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Abstract: The water quality index (WQI) is an aggregated indicator used to represent the overall
quality of water for any intended use. It is typically calculated from several biological, chemical, and
physical parameters. Assessment of factors that affect the WQI is then essential. Climate change
is expected to impact a wide range of water quality issues; hence, climate variables are likely to be
significant factors to evaluate the WQI. We propose three statistical models; multiple linear regression
(MLR), artificial neuron network (ANN), and Gaussian process regression (GPR) to assess the WQI
using the climate variables. The data is the WQI of Ping River, which flows through the provinces in
the north of Thailand. The climate variables are temperature, humidity, total rainfall, and evaporation.
A comparison between these models is determined by model prediction accuracy scores. The results
show that the total rainfall is the most significant variable to predict the WQI for the Ping River.
Although these three methods can predict the WQI relatively good, overall, the GPR model performs
better than the MLR and the ANN. Besides, the GPR is more flexible as it can relax some restrictions
and assumptions. Therefore, the GPR is appropriate to assess the WQI under the climate variables for
the Ping River.

Keywords: water quality index; multiple linear regression; artificial neural networks; Gaussian
process regression; forecasting

1. Introduction

River water is a vital surface water resource for households, agriculture, and industry activities. It
also plays an important role in health and environmental issues. Thus, assessing and monitoring the
quality and quantity of the water carried in the River is essential. A water quality index (WQI) is a
single number that provides information about overall water quality. It is calculated using a parametric
expression from several biological, physical, and chemical parameters measured from a water sample
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at a location and time. The parametric expression for WQI calculation involves the use of relative
weights per involved parameter. According to the Water Quality Management Bureau, Pollution Con-
trol Department, Thailand, five water parameters including dissolved oxygen (DO), biological oxygen
demand (BOD), total coliform bacteria (TCB), fecal coliform bacteria (FCB), and ammonia nitrogen
(NH3-N) are employed for the estimation of WQI. Moreover, the WQI is often represented as five lev-
els of water quality; very good (91-100), good (71-90), average (61-70), poor (31-60), and very poor
(0-30).

Many researchers have been interested in examining factors that affect water quality, both man-made
and environmental. However, changes in climate conditions such as the increase of water temperature,
precipitation and evaporation patterns, and heavy rainfall and flooding mainly affect the biological
and chemical properties of water quality. As a result, the relationship between climate factors and
WQI has been studied, as well as finding an appropriate statistical model to represent the relationship.
The WQI parameters were estimated for water streams in Finland with air temperature, rainfall run-
off, and precipitation and characteristics of catchment areas as independent variables using artificial
neural network (ANN) model [1]. The relationship between the WQI and climate variables on the
Euphrates River within Karbala city, Iraq, has been investigated [2]. The non-linear regression and
ANN models were employed to forecast the relationship between the WQI and temperature, relative
humidity, rainfall depth, and sunshine duration. The non-linear regression model predicted the WQI
better than the ANN models. The multiple linear regression (MLR) is used to study the relations
between climate variables: temperature, relative humidity, and selected water quality parameters in
Lake Manzala, Egypt [3]. They found a positive relation between studied variables. Recently, [4] used
MLR and ANN models for predicting the stream water quality parameters on Green River watershed,
Kentucky, USA, with independent variables precipitation, temperature, and land-use data.

Although MLR and ANN are widely used to model the relationship between the WQI parameters
and climate variables, choosing the suitable regression model and dealing with restrictions in under-
lying assumptions in MLR modeling could be challenging. One of the difficulties in ANN modeling
is choosing an appropriate number of hidden nodes that can affect its performance. The Gaussian
process (GP) is a Bayesian machine learning method which has gained attention due to its flexibility
in modeling. A GP can be applied in regression analysis, called Gaussian process regression (GPR).
It has been applied and compared to estimating and forecasting models in many fields. For example,
in health science, [5] used the GPR to estimate the child mortality rate in Iran in 1990 - 2013. They
found that the GPR can efficiently estimate the mortality rate with relatively high fitting precision and
flexibility. In earth science, [6] used the capability of GPR to predict the porosity and permeability of
the southern basin of the South Yellow Sea. They compared the performance of the GPR to the back
propagation neural network (BPNN), generalized regression neural network (GRNN), and radial basis
function neural network (RBFNN). In food science, [7] applied the GPR to model the drying time of
mosambi peel. The study showed that the GPR could be used as an alternative method because it pro-
vided a better estimation than the ANN and the response surface method. These findings mentioned
above revealed that the GPR is one of the most powerful techniques and can be used in diverse fields.
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In this work, we want to use the GPR, MLR, and ANN to predict the WQI using climate variables.
The data used in the study is the WQI of the Ping River, the major River in the north of Thailand.
The climate-related variables are temperature, humidity, rainfall, and evaporation. We also assess the
performance of the prediction ability of the models.

2. Materials and methods

2.1. Study area and data

The Ping River is located in the central part of northern Thailand (19◦48′45”N 98◦50′20”E). The
Ping River originates in Chiang Dao district, Chiang Mai Province. It then flows through the provinces
of Lamphun, Tak, Kamphaeng Phet, and Nakhon Sawan. Its estimated length is 658 km, with catch-
ment areas of around 34,885 km2. The average discharge is about 265 m3/s. The Wang River is its
main tributary. The Ping river joins the combined Nan and Yom rivers to form the Chao Phraya Riv-
er, the major River in Thailand, formed in the center of the country and flows through Bangkok and
then into the Gulf of Thailand. The Ping river basin is in the area, where is mainly influenced by the
Southwest and Northeast monsoon between mid-May or June to mid-October.

The WQI of the rivers in Thailand is monitored by the Pollution Control Department, Water Quality
Management Bureau, The Ministry of Natural Resources and Environment of Thailand. There are 14
water quality monitoring stations located in many areas along the basin, shown in Table 1. The spatial
plot of the stations and areas of study is illustrated in Figure 1. The WQI is measured in three-month
intervals, mostly in February, May, August, and November.

The climate data are daily provided by the Northern Meteorological Center, Meteorological Depart-
ment, Ministry of Digital Economy and Society of Thailand. To related the WQI and climate data, we
then use the monthly average temperature (◦C), monthly average humidity (%), monthly total rainfall
(mm.), and monthly average evaporation (mm.) as climate variables in this work.

The WQI and climate data originate from different sources that unfortunately are collected in d-
ifferent locations and timespans. Therefore, data were filtered and only those collected at the same
locations and timespans (January 2010-December 2019) were selected for this analysis. Consequently,
the selected data used in modeling originate from eight water monitoring stations located in four areas
as follows: (1) Mueang-KamphengPhet (PI04 and PI05), (2) Mueng-Tak (PI06, PI07, and PI08) (3)
SamNgao-Tak (PI09), and (4) Mueang-Chiang Mai (PI12 and PI13). In each station, we expect 40
WQI observations, however, there are some missing values. Therefore, the selected data consist of 284
observations from eight stations.
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Table 1. List of 14 stations on the Ping River basin.

Station Station name District Province latitude longitude
PI01 Phitsanulok Bridge Mueang Nakhon Sawan 15.7114 100.146
PI02 Tong Kung bridge Banphot Phisai Nakhon Sawan 15.9354 99.9768
PI03 Saen To bridge Khanu Woralaksaburi Kamphaeng Phet 16.0643 99.8602
PI04 Wang Yang bridge Mueang Kamphaeng Phet 16.3767 99.5691
PI05 Lan DokMai bridge Mueang Kamphaeng Phet 16.6278 99.4320
PI06 Ta Ta-Kraw bridge Mueang Tak 16.7931 99.1707
PI07 Kittikachorn Bridge Mueang Tak 16.8563 99.1247
PI08 WangMoung bridge Mueang Tak 16.9604 99.1138
PI09 Ban Tak Bridge Sam Ngao Tak 17.0417 99.0677
PI10 Kong Hin bridge Hod Chiang Mai 18.1787 98.6303
PI11 Had Nak bridge Jomthong Chiang Mai 18.3482 98.6973
PI12 Police Station bridge Mueang Chiang Mai 18.7599 98.9972
PI13 Wang Sing Khum bridge Mueang Chiang Mai 18.8103 99.0032
PI14 Cho lae bridge Mae Taeng Chiang Mai 19.1459 99.0074

Figure 1. Location of stations.
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2.2. Multiple linear regression (MLR)

Multiple linear regression (MLR) attempts to predict a dependent or response variable, y, on the
basis of an assumed linear relationship with several independent or explanatory variables, x1, x2, ..., xd.
The MLR model can be expressed as

y = f (x1, ..., xd) + ε = β0 + β1x1 + β2x2 + ... + βd xd + ε, (1)

where f (.) is a transition function, mapping the relationship between the response and independent
variables. The ε is a random error assumed to be independent and identical normally distributed with
zero mean and constant variance, ε ∼ N(0, σ2

ε ). For n observations, the model can be expressed in the
form of vector and matrix as

y = f (X) + ε = Xβ + ε, (2)

where y is n × 1 vector of observed values of the response variable, X is a n × (d + 1) matrix of
independent variables, β is (d + 1)× 1 vector of regression coefficient parameters, and ε is n× 1 vector
of random errors. The parameter estimation for β and σ2

ε can be performed using several approaches
such as the least square and maximum likelihood estimation. After model fitting, the model adequacy
and validation are investigated using some properties of the residuals, e = y−ŷ, where y is the observed
responses vector and ŷ is the predicted response obtained from the fitted model. The assumptions of
the MLR require that residuals are normal distributed with no systematic pattern, constant variance,
and no outliers.

In this study, we use a stepwise method to select the independent variables. The variance inflation
factor (VIF) is used to investigate the multicollinearity issue among independent variables. The residual
assumptions are diagnosed by Breusch-Pagan (BP) test for testing the constant variance assumption,
Shapiro-Wilk (SW) test for normality, and the Durbin-Watson (DW) test for autocorrelation. The Box-
Cox transformation is employed to find the best transformation if the assumption(s) is violated.

2.3. Artificial neural network (ANN)

An artificial neural network (ANN) are multi-layer fully-connected neural nets that consist of three-
layer processing units; an input layer, multiple hidden h layers, and an output layer. The model is
inspired by the human brain that tries to find data structures and algorithms for learning and classifying
data. The relation between the output y and the input (x1, x2, ..., xd) can be written as follow

y = w0 +

h∑
j=1

w j · g

w0, j +

d∑
k=1

wk,hxk

 + ε, (3)

where wk,h with k = 1, ..., p; j = 1, 2, ..., h is the connection weight, d and h are number of input
vectors and number of hidden nodes, respectively. Moreover, g is a sigmoid transfer function, w0 and
w0, j are weights from the bias terms, and ε is the error term. Each of the inputs is multiplied by a
connection weight or synapse. A given node takes the weighted sum of its inputs and passes it through
a non-linear activation function. The output of the node then becomes the input of another node in the
next layer. The number of nodes of the input layer corresponds to the number of variables describing
the attributes being tested. The weight parameters of the ANN model are estimated by optimization
solution to minimize the sum of squared of residual. The package neuralnet in R programming [8] ,
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by training of neural networks using backpropagation network, is used in this study for obtaining the
weights estimates and fitted responses. More details about ANN modeling can be found in [9].

2.4. Gaussian process regression (GPR)

A Gaussian process (GP) is a stochastic process involving random variables, any finite number of
which have a joint Gaussian distribution. It is considered to be a non-parametric method for modeling
data, as the model structure is determined from the data rather than through a parametric model. In
the same way that a Gaussian random variable is characterized by its mean and variance, a GP is
completely characterized by its mean function and covariance function, which are functions of the
input vector. We define the input vector x as a collection of inputs, where x = (x1, ..., xn)

′

. We use the
following notation to denote that f (.) is a Gaussian process:

f (.) ∼ GP(m(x), k(x, x
′

)), (4)
where m(x) = E[ f (x)],

k(x, x
′

) = E[( f (x) − m(x))( f (x
′

) − m(x
′

))] = Cov[ f (x), f (x
′

)].

The m(x) is the mean function and k(x, x′) is the covariance function. The mean function has the
effect of shifting a zero mean GP by the amount of m(x), often set to be zero. It is the covariance
function, which largely determines the properties of samples from the GP model. In this study, we
employ the squared exponential (SE) covariance, which is the most commonly used in GP modeling.
If we consider the input X with d-dimensional, the covariance function has the form of a direct sum as
follows

kS E(x, x
′

) = σ2
gp exp

 d∑
k=1

−lk

(
x − x

′
)2
 . (5)

The SE covariance function is often controlled by parameters, called hyper-parameters: σ2
gp controls

the amplitude of variation of the sample functions and the correlation parameters lk, k = 1, ..., d, con-
trols the smoothness of the samples. We define θ to be a set of hyper-parameters for a given mean and
covariance function, θ = (σ2

gp, {lk}
d
k=1). More details of the GP modeling can be found in [10].

In regression modeling, we can instead model the transition function f (x) using a GP as

f (X) ∼ GP(m(X), k(X,X
′

)).

Given a collection of inputs X, the vector f = f (X) has a multivariate Gaussian distribution,

f|X ∼ N(m(X),K),

where m(X) is the prior mean vector, and K = k(X,X′

) is the covariance matrix or Gram matrix.
Consider regression model y = f (X) + ε where ε is the additive Gaussian noise N(0, σ2

ε ), the
distribution of the output y is then y|f ∼ N(f, σ2

ε I), and y|x ∼ N(m(X),K +σ2
ε I), where I is the identity

matrix.
Given a set of training input vectors and output, we are often interested in predicting test output

y∗ =
(
y∗1, ..., y

∗
m

)
and latent function variables f∗ = f (X∗), at test input X∗, where X∗ = (x∗1, x

∗
2, ..., x

∗
d).
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We can write the joint distribution of training output y and latent function variables f∗, and training
output y and test output y∗ as follow[

y
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K + σ2

ε I k(X∗,X)
k(X,X∗) k(X∗,X∗)

])
,[

y
y∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K + σ2

ε I k(X∗,X)
k(X,X∗) k(X∗,X∗) + σ2

ε I

])
.

Bayes’s rule is then applied to obtain the joint posterior distribution of training and test latent variables
given the training outputs

p(f, f∗|y) =
p(f, f∗)p(y|f)

p(y)
.

The predictive distribution of f∗ at given test locations can be derived using conditional distribution of
two Gaussian random variables, yields

f∗|X∗, y, θ ∼ N(µ∗,Σ∗), (6)
where µ∗ = m(X∗) + k(X∗,X)(K + σ2

ε I)−1(y − m(X)),
Σ∗ = k(X∗,X∗) − k(X∗,X)(K + σ2

ε I)−1k(X,X∗).

The predictive distribution of the target outputs, y∗ is

y∗|X∗, y, θ ∼ N(µ∗,Σ∗ + σ2
εI). (7)

The predictions are the mean vector µ∗, and variances can be obtained from the diagonal of the covari-
ance matrix Σ∗+σ2

εI. The package mlegp in R programming [11] is used to obtain the hyper-parameter
estimates and the GPR predictive mean and variances, as shown in Equation (7).

2.5. Evaluation of prediction accuracy

The scores used to compare the predictive performance of the models are the root mean squared
error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE), given
by

RMSE =

√∑n
i=1(yi − ŷi)2

n
,

MAE =
1
n

n∑
i=1

|yi − ŷi|,

MAPE =
1
n

n∑
i=1

|yi − ŷi|

yi
,

where yi and ŷi are the ith observed and the predicted response for i = 1, ..., n and n is the number of
observations. These scores are negatively-oriented: lower values are better. Moreover, the plot between
the observed and the predicted is illustrated along with the diagonal line. A perfect alignment with the
line indicates no difference between observed and predicted, yields perfect prediction. The coefficient
of determination (r2) is computed to measure how well the model predicts the data, given by

r2 = 1 −
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2 .
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3. Results

3.1. Exploratory data analysis

The descriptive statistics of the WQI and climate data of the selected stations and areas are shown
in Table 2. The time series plots and boxplots of the WQI from 8 stations and the climate data from
four areas are displayed in Figure 2 and 3, respectively.

The means and medians of the WQI are between 58-70. The minimum is 41, and the maximum is
89 at station PI13 and PI04, respectively. The standard deviations are similar in many stations, but at
station PI04 and PI09, they are slightly higher than the others. The boxplots show that there are some
outliers at stations PI04, PI05, PI06, and PI08. According to Thai Meteorological Department, Thai-
land has three seasons: summer (February-May), rainy season (June – September), winter (October –
January). The statistics of WQI in the seasons are as follows: the means (standard deviation) are 66
(8.46), 62.7 (7.93), and 66.73 (8.39). This means that the WQI in the rainy season is, on average, lower
than summer and winter season. However, there is no clear patterns on the variability of WQI by area,
as seen in Figure 2.

For climate data, the monthly average temperature (AvgTemp), average humidity (AvgHumid), and
average evaporation (AvgEvapor) have similar means and medians in every area. The means of the
monthly total rainfall (TotalRainfall), particularly in KamphengPhet and Chiang Mai, are relatively
high, whereas the medians are not much different. This indicates the extreme values in the total rainfall
data. Moreover, we provide the scatterplot matrix of all data in Figure 4 to show the relationship
among variables. The small values of the correlation coefficients indicate a weak relationship between
the WQI and the climate variables. Although the plots suggest that the climate variables are moderately
correlated, the VIFs indicate no multicollinearity issue.

Figure 2. Time series plots and boxplots of the WQI data.
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Figure 3. Time series plots and boxplots of the climate data.

Figure 4. Scatterplot matrix of the data.
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Table 2. Descriptive statistics of the data.

Station Area Variable Mean SD Median Min Max
PI04 KamphengPhet

WQI

65.88 9.49 63.00 54.00 89.00
PI05 KamphengPhet 68.31 7.70 68.00 56.00 83.00
PI06 Mueng Tak 69.41 7.64 68.00 57.00 85.00
PI07 Mueng Tak 62.73 6.86 61.00 51.00 79.00
PI08 Mueng Tak 65.54 7.51 65.00 50.00 86.00
PI09 SamNgao Tak 68.57 9.70 67.00 56.00 86.00
PI12 Chiang Mai 60.92 6.72 58.00 52.00 78.00
PI13 Chiang Mai 61.47 7.36 59.50 41.00 74.00

KamphengPhet

AvgTemp

28.09 1.54 27.83 24.58 32.57
Mueng Tak 27.32 2.69 27.93 21.39 32.73
SamNgao Tak 27.00 2.69 27.29 21.39 32.40
Chiang Mai 26.76 2.41 26.97 21.59 31.37
KamphengPhet

AvgHumid

74.61 7.29 75.46 58.38 84.82
Mueng Tak 69.68 8.47 69.01 53.98 81.43
SamNgao Tak 70.77 8.60 71.20 54.04 83.85
Chiang Mai 69.13 8.49 70.68 54.57 83.03
KamphengPhet

TotalRainfall

117.4 132.8 46.65 0.00 595.9
Mueng Tak 71.31 80.99 39.90 0.00 277.6
SamNgao Tak 68.86 89.96 24.00 0.00 300.8
Chiang Mai 107.2 123.9 61.45 0.00 470.6
KamphengPhet

AvgEvapor

3.75 0.87 3.55 2.57 6.07
Mueng Tak 4.26 1.19 4.10 2.65 7.24
SamNgao Tak 4.38 1.08 4.28 2.97 6.85
Chiang Mai 4.08 0.98 3.88 2.60 6.17

3.2. Modeling

The dataset is divided into two sets, training and test set, to validate the model performance for seen
and unseen data. The output data is the WQI. The input data are the 4 climate variables: monthly aver-
age temperature, monthly average humidity, monthly total rainfall, and monthly average evaporation.
All data in year 2010-2018 is selected to be the training set with 256 observations or 90.14% of the
total number of observations. All data in the year 2019 is used as the test set with 28 observations or
9.86% of the total number of observations. Hence, the dimension of inputs for training and test set are
256 rows × 4 columns and 28 rows × 4 columns, respectively.

We normalize the data before modeling using the standardization technique. Therefore, each vari-
able will be centered around zero and have approximately unit variance. The training data is used in
modeling with three methods; MLR, ANN, and GPR. For the MRL, initially, we consider the full mod-
el with all four climate variables denoted by MLR1. After that, we use the stepwise method for model
selection, and we found that only TotalRainfall is included in the model denoted by MLR2. In fact, the
MLR1 and MLR2 do not meet the normality and independent assumptions. Then we use the Box-Cox
transformation to MRL1 and MLR2, and it suggests a transformation with λ = −0.5 denoted by MLR3
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and MLR4, respectively. As a result, the residuals assumptions for MLR3 and MRL4 are acceptable.
The number of nodes in the hidden layer, h, is varied. We use the same set of climate variables used in
the MLR1 and MLR2 denoted as ANN1 and ANN2. We found that the best number of hidden nodes,
according to the least RMSE for ANN1 and ANN2, are 4 nodes and 1 node. The underlying GP is set
to have zero mean and SE covariance function with unknown nugget variance. We also use the same
set of climate variables in the ANN models denoted by GPR1 and GPR2. The fitted results from 3
approaches with 8 models are shown in Tables 3 - 5

Table 3. The coefficient estimates and the diagnostic tests of MLR models.

Constant AvgTemp AvgHumid TotalRainfall AvgEvapor
p-value

BP test SW test DW test

MLR1 58.3911 0.373 0.016 -0.0254 -0.6087 0.1067 3.31e-05 0.0091
MLR2 66.9714 -0.0226 0.0059 7.58e-05 0.0091
MLR3 0.1311 3.60e-04 -1.61e-05 2.32e-05 6.52e-04 0.3220 0.0029 0.0109
MLR4 0.123 2.06e-05 0.0741 0.0049 0.0109

Table 4. The weights of ANN models associated to the input.

AvgTemp AvgHumid TotalRainfall AvgEvapor w0

ANN1 -0.8071 -3.8269 82.3872 -81.9345 -0.9049
ANN2 3.7453 0.3386

Table 5. The hyper-parameters estimates of GPR models.

l1 l2 l3 l4 σ2
gp σ2

ε

GPR1 5.6634 7.3907 1.35e-07 13.2 0.4708 0.6094
GPR2 2.32e+10 0.4206 0.6606

3.3. Comparison of models

To validate the prediction performance of the models, the predictive accuracy scores are presented
in Table 6. The scores indicate that GPR models outperform the MLR and ANN models for both
training and test sets, with the least values in RMSE, MAE, and MAPE. Besides, three scores from all
models suggest that the methods perform better in the training set compared to the test set. The plots
between the observed and predicted of the WQI of the training set (black dots) and the test set (red
dots) are illustrated in Figure 5. We can observe that, for the training set, the results from the GPRs are
more concentrated around the diagonal line than those from the MLRs and ANNs. This confirms that
the GPRs give a better prediction, which corresponds to the highest values of r2. Nevertheless, it is
essential to point out that the ANN and GPR models perform well only when the WQI is in the range
of 50 to 70. This can be explained by the density plot of WQI in the training and test set, shown in
Figure 6. The WQI in the training set is mostly in range of 50 to 70, while in the test set, the range is
from 50 to 90. The models are unable to capture the information and predict when the data are higher
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than 70. Consequently, the accuracy of the prediction is relatively poor in the test set, particularly for
the WQI over 70.

Table 6. Predictive accuracy scores.

Training set Test set
RMSE MAE MAPE r2 RMSE MAE MAPE r2

MLR1 7.8748 6.2603 0.0966 0.0985 9.9875 7.4044 0.1020 0.0353
MLR2 7.9071 6.2212 0.0960 0.0911 10.1451 7.4621 0.1028 0.0698
MLR3 7.8893 6.2234 0.0949 0.1036 10.2707 7.7134 0.1057 0.0292
MLR4 7.9275 6.2204 0.0949 0.0948 10.3962 7.7563 0.1063 0.0683
ANN1 6.3748 5.1402 0.0795 0.4092 10.2884 8.2624 0.1183 0.0035
ANN2 7.6810 6.0743 0.0937 0.1423 9.6650 7.6470 0.1099 0.0180
GPR1 5.7006 4.4945 0.0692 0.6056 8.8942 6.9560 0.1037 0.0008
GPR2 5.9578 4.6782 0.0722 0.5984 8.5610 6.6551 0.0978 NA

Figure 5. Plots between the predicted and observed WQI.
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Figure 6. Density plot of WQI in training and test set.

We also investigate the distribution of residuals produced from all models using boxplots shown
in Figure 7. For the training set, all models generate residuals with the center location of zero. The
deviation of residuals is small in the case of GPRs compared to MLRs and ANNs. For the test set, the
mean and median of residuals produced from MLRs are most deviated from zero, followed by ANNs
and GPRs. The standard deviations of the residuals from the test set are not significantly different, but
they are still larger than those from the training set.

Figure 7. Boxplots of the residuals.
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4. Discussion

Water quality is influenced by climate variabilities such as precipitation, temperature, rainfall level,
and wind patterns. In this study, we assess the impact of climate change on the water quality of Ping
River, Thailand. We focus on investigating the association of the climate data; temperature, humidity,
total rainfall, and evaporation, and the water quality index using statistical modeling. An important
result of this study is to develop a predictive model to assess how climate variables affect the WQI.
The result suggested that the amount of total rainfall is the only significant climate variable that impacts
WQI. The limitation of the available data allows us to analyze the WQI and climate data on the different
locations. Moreover, the WQI is not collected in the same period as the climate data. These could be
the main reasons that affect our results.

Three statistical models, MLR, ANN, and GPR, are used to analyze the relationship between WQI
and climate data. The MLR is often used to describes the relationship between inputs and outputs by
specifying a functional form mapping from inputs to outputs. We often set the function to be some
specific form, such as combinations of linear, cubic, and higher-order polynomial terms with unknown
parameters. However, choosing the correct function can be difficult. The ANN relies on the optimal
number of nodes to obtain a better estimation. Unlike MLR and ANN, the GPR can learn the data well
without specifying the function between inputs and outputs. It is considered a more flexible way to
model the data. However, the GPR can be computationally expensive when the sample size is large.
Our results have shown that the GPR is more efficient than the traditional MLR and the ANN as it
can achieve better prediction accuracy. According to the results, the prediction accuracy from the full
model (MLR1, ANN1, and GPR1), where all climate variables are included, is not much different from
that of the models (MLR2, ANN2, and GPR2) consisting of only total rainfall variable.

5. Conclusions

This study demonstrated and compared the performance of the GPR, the MLR, and the ANN in
the regression problem with the case study in predicting the WQI at Ping River basin, Thailand. The
climate factors, temperature, humidity, total rainfall, and evaporation were used as the independent
variables. We found that the total rainfall was the only significant variable to be included in the models.
We also considered various models for each method with the same set of climate variables. In summary,
the GPR models are superior to the MLR and the ANN models according to the prediction accuracy.
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