permittivity (ε*) and complex permeability (μ*) of soil. Since most 

soil is a nonmagnetic material, its permeability remains constant, allowing it to be characterized solely 

by its complex permittivity. The complex permittivity of soil (ε*) can be determined by subtracting the 

imaginary part of the soil’s loss factor (𝑗𝜀𝑠𝑜𝑖𝑙
′′ ) form its dielectric constant (𝜀𝑠𝑜𝑖𝑙

′ ) [31]. The dielectric 

constant, signifying the extent of energy absorbed by the soil from the electromagnetic signal, and the 

loss factor indicates the energy loss from the electromagnetic signal due to current conductance. 

However, creating electromagnetic sensors to gauge soil moisture content remains challenging. These 

sensors use dielectric models of moist soil, but it is difficult to generalize these models to apply to all 

soil types. Important factors like soil density and texture, which affect the dielectric properties of soil, 
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are not adequately considered by the current dielectric models [17,32]. Consequently, significant errors 

may arise when predicting soil moisture content using the existing empirical models. 

Table 1. Summary of methods used to determine soil moisture content. 

Method Advantages  Disadvantages and limitations Ref. 

Gravimetric 

method 

The standard method, it is 

a reference to calibrate all 

other methods 

It time time-consuming, costly, and 

mostly destroys the samples 

[6] 

Neutron method Good accuracy Relatively expensive, required trained 

operator,  hazardous to the health 

[8] 

Gamma-ray 

method 

Non-destructive 

radioactive 

The Application in the field is limited by 

its high cost and complexity of use 

[9,10] 

Gypsum block 

method 

Electrochemical with 

acceptable accuracy 

Dissolution and degradation gypsum is 

the main constraint, and needs 

recalibration 

[11] 

Tensiometer 

method 

Provide continuous 

measurements, and 

nondestructive 

Not appropriate for low moisture and dry 

soils. Required high maintenance 

[11] 

Time domain 

reflectometer 

(TDR) 

Nondestructive method, 

requires less labour; safe 

to use, easy to install 

Air gaps between the soil and the probe 

cause error, it is not accurate for 

salinized and organic 

[12] 

Remote sensing 

method 

Works best for larger areas 

that must be uniformly 

and repeatedly covered. 

It is expensive and complex, remote 

sensing Determining the water content of 

soil in dense vegetation is a challenging 

task 

[13] 

Pressure plate It is accurate for low water 

content 

The method is prone to errors and the 

approach overestimates water content 

[14] 

Ground 

penetrating radar 

(GPR) 

GPR is a high-resolution, 

quick, and non-destructive 

method that can cover a 

wide area and go beyond 

the surface layer. 

GPR is challenging to use in forests 

because trees act as reflectors, producing 

inaccurate data 

[15,16] 

Electromagnetic 

electrode method 

The electrode can be 

easily modified to fit the 

testing conditions. It is 

portable, low-priced, and 

operates at a wide 

frequency range 

Needs to model the circuits for the 

design of electrodes, it is costly at high 

frequency.  

[17–21] 

Calibration is a vital process that adjusts sensor readings to account for soil-specific conditions, 

ensuring accurate and consistent soil moisture measurements. For instance, soils with higher clay 

content generally show higher electrical conductivity, whereas sandy soils typically exhibit lower 

conductivity. This variation can significantly impact the accuracy of soil moisture sensors. Therefore, 

developing a reliable calibration for dielectric-based sensors must carefully consider both the sensor’s 
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operating frequency and the soil type where measurements will be taken [12,33]. 

For applications needing frequent soil moisture readings, modern tools like electronic sensors that 

give instant measurements are essential. These sensors generally measure the dielectric properties of 

soil and water, using this information to estimate moisture levels through specific calibration 

relationships. Although many calibration methods for these sensors are available in scientific literature, 

their field use is often limited due to calibration difficulties, technical complexity, and doubts about 

their accuracy. This study aims to develop a multi-array electromagnetic sensor (MAES) to precisely 

measure the soil dielectric properties. The primary goal is to measure the dielectric properties of soils 

with different grain sizes, textures, and densities at various moisture contents. Additionally, the study 

aims to evaluate the most commonly used dielectric models for soil moisture content. Furthermore, 

new theoretical and empirical dielectric models will be developed for improved accuracy. Finally, the 

study will explore the use of artificial intelligence (AI), employing different ANN models, to predict 

soil moisture content more accurately. 

2. Dielectric models for soil material 

Several theoretical and empirical physical dielectric models have been developed using three 

approaches namely; the Phenomenological approach, mixture volumetric approach and empirical 

statistical approach [34–37]. The following subsection explain briefly these three approaches. 

Furthermore, AI using ANN modeling will be added to model soil dielectric properties. 

2.1. Phenomenological models 

It is evident from the review of phenomenological models such as Cole-Cole [38] and Debye [39] 

that require recalibration for every unique material. As such, it is challenging to describe the dielectric 

differences between different types of soil using these models. Therefore, these types of models are 

not used for soil moisture practical applications [7]. 

2.2. Mixture volumetric models 

Based on the relative concentrations of the various soil constituents and each one's distinct 

dielectric properties, volumetric models characterize the dielectric properties of a soil. Pore space, 

volumetric water content, and solid matter are the three primary input parameters used in these 

models [7]. For soil moisture content, multiple three-phase mixture volumetric models were created. 

These stages included solid particles, water, and air. These phases' volume fractions are, respectively, 

a, w, and s for air, water, and solid. For air, water, and solid phases, the corresponding dielectric 

properties are εa, εw, and εs. The following are the most widely used theoretical mixture models for 

determining soil moisture content: 

Silberstein's linear model was suggested [40]. Eqs (1) and (2) provide the dielectric constant and 

loss factor formulas, respectively. 

𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  𝑠𝑜𝑖𝑙
′ =  𝜃𝑠𝑠

′  +  𝜃𝑤𝑤
′ +  𝜃𝑎𝑎

′  (1)  

𝑙𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 =  𝜖𝑠𝑜𝑖𝑙
′′ =  𝜃𝑠 𝜖𝑠

′′ + 𝜃𝑤 𝜖𝑤
′′ +  𝜃𝑎 𝜖𝑎

′′ (2)  
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Birchak's square root model (power equal to 0.5) [41]. Eqs (3) and (4) provide the dielectric 

constant and loss factor formulas, respectively. 

𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  (
𝑠𝑜𝑖𝑙
′ )

1
2⁄ =  𝜃𝑠 (𝑠

′ )
1

2⁄ + 𝜃𝑤 (𝑤
′ )

1
2⁄ + 𝜃𝑎 (𝑎

′ )
1

2⁄  (3)  

𝑙𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 =  (
𝑠𝑜𝑖𝑙
′′ )

1
2⁄ =  𝜃𝑠 (𝑠

′′)
1

2⁄ + 𝜃𝑤 (𝑤
′′ )

1
2⁄ + 𝜃𝑎 (𝑎

′′)
1

2⁄  (4)  

Looyenga's power model states that power equals 1/3 [42]. Eqs (5) and (6) provide the dielectric 

constant and loss factor formulas, respectively. 

𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = (
𝑠𝑜𝑖𝑙
′ )

1
3⁄ =  𝜃𝑠 (𝑠

′ )
1

3⁄ +  𝜃𝑤 (𝑤
′ )

1
3⁄ + 𝜃𝑎 (𝑎

′ )
1

3⁄  (5)  

𝑙𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 = (
𝑠𝑜𝑖𝑙
′′ )

1
3⁄ =  𝜃𝑠 (𝑠

′′)
1

3⁄ +  𝜃𝑤 (𝑤
′′ )

1
3⁄ + 𝜃𝑎 (𝑎

′′)
1

3⁄  (6)  

The logarithmic model that Lichtenecher proposed [43]. Eqs (7) and (8) provide the dielectric 

constant and loss factor formulas, respectively. 

𝐷𝐶 = 𝑠𝑜𝑖𝑙
′ =  𝜃𝑠  ln 𝜀𝑠

′ +  𝜃𝑤  ln 𝜀𝑤
′ + 𝜃𝑎  ln 𝜀𝑎

′  (7)  

𝐷𝐿 = 𝜀𝑠𝑜𝑖𝑙
′′ =  𝜃𝑠  ln 𝜀𝑠

′′ + 𝜃𝑤  ln 𝜀𝑤
′′ +  𝜃𝑎  ln 𝜀𝑎

′′ (8)  

Among these mixture models, a general power model was used for several materials with different 

powers. The researcher sought to determine the power to best fit the experimental data. The power 

mode for dielectric constant and dielectric loss are given in (9) and (10). 

(𝐷𝐶)𝛼 = (𝜀𝑠𝑜𝑖𝑙
′ )𝛼 =  𝜃𝑠 (𝜀𝑠

′)𝛼 + 𝜃𝑤 (𝜀𝑤
′ )𝛼 + 𝜃𝑎 (𝜀𝑎

′ )𝛼 (9)  

(𝐷𝐿)𝛼 = (𝜀𝑠𝑜𝑖𝑙
′′ )𝛼 =  𝜃𝑠 (𝜀𝑠

′′)𝛼 + 𝜃𝑤 (𝜀𝑤
′′)𝛼 + 𝜃𝑎  (𝜀𝑎

′;)𝛼  (10)  

The volume fraction of the soil phases and the dielectric characteristics of each phase were 

necessary for all of these mixture models. Furthermore, these models fail to take into account the 

interactions between these soil phases, which renders them inaccurate for estimating soil moisture 

content. The solid soil particles and the water phases may interact chemically or physically. These 

interactions are not taken into consideration in any of these models. 

2.3. Statistical and empirical models 

The empirical model is a statistical and mathematical representations of the correlations between 

a medium's other attributes its texture and volumetric water content—and its dielectric properties. The 

mathematical description does not seem to have a physical foundation. An empirical model might 

therefore only hold true for the data that were utilized to establish the relationship. The study of soil 

moisture content has served as the basis for numerous empirical models. 

Many models that researchers have proposed rely on their experimental work, data fitting, and 

model parameter determination. There is no standard formula for empirical models; instead, the best 
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statistical regression model to fit the data must be found through multiple trials. To select the best 

model from the trials, one must perform an ANOVA analysis and ascertain the correlation coefficient, 

error, F-test, and level of significance. 

The most widely accepted empirical dielectric model for soil moisture content was proposed by 

Topp [44]. When the soil has a varied texture, and contains organic matter, salt, and other 

characteristics, the Topp model is unable to measure the soil accurately. The formula for the Topp 

model is (11). 

𝑊𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝜃𝑤 = −5.3 × 10−2 + 2.29 × 10−2𝜀𝑠𝑜𝑖𝑙 − 5.5 × 10−2𝜀𝑠𝑜𝑖𝑙
2 + 4.3 × 10−6𝜀𝑠𝑜𝑖𝑙

3  (11)  

2.4. AI Using ANN models 

The relationship between dielectric properties and soil composition and properties is determined 

using theoretical dielectric models including mixture theory, phonological models, and empirical 

models using central composite and response surface methodology. There are several problems 

associated with these models and methods such as complications of soil material, unavailability of 

needed soil information, complicated nonlinear relationship, and limited application of statistical 

methods to the condition of soil used to develop these models. ANN shows promising capabilities of 

overcoming such problems in many fields [45]. 

ANN models have been used for several applications for the prediction of the composition of 

various materials including soil. ANN has been found to offer good modeling techniques in many areas 

of soil material including, prediction of soil consolidation [46], prediction of soil organic matter [47] 

estimation of the shear strength of soil [48] prediction of soil compaction [49–50], estimation of soil 

moisture [51], prediction of soil permeability [52], and soil pollution such as heavy metal and 

hydrocarbon [53–54]. Moreover, ANNs have been used in other vital applications including the 

prediction of carbon emissions [55] and their real-time development [56]. 

Among the information-driven modeling tools that may capture complicated and nonlinear 

interactions between input and output datasets without requiring a prior understanding of the 

underlying phenomena are artificial neural networks (ANNs). ANNs have a flexible statistical 

structure. Three or more layers are usually present in these networks: an input layer, hidden layers, and 

an output layer. The neurons of the primary hidden layer receive all input data from the input layer [57]. 

When producing outputs that match predetermined inputs, the output layer is essential. In the 

meantime, sets of feature detectors are performed by the hidden layers, which might consist of one or 

more layers. In system modelling, choosing the right network framework is an important but difficult 

challenge [58–60]. A schematic illustration of a general 3-layer ANNs model is shown in Figure 1. 

Applying ANNs can be done in a variety of ways and deducing which one works best is hard 

because it involves systematically testing a lot of different scenarios. There are several different types 

and frameworks of ANNs, such as Regression Neural Networks, Multilayer Perceptron Networks, 

Probabilistic Neural Networks, Radial Functions Networks (RFN), Back Propagation Networks (BPN), 

Cascade Neural Networks (CNN) and Feedforward Neural Networks (FNNs). The most widely used 

of these are FNNs and CNN [61,62]. Therefore, these two ANN models will be used in this study. 
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Figure 1. A schematic representation of a general 3-layer ANNs model. 

The creation of an Artificial Neural Network model to investigate the connections between the 

soil complex permittivity and the four soil phases including solid, water and air, is one of the study's 

two primary goals. To control soil moisture content and predict the total water level, it is essential to 

comprehend the relationship between soil dielectric constant, dielectric loss, and volume fraction of 

soil phases. The second goal is to employ the ANN to forecast the soil moisture content by using the 

soil's measured dielectric constant and dielectric loss. 

3. Multi-array electromagnetic sensor 

The new MADS for estimating soil moisture is presented in this section. The capacitive parallel 

plate dielectric cell (CPPDC) created in earlier research [19,31], was used to calibrate the new sensor 

because it has the ability to precisely compute the dielectric characteristics of a variety of materials, 

including composite material, liquids, and geotechnical materials like as rock and soil. The following 

subsection presents the MADS's detailed design. 

3.1. Preliminary design of MADS 

A number of designs were established, and their appropriateness for the in-situ was assessed. The 

dielectric properties were not really assessed; instead, the only focus was on deciding their suitability 

for use in soil. Four configurations for the design and setup were explored: cone penetration rod, 

cylinder probe, plate probe, and pin probe. 

The pin probe, shown in Figure 2a, was simply placed into the field; however, because the soil's 

electric field would not be consistent with the AC signal, there would be little contact of the probe and 

the sand, and the pine design was discarded. The second probe was the parallel plate design presented 

in Figure 2b enhanced the AC interaction with the soil by creating a steady uniform field, but it was 

not used because of large fringing of electrical field at the edges. 

The cone penetration design, shown in Figure 3, was the final design that formed as coaxial rod 

and a ring. This particular design was selected due to its capacity to offer a satisfactory degree of soil 

interaction and its simplicity of insertion into the field. Furthermore, cone penetration tests like this 

design configuration were commonplace to geotechnical engineers. The probe provided the profile of 

dielectric measurements at various soil depths by enabling the use of multi-ring electrodes. 
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Figure 2. Schematic diagram and actual preliminary MAES (setup and design). 

3.2. Final design of MAES 

Because it is simple to insert for in situ testing, the cone penetration probe was selected as the 

final MADS design and configuration for soil moisture content implementations. Multi ring electrodes 

were used in the MADS setup and design, which allowed the electric field to extend both inside and 

outside the rod. 

The impedance (Z) inside the sensor was constant, but the Z outside varied according to the 

attributes of the surrounding soil of rod and ring electrodes. The admittance (Y) of soil calculated from 

the equivalent model circuit of the MAES as inner impedance and outer impedance. The sensor's 

schematic diagram is shown in Figure 3a.  

An LCR meter was used in the final configuration and design of MAES to measure soil impedance 

and act as the source of the electromagnetic signal. The LCR meter was connected to the ring electrodes 

via coaxial cables, and for automated calculations, it was also connected to a personal computer. The 

actual MAES is given in Figure 3b. 

 

Figure 3. Schematic diagram and actual cone probe design and setup. 
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3.3. Final design of MAES 

The complex Y of soil is determined by measuring the impedance of the soil surrounding the 

dielectric sensor at each frequency using an LCR meter. Using (12), one could determine the Y of the 

soil neighboring the sensor based on the soil Z. 

𝑌𝑠𝑜𝑖𝑙 =
1

𝑍
= 𝑌𝑠𝑜𝑖𝑙

′ + 𝑖𝑌𝑠𝑜𝑖𝑙
′′ = 𝐺𝑠𝑜𝑖𝑙 + 𝑖𝐵𝑠𝑜𝑖𝑙 (12)  

The measured real part (G) and imaginary part (B) of soil Y could be used to calculate the real 

and imaginary parts of the complex permittivity of soil, also known as the ’ and ’’ determined, 

respectively, using (13) and (14). 

𝐷𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝜀𝑠𝑜𝑖𝑙
′ = (

𝐵𝑠𝑜𝑖𝑙

𝜔𝐶𝑜
−

𝐶𝑖𝑛

𝐶𝑜
) (13)  

𝐿𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝜀𝑠𝑜𝑖𝑙
′′ = (

𝐺𝑠𝑜𝑖𝑙

𝜔𝐶𝑜
) (14)  

Where Cin is the inside capacitance, Co the capacitance of free space, and ω is the angular 

frequency and given by (15). 

𝜔 = 2𝜋𝑓 (15)  

Where f is the frequency in hertz. To compute the dielectric properties as mentioned in (13) and 

(14), the sensor constant Co and Cin for any operating frequency must be ascertained. Two materials 

with known ’ and ’’ were used to find these two sensor constants. The sensor parameters could be 

found by solving the two linear equations that result from these two measurements, which are 

represented by (16) and (17). 

𝐵 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑜𝑛𝑒 = 𝜔 ( 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑜𝑛𝑒
′  𝐶 𝑜 + 𝐶 𝑖𝑛) (16)  

𝐵 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑡𝑤𝑜 = 𝜔 ( 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑡𝑤𝑜
′  𝐶 𝑜 + 𝐶 𝑖𝑛) (17)  

The dielectric sensor parameters were determined at each frequency using methyl alcohol and 

deionized water. Methyl alcohol and deionized water had complex permittivity of 9.02-i7.10 and 80.2-

i0, respectively. To compute the dielectric properties of soil, the sensor constants Co and Cin were 

calculated at every frequency between 1 kHz and 1000 kHz. These values were then stored. 

3.4. Calibration and validation of MAES 

The MADS was calibrated using two techniques. The LCR meter's open/short calibration standard 

method, created by HP, was the first technique used to calibrate the MADS [63]. After the open/short 

calibration standard was put into place, the measure impedance of Teflon, the standard material, was 

more accurate and the error between the measure and actual values dropped from 4.0 percent to less 

than 1.0 percent. 

The CPPDC was the second calibration technique employed. Diesel served as the standard 

material, and its dielectric characteristics were assessed using the suggested MADS in addition to the 
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CPPDC. In order to calibrate MADS, the results of the diesel's dielectric properties using both CPPDC 

and MADS were compared. The results show that the value measured by CPPDC was greater than the 

measured dielectric properties using the suggested MADS. This was observed in a number of materials, 

with very tiny and nearly constant errors. To ensure that the material's measured dielectric properties 

match (have an equal value) with the measured values obtained using CPPDC, a correction factor was 

added. The correction factor is presented in (18) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝜀𝐶𝑃𝑃𝐷𝐶

′

𝑢𝑠𝑖𝑛𝑔 𝑀𝐴𝐸𝑆
′  (18)  

Validation of MAES: To confirm that MAES is accurate in measuring a material's dielectric 

characteristics. The dielectric characteristics of the water were computed after the sensor was 

submerged in it at 25C. The outcomes show strong agreement with findings published by numerous 

researchers. If we take into account the possibility that the water may not be pure, the deviation 

between the computed dielectric constant of water and its reported value of 80.0 was below 1.0%. 

4. Materials and methods 

Sample preparation involved the use of two different types of soil: clay and sand. To get closer to 

the natural environment, which lacks pure sandy or clayey soil, various percentages of clayey and 

sandy soil were combined. Figure 4 lists the characteristics and grading of both clay and sandy soils. 

Two set of soil samples were used. The first set sandy soil was used and the moisture ranges from 0% 

to saturated condition 40%. This set of testing include 17 sand soil with different moisture content. 

The second set of soil samples were 75 soil samples. The soil samples contain sand and clay at different 

percentages. The moisture of the second soil set evaluated at 5 water level and five level of various 

texture and 3 level of soil density produced using three level of compaction. The detail of these soil 

sets are explained in the following subsections. 

 

Figure 4. Grading characteristics of sand and clay soil samples. 
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4.1. Sandy soil samples and moisture content 

The dielectric of sand (coarse-grained) was measured at different moisture contents, from 0.0 

percent (oven dry condition) to 40.0 percent moist soil (saturated condition). A total of seventeen 

samples of sand (specific gravity=2.650) and varying moisture contents were prepared. Every model—

theoretical, empirical, and AI—was assessed. It was possible to create new dielectric models for moist 

sandy soil. 

4.2. Soil texture, soil density and water content 

Five series of samples were prepared in order to assess the impact of soil moisture content, texture, 

and density. These series combine the fine-grained (clay) and coarse-grained (sand) contents to create 

a soil sample. There were five coarse-grained content by weight. 100 percent (pure coarse-grained), 

75, 50, 25, and 0 percent of the contents were sand (coarse-grained). These five series' corresponding 

clay (fine-grained contents) were 100 (pure fine-grained), 25, 50, 75, and 0 percent. Because soil 

physical properties like water content, density, and porosity are dependent variables and affect each 

other, the dielectric properties of each series were measured and evaluated at five water content by 

volume. The water contents range from 0.0 to 20.0 percent with five percent increments. To better 

understand the effects of density and porosity, each soil sample was filled into the dielectric cell using 

three different levels of compaction, resulting in three different densities and three different porosities. 

The dielectric properties were measured at frequencies ranging from 1 to 1000 kH. 

5. Results and discussions 

The focus in this study was to develop three new dielectric model for moisture content of soil. 

First model will use the theoretical mixture volumetric approach and the second new model will use 

the empirical approach to include the effect of soil density and soil texture such as sand and clay 

content on the dielectric models of moist soil. The third model was the ANN model to determine the 

dielectric properties of moist soil. 

5.1. Dielectric models for sandy soil 

We prepared and tested seventeen samples of sandy soil (coarse-grained soil with specific gravit 

=2.65), varying in moisture content from 0.0 percent (oven-dry) to 40.0 percent (saturated condition). 

New dielectric models for moist sandy soil were developed after an evaluation of all theoretical, 

empirical, and AI models. 

5.1.1. Volumetric dielectric mixture models 

Three phases of mixture volumetric dielectric models of soil material were assessed. The three 

phases of soil are air, water, and solid. The dielectric characteristics of the soil constituents (phases) 

and the volume percentages of each constituent determine the dielectric property of the soil mixture 

volumetric dielectric. For soil materials, a number of theoretically feasible mixture dielectric models 

were created and put forth. The most advanced theoretical mixture volumetric models for soil 
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composition were examined. Silberstein, Birchak, Looyenga, and Lichtenecker are some of these 

models. These models were used to determine the dielectric constant and loss factor of soil based on 

the volume fraction of the constituent parts of the soil material and the dielectric characteristics of each 

phase (component). The computed dielectric constant and the extent to which these values match the 

experimental data at each moisture content were shown in Figure 5. 

Using the previously mentioned analytical models, Figure 6 presents the result of the optimal 

theoretical model for the dielectric constant of clean soil at various moisture contents and compares it 

with the measured values from this study. 

 

Figure 5. Experimental and available dielectric constant mixture models of sandy soil 

versus water content. 

 

Figure 6. Experimental dielectric constant versus model dielectric constant. 
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Based on the proposed theoretical models, Figure 7 displays the loss factor of the sand samples. 

As seen in Figure 8, the best theoretical model was found by comparing the models that were given 

with the experimental values that were measured. 

 

Figure 7. Experimental and available loss factor mixture models of sandy soil versus water 

content. 

 

Figure 8. Experimental loss factor versus model dielectric constant. 

According to the dielectric constant result using analytical soil models, Silberstein (linear) was 

the model that most closely fit the experimental data. The loss factor of moist soil was underestimated 

by all analytical models. New mixture volumetric dielectric models for the dielectric constant and loss 

factor were proposed in this study. The three-phase power model was one of the newly suggested 

models. At α = 0.9 for the dielectric constant and 1.4 for the loss factor, the experimental measurement 
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fit the power function the best. The newly suggested model fit power model is given by (19) and (20) 

dielectric constant and loss factor respectively. 

𝐷𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = (𝜖𝑠𝑜𝑖𝑙
′ )0.9 =  𝜃𝑠 (𝜖𝑠

′)0.9 + 𝜃𝑤 (𝜖𝑤
′ )0.9 + 𝜃𝑎 (𝜖𝑎

′ )0.9 (19)  

𝐿𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 = (𝜖𝑠𝑜𝑖𝑙
′′ )1.4 =  𝜃𝑠 (𝜖𝑠

′′)1.4 + 𝜃𝑤 (𝜖𝑤
′′)1.4 + 𝜃𝑎 (𝜖𝑎

′′)1.4 (20)  

5.1.2. Empirical dielectric models 

Several empirical models have been examined in order to develop the most appropriate model for 

determining the dielectric properties of soil materials, as analytical models are not able to provide 

accurate estimations of these properties. Numerous statistical models, including linear, quadratic, and 

cubic models, have been proposed by researchers to determine the relationship between the water 

content and the dielectric constant of soil. Regression analysis, both multilinear and multinonlinear, 

was performed on these models in this study using MATLAB. 

Table 2 summarizes the regression analysis and model fitting, and Figure 9 shows the models 

with 95% confidence fitting curves. As can be seen in Table 2, where θw stands for the volume fraction 

of moisture content, the cubic model was found to be the best. This model had the lowest mean square 

error and the highest correlation coefficient (R2 = 0.9937 and RMSE = 0.8478), similar to the one put 

forth by Topp [44]. Furthermore, of all the models examined, this one had the smallest and lowest 

residual value. 

Table 2. Regression analysis and fitting performance of dielectric constant models. 

Model Correlation 

coefficient 

(R2) 

Adjusted 

correlation 

coefficient 

Residual mean 

square error 

(RMSE) 

F-value 
P-Value 

Sig. 

Linear model 0.9817 0.9817 1.4910 804.74 0.000 

Quadraric model 0.9945 0.9937 0.8489 1257.38 0.000 

Cubic model 0.9937 0.9937 0.8478 840.85 0.000 

 

Figure 9. Empirical dielectric constant models versus moisture content of sand soil. 
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On the other hand, a number of dielectric models for loss factor have been put forth by scientists 

to ascertain the connection between soil water content and loss factor. There are cubic, quadratic, and 

linear versions of these models. These models were created for this study, and Table 3 shows the results 

of the regression analysis and model fitting. Figure 10 displays the models with 95% confidence fitting 

curves. According to Table 3, the cubic model turned out to be the most effective. This model, which 

is comparable to Topp's model, had the lowest mean square error and the highest correlation coefficient 

(R2 = 0.9975). This model also had the smallest and lowest residual value out of all the models that 

were looked at. 

Table 3. Regression analysis and fitting performance of loss factor models. 

Model Correlation 

coefficient 

(R2) 

Adjusted 

correlation 

coefficient 

Residual mean 

square error 

(RMSE) 

F-value 
P-Value 

Sig. 

Linear model 0.9588 0.9561 22.72 804.74 0.000 

Quadraric model 0.9949 0.9941 8.294 1257.38 0.000 

Cubic model 0.9975 0.9969 6.059 840.85 0.000 

 

Figure 10. Empirical loss factor models versus moisture content of sand soil. 

5.1.3. ANN dielectric models 

To identify the most suitable artificial neural network (ANN) model for predicting soil moisture 

content and dielectric properties, several performance metrics were considered. These included the 

number of learning trials, correlation coefficients, mean square error, and residual error. Various 

activation functions were applied in the proposed feedforward neural network (FNN) models, 

including linear, hyperbolic tangent (tanh), logistic (or sigmoid), and Gaussian functions (see Figure 

11). The primary role of an activation function is to introduce non-linearity to the neuron's output by 

calculating a weighted sum and applying bias, which determines whether the neuron is activated. 

The soil sample data was divided into three groups for training, validation, and testing. The first 

group, representing 70% of the samples, was used to train the FNN and CNN models. The second 

group, consisting of 15% of the total samples, was used as a validation set to assess the performance 

of these models. The final 15% was reserved for testing and evaluating how well the ANN models fit 
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the data. This systematic division facilitated a robust evaluation and optimization of the ANN models 

for predicting dielectric properties using soil moisture content and soil phases. 

Two ANN models were used to predict sand dielectric properties based on the measured sand 

moisture content using the proposed sensor. These models are FNN and CNN. FNN and CNN have 

been used in several engineering applications [64–66]. The schematic diagram and detail of ANN 

models is presented in Figure 11. The two models used an input layer with one variable (sand moisture 

content) and one output layer with two variables (sand dielectric constant and loss factor). The FNN 

model has one hidden layer with six neurons while the CNN model has one hidden layer with six 

neurons. Both models have used the ‘logsig’ activation function in the input and hidden layers. Both 

models also used the ‘puelin’ activation function in the output layers. The training method in both 

models was the ‘levenberg Marquardt’ method. The performance details of the used FNN models are 

shown in Figure 12. The best ANN model consist of three layers, input layer contains 1 neuron, one 

hidden layer contains 6 neurons, and output layer contains 2 neurons. 

The prediction results of the dielectric properties of moist sandy soil using the ANN model 

indicated that both models are excellent in estimating dielectric properties. The correlation coefficients 

(R) of the training phase for FNN and CNN models were 0.9999 and 0.9816, respectively. Therefore, 

the best ANN was FNN. The R for the validation and testing phase of FNN were 0.9915 and 0.9830, 

respectively. 

To further assess the reliability of the ANN models, multiple rounds of random training were 

conducted. This ensured that the promising results of the ANN models were not due to chance (i.e., a 

specific training case). Notably, the performance metric of correlation coefficients (R) showed no 

significant differences between the various training trials, confirming the consistency of the model's 

performance. 

 

Figure 11. The detail of FNN model used to predict soil dielectric properties using moisture content. 
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Figure 12. Experimental dielectric properties versus predicted values using FNN model. 

5.2. Soil texture, soil density and moisture content 

Seventy-five soil samples were prepared in order to test the effects of soil moisture content, soil 

texture, and soil density on soil dielectric properties. To determine how these variables affected the 

results, five series of samples were made. To create the soil samples, these series blended the contents 

of fine-grained (clay) and coarse-grained (sand). The percentages of sand that corresponded to the clay 

contents were 100%, 75%, 50%, 25%, and 0%, respectively. Each series' dielectric characteristics were 

measured and assessed at five different volumetric water content levels, ranging from 0% to 20%. 

Three stages of compaction were applied to each sample in order to produce soil samples with three 

distinct densities at each moisture content and texture level because the physical characteristics of soil, 

such as density, porosity, and moisture content, are interdependent and influence one another.  

Following the preparation of these soil samples, the suggested MADS was used to measure the 

dielectric characteristics of 75 moist soils. Empirical and AI-based dielectric models were created and 

assessed for these samples. Since theoretical dielectric models are unable to determine soil density, 

they were not utilized. The volume fraction of soil phases and the dielectric characteristics of each 

phase are the only factors considered in theoretical models, such as volumetric mixture models. 

Ignoring the interactions between phases, they calculate the dielectric properties of soil based on the 

dielectric properties and volume fractions of each phase. The applicability of theoretical models is 

limited by the dynamic nature of soil, which is subject to loads that alter its density and the volume of 

each phase through compaction or consolidation. Consequently, the ensuing subsections will not 

address or elaborate on this kind of dielectric model. 
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5.2.1. General empirical dielectric models 

The majority of researchers focus on the dielectric characteristics of soil in relation to water 

content or soil composition. This study produced a number of models that provide good relationships 

with three different variables: soil texture, density, and moisture content. Table 4 provides a summary 

of these general models for the clean soil's dielectric constant. Intensive regression analysis performed 

and many formulas for model the dielectric constant. For each model ANOVA analysis were performed 

to evaluate and determine the best model to fit the data. The best five model obtained in this study are 

listed below. 

Model 1 (DM1) dielectric constant is function of soil texture (sand content) and soil moisture 

content (21). 

𝜀𝑠𝑜𝑖𝑙
′ = 7.906 − 0.09405𝑆 + 1.215𝜃 − 0.0116𝜃2 + 0.00058𝜃3 (21)  

Model 2 (DM2) dielectric constant is function of soil density and moisture content (22). 

𝜀𝑠𝑜𝑖𝑙
′ = 3.59 − 0.29𝜌 + 1.220𝜃 − 0.0114𝜃2 + 0.00057𝜃3 (22)  

Model 3 (DM3) dielectric constant is function of soil texture (sand content), density and soil 

moisture content (23). 

𝜀𝑠𝑜𝑖𝑙
′ = 0.33 − 0.09967𝑆 + 5.87𝜌 + 1.116𝜃 − 0.0153𝜃2 + 0.00089𝜃3 (23)  

Model 4 (DM4) dielectric constant is function of soil texture (sand and clay contents), density 

and soil moisture content (24). 

𝜀𝑠𝑜𝑖𝑙
′ = −0.0963𝑆 + 0.0033𝐶 + 5.87𝜌 + 1.116𝜃 − 0.0153𝜃2 + 0.00089𝜃3 (24)  

Table 4. ANOVA and regression analysis of empirical dielectric constant models. 

Model R square  R adjusted Error (RMSE) F value Sig. 

DM1 0.9090 0.9038 3.0053 174.8 0.000 

DM2 0.7896 0.7776 4.5690 65.69 0.000 

DM3 0.9158 0.9097 2.9120 150.0 0.000 

DM4 0.9756 0.9735 2.9120 7.310 0.009 

Table 5 provides a summary of the general models for the clean soil's loss factor. Intensive 

regression analysis performed and many formulas for model the loss factor. For each model ANOVA 

analysis were performed to evaluate and determine the best model to fit the data. The best five model 

obtained in this study are listed below. An example of the dielectric constant and loss factor of soil 

calculated using model 1 (DM1 and LM1) could be seen in Figure 13. 

Model 1 (LM1) loss factor is function of soil texture (sand content) and soil moisture content (25). 

𝜀𝑠𝑜𝑖𝑙
′ = 20.92 − 0.3839𝑆 + 3.82𝜃 + 0.262𝜃2 + 0.0123𝜃3 (25)  

Model 2 (LM2) loss factor is function of soil density and moisture content (26). 

𝜀𝑠𝑜𝑖𝑙
′ = −51.1 + 39.5𝜌 + 3.15𝜃 + 0.236𝜃2 + 0.0144𝜃3 (26)  
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Model 3 (LM3) loss factor is function of soil texture (sand content), density and soil moisture 

content (27). 

𝜀𝑠𝑜𝑖𝑙
′ = −65.8 − 0.4482𝑆 + 67.2𝜌 + 2.68𝜃 + 0.218𝜃2 + 0.0159𝜃3 (27)  

Model 4 (LM4) loss factor is function of soil texture (sand and clay contents), density and soil 

moisture content (28). 

𝜀𝑠𝑜𝑖𝑙
′ = −1.106𝑆 − 0.658𝐶 + 67.2𝜌 + 2.268𝜃 + 0.2180𝜃2 + 0.01591𝜃3 (28)  

Table 5. ANOVA and regression analysis of empirical loss factor models. 

Model R square  R adjusted Error (RMSE) F value Sig. 

LM1 0.9342 0.9305 28.007 248.6 0.000 

LM2 0.9204 0.9159 30.811 202.4 0.000 

LM3 0.9416 0.9374 26.576 222.6 0.000 

LM4 0.9720 0.9696 26.576 399.5 0.000 

 

Figure 13. Models of dielectric properties (DM1 and LM1) versus sand and moisture content. 

5.2.2. AI dielectric models 

Two ANN models were used to predict dielectric properties of moist sand based on the measured 

loss factor using the proposed sensor. These models are FNN and CNN. The two models used an input 

layer with four variables (volume fraction of the four soil phases) and one output layer with two 

variables (sand dielectric constant and loss factor). The FNN model has one hidden layer with six 

neurons while the CNN model has one hidden layer with twelve neurons. Both models have used the 

‘logsig’ activation function in the input and hidden layers. Both models also used the ‘puelin’ activation 

function in the output layers. The training method in both models was the ‘levenberg Marquardt’ 

method. The best ANN model was CNN model. The schematic diagram and detail of CNN model is 

presented in Figure 14. The performance details of the best CNN model is shown in Figure15.  

The prediction results of the soil dielectric properties of sandy soil using the ANN model indicated 
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that both models are excellent in estimating sand dielectric constant. The correlation coefficients (R) 

of the training phase for FNN and CNN models were 0.9823 and 0.9999 respectively. Therefore, the 

best ANN was CNN. The R for the validation and testing phase of CNN were 0.9855 and 0.9929, 

respectively. However, these high correlation coefficients did not account for variables excluded from 

the study or nonlinearity. ANN, on the other hand, effectively captured nonlinear effects and considered 

additional factors that were not included in the original study. To evaluate the reliability of the ANN 

models, several rounds of random training were performed. This approach ensured that the favorable 

results were not merely coincidental or dependent on a particular training instance. Importantly, the 

correlation coefficients (R) remained consistent across the different training trials, indicating stable 

and reliable model performance. 

6. Limitation and future work 

Although the results of this study demonstrate that both ANN models, including cascade 

feedforward neural networks (CNN) and feedforward neural networks (FNN), exhibit high 

predictability for the soil moisture content and soil dielectric properties, future work should include a 

sensitivity analysis of these neural methods. Additionally, other AI techniques such as machine 

learning, XGBoost, the black widow optimization method, and convolutional neural networks could 

be explored [67]. Moreover, nonlinear regression analysis and response surface methodology could be 

applied, incorporating more soil data and soil condition such as soil pollution, salt content, salinity, to 

improve the results and compare these methods with various ANN approaches. Future work could 

consider some recent advances on the parsimony, interpretability and predictive capability of a 

physically-based model in the optical domain for estimating soil moisture content [68]. 

 

Figure 14. The detail of CNN model used to predict soil dielectric properties. 
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Figure 15. Experimental soil dielectric properties versus predicted values using CNN model. 

7. Conclusions 

To characterize dielectric properties in situ as well as in the lab, the multi array electromagnetic 

sensor (MAES) was developed. The MAES is a low-cost, lightweight, easy to use, portable, and user-

friendly instrument for precisely measuring dielectric properties in the field and in the lab. The sensor's 

multiple electrodes allow it to measure the moisture profile and the dielectric profile of the soil in 

relation to its depth. Furthermore, the sensor was calibrated and validated for accurate dielectric 

measurement of soil. This study also evaluates three types of dielectric models used for estimation soil 

moisture content.  These models include theoretical volumetric mixture models and statistical 

empirical models. The results obtained in this study can be lead to the following concluded points: 

• Theoretical models such as volumetric mixture models can be used only for coarse grain soil 

(sandy soil). The measured of dielectric properties of moist sandy soil was under estimate of 

dielectric properties specially at higher moister content. The best model was Silberstein's linear 

model. A new theoretical model based on power formula was developed. This model indicates the 

best fitting theoretical model for dielectric constant of moist sand with power equal to 0.9 and for 

loss factor the best power was 1.4. All theoretical models cannot be used and not applicable for 

general soil in practice were soil could possess different texture and different densities. 

• New statistical regression models were developed for sandy soil. These models include linear, 

quadratic and cubic formula. The best model was the cubic formula having correlation coefficients 

0.993 for dielectric constant and 0.997 for loss factor. 

• For general soil with different soil texture (clay and sand), different density and different moisture 
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content, four new statistical empirical models were developed to take into account the density, 

texture, and moisture the best model was the fourth model with high correlation coefficient 0.975 

for dielectric and 0.972 for loss factor. These new models can solve the problem from recalibration 

of soil measurement based on dielectric measurement for soil. 

• Furthermore, this study investigates to develop and AI using ANN models for dielectric properties 

of soil. The ANN models indicate the high capability of modeling dielectric properties of mist soil 

for both sand soil and general soil. The best ANN model for sand dielectric properties was FNN 

model with correlation coefficients of 0.9999 for training data and 0.997 for testing and validation. 

The best ANN for general soil dielectric properties was the CNN model with correlation 

coefficients 0.9999 for training data and 0.996 for testing. However, these high correlation 

coefficients did not account for variables excluded from the study or nonlinearity. ANN, on the 

other hand, effectively captured nonlinear effects and considered additional factors that were not 

included in the original study. 
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