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Abstract: Environmental degradation, including air quality deterioration, has been mainly attributed 

to anthropogenic activities. Air pollution has become a pressing issue in industrialised and highly 

populated areas due to the combustion of fossil fuels and industrial operations. Recently, the COVID-

19 pandemic led to a nationwide lockdown to control the spread of the coronavirus. This imposed 

restrictions on many economic activities, thus providing the environment with an opportunity to heal. 

The COVID-19 response measures adopted by most countries, including lockdown, restricted 

movement, and other containment measures, led to a significant decrease in energy use in the transport 

sector. Due to low electricity access levels in developing countries, traditional energy sources make 

up the bulk of energy used for most domestic energy services. Biomass combustion emits carbon 

monoxide (CO), while the transport sector is a major contributor of nitrogen dioxide (NO2). This study 

was purposed to investigate the short-term effects of COVID-19 on CO and NO2 concentration levels 

in Nairobi, Vihiga and Tana River counties. The study utilised data on CO surface concentration, NO2 

column concentration and reported COVID-19 cases. Time series, correlation analysis and spatial and 

temporal map analysis were carried out to investigate the changes and relationships among the study 

parameters. The three counties were selected based on the urbanisation and population. Nairobi county 

represented an urban setting, while the Vihiga and Tana River counties represented rural areas with 

high and low population densities, respectively. The CO surface concentrations in Nairobi and Vihiga 

county significantly correlated with the COVID-19 cases, with both counties portraying negative 

correlations, i.e., −0.59 (P-value: 0.008) and −0.45 (P-value: 0.05), respectively. NO2 column 

concentration also exhibited a significant negative relationship with reported COVID-19 cases in the 
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Vihiga (−0.018, P-value = 0.05) and Tana River (0.17, P-value = 0.00) counties. These findings 

highlight the need for demographic and economic considerations in CO and NO2 assessments, and 

allude to a decreased health risk due to CO and NO2 emissions during the COVID-19 pandemic. 

Keywords: pollution; environment; biomass; transport sector; Vihiga 

1. Introduction

Carbon monoxide (CO) and nitrogen dioxide (NO2) released into the atmosphere from energy use

and other anthropogenic activities play a critical role in global and local atmospheric chemistry. 

Biomass burning for home energy use has been a primary environmental health concern in developing 

countries, and it has been attributed to increased atmospheric pollution. One of the common gases 

measured in cookstove and air pollution exposure studies is CO. This is due to its association with 

adverse health effects and birth outcomes, such as low birth weight [1]. In addition, it is considered an 

indirect greenhouse gas due to its close coupling to atmospheric methane, a potent greenhouse 

gas [2,3]. It is also hazardous to human health if inhaled, and one of the few ambient air pollutants 

known to exist in a biologically toxic form, i.e., carboxyhaemoglobin. Ambient daily CO levels have 

been associated with increased daily mortality and hospital admissions [4]. Another major 

environmental pollutant produced primarily from fossil fuel combustion is NO2 [5]. Some of the 

environmental effects of NO2 include ground-level ozone (smog) [6] and the formation of toxic nitric 

acid [7]. Its associated derivatives (NOx) have also been linked to an increased risk of lung cancer in 

humans [8,9]. 

A novel disease, later named Coronavirus disease 2019 (COVID-19), was discovered in patients 

in Wuhan, China in December 2019 [10–12]. The disease rapidly spread worldwide, and, on March 

11, 2020, the World Health Organization (WHO) declared it a global pandemic. Stringent measures 

were put in place by governments across the world to isolate cases and stop the virus' rapid 

transmission. The measures imposed include isolation of infected individuals, a ban on public and 

private mass gatherings, enforcement of strict quarantines, social distancing, imposing curfews, 

mandatory home confinement and lockdown. These government policies have drastically altered 

energy demand and consumption patterns, and may unintentionally bring about social and 

environmental merits and demerits [13]. For instance, population confinement and curfews may lead 

to drastic energy use changes, impacting CO and NO2 emission levels, thus affecting air pollution.  

The overall objective was to examine the effects of COVID-19 preventive measures on 

atmospheric CO and NO2 levels in Kenya's urban and rural areas. The study focused on CO and NO2 

because both are air pollutants related to energy use for transport and households, and their emissions 

could be substantially affected due to reduced traffic and home quarantining. This study was purposed 

to explore CO and NO2 trends in the selected study areas and perform a comparative analysis for the 

different demographic zones, with emphasis on the COVID-19 period. In Kenya, the first COVID-19 

case was reported on March 14, 2020. As a result, the government issued various directives, including 

the closure of international border entry and exit points, enforcement of a dusk-to-dawn curfew, 

lockdown of hotspot zones, closure of all schools, suspension of unnecessary gatherings and 

commercial activities and requirement for government employees to work from home [14,15]. 

However, some preventive measures were eased following a decreasing trend in the number of 
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reported COVID-19 cases since August 2020. The study was designed based on the hypothesis that 

COVID-19 mitigation measures such as lockdown, a stay at home order, and imposed curfews would 

be associated with increased domestic energy use and decreased energy use in the transport sector, 

thereby affecting CO and NO2 levels. 

2. Data and methods

The study areas were selected to represent different demographic and environmental factors.

Urbanisation and agricultural activities influence CO and NO2 concentration levels [16]. The study 

areas were Nairobi, Vihiga and Tana River counties, representing urbanised, high rural population and 

sparsely populated areas, respectively (Figure 1). According to the Kenya National Bureau of Statistics 

2019 census, Nairobi county had 4.4 million people, Vihiga county had 590,013 people and Tana River 

county had 315,943 people. Nairobi and Vihiga counties form the foremost and third-most densely 

populated counties in Kenya, with population densities of 6,247 and 1,047 per square kilometre, 

respectively. Vihiga county, although rural, is more densely populated than most city/town counties in 

Kenya. On the other hand, Tana River county is the second least populated county in Kenya, with six 

people per square kilometre. 

Figure 1. Map showing relative sizes of the study areas. Source: Authors. 
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The study utilised data on daily reported COVID-19 cases archived by the Ministry of Health 

from March 14, 2020 to August 30, 2020. The number of reported COVID-19 cases informed the 

government decision to impose more stringent preventive measures or ease some of the already 

imposed measures. In February 2020, before a single case was reported in Kenya, the Ministry of 

Health advised maintaining basic hand and respiratory hygiene practices. However, with the surge in 

the number of COVID-19 cases, the authorities in Kenya extended the measures to include the closure 

of schools (March 15, 2020), lockdown of hotspot zones and cessation of movement (May 6, 2020). 

Monthly data on CO concentration for January 2010 to July 2020 were extracted from Giovanni, an 

online application containing different archived different parameters related to geophysical data. The 

data were collected by using the Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2) model at a spatial resolution of 0.5 × 0.625°, which is less than each of the 

three study areas we considered. Daily data for CO surface concentration were available at a coarser 

spatial resolution (1°), hence our decision to use the monthly data. According to the Giovanni 

measurement definitions, the data represent the number of CO molecules in an atmospheric column 

from the earth's surface to the top of the stratosphere above a square centimetre of the surface [17]. 

Anthropogenic activities such as the burning of fossil fuels and the oxidation of hydrocarbons are 

responsible for CO production. The transport sector has been identified as a significant CO gas 

source [18]. Daily NO2 data for January 2010 to August 2020 were obtained with a spatial resolution 

of 0.25° from the ozone monitoring instrument (OMI) aboard NASA's Aura satellite. The data 

represent the number of NO2 molecules in the tropospheric column above a square centimetre of 

surface (1/cm2). Map analysis for CO and NO2 concentration in Kenya for 2017, 2018, 2019, 2020 and 

2021 was also done. Emphasis was laid on March 2020 to December 2021 because the COVID 

pandemic was most prevalent in Kenya during this period. 

Furthermore, gaseous atmospheric pollutants, including CO and NO2, follow seasonal patterns 

because of climate variation and different atmospheric conditions in different months. Pearson's 

moment correlation was used to determine the associations between reported COVID-19 cases and CO 

and NO2 concentration levels. Pearson's product-moment correlation measures the degree of the 

relationship between continuous variables [19,20]. The variables under investigation are continuous, 

hence the decision to use Pearson's product-moment correlation. The analysis was carried out in an R 

programming environment. This method has also been used in similar studies [21–24]. Tests for 

significance of the established relationships were also performed to account for the variation brought 

about by different sample sizes. This was expressed in probability levels (p), where p = 0.05 represents 

the critical value. 

3. Results

Seasonal variation of CO in Vihiga county has a peak during the period of June to August (Figure 

2). December to February constitutes the season with high CO concentrations in the Nairobi and Tana 

River counties. CO-normalised values for Vihiga county were above average during the COVID-19 

period. The NO2 tropospheric column did not indicate significant spatial variation as that of CO 

concentration (Plate 1). The Nairobi, Vihiga and Tana River counties experienced below long-term-

average NO2 column concentration values during most of the period under consideration, with more 

variability in Nairobi and Vihiga than Tana River (Figures 4, 5 and 6). The satellite images for NO2

column concentration did not portray observable changes across the seasons considered [25].  
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Figure 2. Time series of monthly surface CO concentrations for Nairobi, Vihiga and Tana 

River. Data Source: MERRA-2 model M2TMNXCHM v5.12.4. 

Figure 3. Time series of monthly surface CO concentrations for Nairobi, Vihiga and Tana 

River during the COVID-19 period. Data Source: MERRA-2 model M2TMNXCHM 

v5.12.4. 
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Figure 4. (a) Area-averaged time series, and (b) histogram of NO2 tropospheric column 

(30% cloud-screened) over Nairobi County. Data source: OMI OMNO2d v003. 

(b) 

(a)
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Figure 5. (a) Area-averaged time series and (b) histogram of NO2 tropospheric column 

(30% cloud-screened) over Vihiga County. Data source: OMI OMNO2d v003. 

(a) 

(b)
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Figure 6. (a) Area-averaged time series and (b) histogram of NO2 tropospheric column 

(30% cloud-screened) over Tana River County. Data source: OMI OMNO2d v003. 

Since discovering the first COVID-19 case in Kenya on March 12, 2020, the country strengthened 

measures to ensure no further transmission of the disease. However, the number of reported COVID-

19 cases rose from March 14, 2020, reaching a peak in December of 2021. There were other peaks in 

July and November of 2020, and in March and August of 2021 (Figure 7). The country witnessed five 

COVID-19 peaks between March 2020 and December 2021 (Figure 7). 

(a) 

(b)
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Figure 7. Daily COVID-19 cases in Kenya. Data source: World Health Organization 

(WHO). 

Correlation analysis for COVID-19 cases and CO concentration revealed a negative effect of 

COVID-19 on CO levels in Vihiga and Nairobi counties, at −0.45 (P-value, 0.05) and −0.59 (P-value, 

0.008), respectively (Figure 8). For Vihiga county, there is only a 5% chance that the tested sample 

results occurred due to chance, while there is 0.8% chance for Nairobi. These results suggest a decrease 

in CO concentration levels with increasing COVID-19 cases in Vihiga and Nairobi counties during the 

COVID-19 pandemic. Vihiga county's findings are also consistent with those obtained by Faridi et 

al. [26–28], who reported positive effects of COVID-19 on ambient air quality. The dorrelation 

between COVID-19 cases and CO levels in Tana River was −0.24 (P-value, 0.33), which was 

statistically insignificant because of the high P-value. The county has a sparse population, and the 

emitted CO is generally spread over vast areas, reducing its concentration.  
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Plate 1. Comparison of time-averaged CO surface concentration [ppbV] from March to 

August in 2017, 2018, 2019 and 2020 over Kenya. Source: MERRA-2 model 

M2TMNXCHM v5.12.4. 

Vihiga 
Nairobi Tana River 

Sept 2020 – June 2021 Sept 2019 – June 2020

March 2019 – August 2019March 2020 -August 2020

March 2017 – August 2017March 2018 – August 2018
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The spatial distribution in Plate 1 shows an increase in Tana River county's CO levels, and a 

reduction in those of Vihiga and Nairobi compared to the last three similar seasons. The data for the 

period of September 2020 to June 2021 shows an observable change in CO surface concentration levels 

compared to the previous period (September 2019 to June 2020). However, NO2 tropospheric column 

concentration data did not indicate significant spatial or temporal changes across the country. The 

correlation between the NO2 in the three counties and the number of COVID cases yielded correlation 

coefficients of −0.018 (P-value, 0.63), −0.075 (P-value, 0.0508) and 0.17 (P-value, 0.00) for Nairobi, 

Vihiga and Tana River counties, respectively. The correlation result for Nairobi was insignificant, 

while those for Vihiga and Tana River were significant (Figure 9). Although the correlation coefficient 

for Vihiga county and NO2 tropospheric column concentration was very low, a P-value of 0.0508 

implies that the null hypothesis cannot be accepted. Therefore, the correlation between COVID-19 

cases and NO2 column concentration for Vihiga county was statistically significant. The direction of 

effect was negative for Vihiga county, and positive for Tana River county. 

Figure 8. Correlation and scatter plot results for COVID-19 and CO concentration level 

[ppbV]. 
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Figure 9. Correlation and scatter plot results for COVID-19 and NO2 tropospheric column 

(1/cm2). 

4. Discussion

The trends in CO concentration levels between January 2010 and June 2020 indicate seasonality

for the Nairobi, Vihiga and Tana River counties. CO and NO2 concentrations vary considerably across 

the globe, with much seasonal variability due to wide variation in activities such as agricultural 
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deseasoned before performing correlation analysis. In cities such as Nairobi, CO and NO2 
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Some of the measures enforced include a dust-to-dawn curfew, the restriction of movement into 

and out of some counties, and a requirement that workers in public and private sectors work remotely. 

These measures imply energy use in two ways. First, the restricted movement led to a decrease in 

urban mobility, which decreased the transport sector's energy use. Second, the enforced measures 

meant that people would spend more time within their homestead than before, which increased 

domestic energy use while also decreasing transport energy use. In general, more densely populated 

urban areas are associated with smaller housing sizes, and thus, higher carbon emissions [45]. In rural 

areas, decreased energy use during the COVID-19 pandemic also decreased CO concentration levels. 

In urban areas, CO emissions were cut in the transport sector and industries due to decreased mobility 

and depressed industrial activities. 

5. Conclusion

These findings suggest that CO concentration levels and NO2 tropospheric column concentration

were depressed in urban and rural areas due to COVID-19 measures. The COVID-19 effects on CO 

concentration levels were more potent in densely populated rural areas and urban areas than in sparsely 

populated rural areas. Densely populated rural areas and urban areas exhibited a stronger negative 

correlation between COVID-19 cases and CO concentration levels. The negative association between 

COVID-19 and CO levels in urban areas is attributed to decreased mobility, while many urban areas 

use clean energy. During the COVID-19 pandemic lockdown (March 2020 to August 2020), with the 

exception of a few isolated cases, NO2 anomalies were below the long-term average for the three study 

areas. This is primarily due to a reduction in emissions in the transport sector. However, satellite 

images highlighted the constant spatial and temporal variation of NO2. The slight changes in NO2 may 

not have been significant enough to be observed. The association between COVID-19 cases and NO2 

were insignificant for Nairobi, but significant for the Vihiga and Tana River counties. These findings 

are consistent with those of similar studies. However, the results highlight the need for demographic 

and economic considerations in CO and NO2 assessments. These findings allude to the possibility of 

public health risk mitigation by reducing emissions from economic activities in both urban and rural 

areas. The findings also provide a baseline for needed efforts to enhance the incorporation of a climate-

smart bioenergy agenda in Kenya. In densely populated rural areas, a policy question is whether clean 

energy should be effectively promoted during this COVID-19 pandemic. This study's limitation is the 

unaccounted meteorological and environmental factors that could affect ambient CO and NO2 

concentration levels.  
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