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Abstract: Reference ecological conditions offer important context for land managers as they assess 
the condition of their landscapes and provide benchmarks for desired future conditions. 
State-and-transition simulation models (STSMs) are commonly used to estimate reference conditions 
that can be used to evaluate current ecosystem conditions and to guide land management decisions 
and activities. The LANDFIRE program created more than 1,000 STSMs and used them to assess 
departure from a mean reference value for ecosystems in the United States. While the mean provides 
a useful benchmark, land managers and researchers are often interested in the range of variability 
around the mean. This range, frequently referred to as the historical range of variability (HRV), 
offers model users improved understanding of ecosystem function, more information with which to 
evaluate ecosystem change and potentially greater flexibility in management options. We developed 
a method for using LANDFIRE STSMs to estimate the HRV around the mean reference condition 
for each model state in ecosystems by varying the fire probabilities. The approach is flexible and can 
be adapted for use in a variety of ecosystems. HRV analysis can be combined with other information 
to help guide complex land management decisions. 

Keywords: historical range of variability; HRV; LANDFIRE; state-and-transition; simulation 
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1. Introduction 

The old adage that one must learn from the past to understand the present and plan for the future 
finds its way into land management through the concept of the historical range of variability (HRV). 
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The HRV can be defined as the variation in ecological processes (e.g. disturbance regimes such as 
fire) or characteristics (e.g. forest composition and structure) for a specific time and place [1]. The 
concept has been used to inform ecosystem restoration [2,3], conservation action [4] and land 
management planning [5,6,7]. It offers both a benchmark against which current ecosystem conditions 
can be measured [8] and provides an understanding of the processes that drive ecosystem change 
over time which can inform land management activities [9]. 

Despite their utility, data to help us understand the HRV are often lacking [10,11]. Detailed 
information about ecosystem characteristics from tree rings or sediments, such as age distribution, 
structure characteristics and disturbance regimes, are available for very few ecosystems, expensive to 
collect and, even when available, may be limited in geographical and temporal extent [12]. In the 
absence of data, models can be used heuristically to explore a range of possible past conditions and 
improve our knowledge of how ecosystems respond to change over time [1]. The state-and-transition 
simulation modeling framework is one approach that has been employed for estimating the  
HRV [2,4,13,14].  

State-and-transition simulation models (STSMs) divide ecosystems into their component state 
classes and define rates and pathways for probabilistic and deterministic transitions between them [15]. 
In the LANDFIRE STSMs, deterministic transitions are used to represent growth or ageing-related 
changes between classes, and probabilistic transitions are used to represent the effects of disturbance 
processes. Software tools such as the Vegetation Dynamics Development Tool (VDDT) [16], and its 
successor ST-Sim [17] can be used to assign probabilities to the transitions and to stochastically 
simulate multiple iterations of the model [15]. Simulation results include the percent of the landscape 
in each state class over time, which has been used as the basis for HRV estimates [18,19]. 

A challenge with this type of modeling approach is to develop reasonable estimates of the range 
of possible reference conditions for an ecosystem. Many ecosystem assessment efforts in the United 
States have implemented the Fire Regime Condition Class (FRCC) method which uses STSMs to 
estimate an average reference condition against which the current landscape condition can be 
compared [19-22]. The FRCC reference conditions are typically represented as the mean relative 
abundance of each state class calculated by averaging the results of multiple Monte Carlo 
simulations [4,23,24]. Lack of historical data presents a significant challenge to simulating a range of 
possible reference conditions. Moreover, the expense and time associated with gathering the 
necessary historical data may be prohibitive [25]. 

Various approaches have been tried to estimate the range of variability around mean reference 
conditions of various ecosystems. Haugo and others [13] estimated HRV as the stochastic variation 
present in multiple iterations of an STSM, an approach that captures state class variability due to 
model stochasticity but not due to uncertainty in transition probability estimates or variability in 
disturbance regimes over time. Similar non-spatial modeling efforts have adjusted the disturbance 
probabilities using a time series of multipliers in an STSM to estimate state class variability over 
multiple Monte Carlo simulations [2,4,14]. The time series are generally derived using some 
combination of data and expert judgment. These approaches approximate a more ecologically 
meaningful HRV, but the data required to generate the time series are frequently unavailable for the 
time period and landscapes where HRV estimates are required. Other researchers have used more 
computationally and data-intensive spatially explicit simulation models to estimate the HRV [26,27]. 
The data needed to parameterize these models are extensive and frequently lacking [12], and the 
models themselves may be so complex that they are difficult to use [1]. Despite the data limitations, 
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we do understand that there is not a single disturbance return interval over time and we do have some 
knowledge of the range of possible disturbance frequencies and/or estimates of the uncertainty in 
these ranges. Our method fills a gap in the existing approaches by incorporating information on 
disturbance ranges and/or the uncertainty in the range estimates for broad areas where detailed time 
series data, spatial data or spatial modeling expertise are not available. 

Our goal was to develop an STSM approach for estimating a reasonable and ecologically 
relevant range of state class variation that 1) relied primarily on existing information and 2) did not 
require extensive modeling expertise or input data. We chose to use LANDFIRE’s STSMs which 
describe the vegetation dynamics for more than 1,000 ecosystems, called Biophysical Setting (BpS), 
in the United States [19]. A BpS represents a vegetation community that may have existed prior to 
Euro-American settlement based on the current biophysical environment and an approximation of the 
historical disturbance regime [19]. Each BpS has both an STSM and an associated description 
document that describes the vegetation concept and its model. 

Every disturbance in a LANDFIRE STSM is assigned an average probability of occurrence. We 
assumed that if we could sample from a reasonable probability distribution around that average for 
the modeled disturbances, that we could estimate the bounds of uncertainty for the HRV in the state 
classes over time. There is little information available about the historical frequency distribution of 
various disturbances, but the LANDFIRE STSM description documents sometimes include 
information about the estimated range of fire frequencies that we were able to use. The results 
documented here demonstrate the range of state class variation resulting from varying fire 
frequencies across model iterations. We only varied fire frequencies because it was simpler to 
demonstrate the method using a single disturbance, and fire was the only modeled disturbance that 
contained information on the minimum and maximum return interval. The same approach could be 
used to incorporate the variability in other disturbance regimes if data were available. This paper 
offers a proof of concept for this approach by demonstrating its application to three BpS representing 
different fire regimes. 

2. Materials and Method 

We tested our approach on three LANDFIRE STSMs: Northern Rocky Mountain Dry-Mesic 
Montane Mixed Conifer Forest (Mixed Conifer; BpS number 10450) Great Basin Pinyon-Juniper 
Woodland (Pinyon-Juniper; BpS number 10190) and Boreal White Spruce-Fir-Hardwood 
Forest-Coastal (Spruce-Fir-Hardwood; BpS number 13652; Figures 1 and 2) [28]. These BpS were 
chosen because they represented a range of biophysical environments and disturbance regimes and 
each contained all the information required for our technique – an estimate of the minimum, mean 
and maximum fire return interval. The model documentation for each BpS includes a mean fire 
return interval (FRI) for each fire severity type (LANDFIRE models use surface, mixed and 
replacement fire severity types) in the model, which was the result of a 1,000 timestep simulation in 
VDDT. These particular models also included estimates of the minimum and maximum FRI for each fire 
severity type based on the modelers’ knowledge of the literature and experience with the BpS (Table 1). 
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Figure 1. STSM box and arrow diagrams: A) Mixed Conifer, B) Pinyon-Juniper and 
C) Spruce-Fir-Hardwood. Each box represents a state class which is defined by its cover 
type and structural state (labeled in the upper left of the box) and its age range (labeled in 
the lower left of the box). Fire pathways are shown with their transition probability. 
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Figure 2. Distribution map showing the spatial extent to which the Mixed Conifer, 
Pinyon-Juniper and Spruce-Fir-Hardwood STSMs were applied [26]. 

Table 1. FRIs by severity type for each BpS. The all fire return interval is the aggregate 
FRI for all fire severity types. The mean and all FRI values were the result of the 
LANDFIRE STSMs. The minimum and maximum FRIs were estimated by the 
LANDFIRE modelers. 

Biophysical Setting Fire Severity 
Type 

Fire Return Interval (years) 

Minimum Mean Maximum All Fire
Mixed Conifer Surface 20 30 35 20 
 Mixed 70 110 175 
 Replacement 70 135 200 
Pinyon-Juniper Surface 5 715 1,000 166 
 Mixed 10 370 1,000 
 Replacement 10 525 1,000 
Spruce-Fir-Hardwood Surface NA NA NA 526 
 Mixed 300 1,250 1,500 
 Replacement 300 909 1,500 
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For each fire probability, we used a beta distribution with parameters that satisfied the minimum, 
mean and maximum FRI values identified in the LANDFIRE STSMs. The beta distribution was 
chosen because it can be used to represent the variability within a fixed range [29] such as the 
minimum and maximum FRI. This allowed us to restrict our distribution to a range within the 
bounds specified. However, because the beta distribution can assume a variety of shapes depending 
on the value of the alpha and beta parameters that define it, we had to make assumptions about the 
shape. Lacking information about the historical FRI probability distributions, we heuristically varied 
the variance in probability distribution in order to select a value that resulted in a bell-shaped FRI 
distribution, with values close to the mean being the most probable and those towards the specified 
minimum and maximum being the least probable (for more information see section 2.1.3). We ran 
simulations in ST-Sim using the transition multiplier function to sample from the beta distributions 
we defined for each fire severity type (for more information see section 2.1). 

The Mixed Conifer and Spruce-Fir-Hardwood BpS models were simulated in ST-Sim for 100 
iterations, over 1,000 timesteps, using 10,000 simulation cells. In the absence of information about 
initial conditions, we initialized the models with an equal proportion of cells in each state class. For 
each iteration, one FRI was sampled for each fire severity type from the fire frequency distributions. 
To describe the range of variation in the simulations, we summarized the percent of cells in each 
state class and the minimum and maximum values for the last 800 timesteps for each BpS. By 
graphing the results we determined that within first 200 years the model results stabilized and 
overcame the influence of the initial state class distribution.  

The Pinyon-Juniper STSM took longer to reach equilibrium so we adjusted it to run for 1,400 
timesteps and summarized the results for the last 800 timesteps. For this BpS we pooled the Late1 
Open and Late2 Open state class results into a single Late Open class because we were aware, based 
on our contribution to the LANDFIRE mapping effort, that the LANDFIRE current condition spatial 
data layer was unlikely to distinguish these classes from each other accurately. LANDFIRE maps 
current conditions primarily based on vegetation cover and height [19], but this particular model 
specified that the late classes should be distinguished based on tree size class which was not a 
LANDFIRE current condition mapping criterion. In all other regards, the Pinyon-Juniper STSM was 
parameterized and summarized similarly to the other BpS. 

To illustrate the application of the simulated range of state class variation in a management 
context, we calculated the current percent of the BpS in each state class by combining the 
LANDFIRE 2010 BpS [30] and Succession Class [31] spatial data layers in ArcGIS. The current 
condition data layers include the percent of the landscape in each of the state classes and in an 
uncharacteristic class. The uncharacteristic class includes both exotic species composition and 
structures (typically either cover or height) that would not have occurred under the reference 
condition.  

Calculating the simulation parameters 

Transition multipliers were used to vary the simulation fire probabilities. The parameters 
required for this function are the mean probability multiplier value, the distribution type, the standard 
deviation and the minimum and maximum multipliers (Table 2).  
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Table 2. Transition multipliers were used to vary the simulation fire 
probabilities for each fire severity type in the model. 

BpS Transition  
Group 

Standard 
Deviation

Minimum 
Multiplier

Maximum 
Multiplier 

Mixed Conifer Surface Fire 0.0700 0.8571 1.5000 
 Mixed Fire 0.1700 0.6286 1.5714 
 Replacement Fire 0.1700 0.6750 1.9286 
Pinyon-Juniper Surface Fire 0.1800 0.7150 143.0000 
 Mixed Fire 0.3500 0.3700 37.0000 
 Replacement Fire 0.3100 0.5250 52.5000 
Spruce-Fir- Surface Fire -- -- -- 
Hardwood Mixed Fire 0.1300 0.8333 4.1667 
 Replacement Fire 0.2200 0.6060 3.0300 

2.1. Multiplier 

The multiplier is used to adjust the transition probabilities by the specified factor. In all cases 
we set the mean of the multiplier distribution to 1.000 so that on average across all iterations the 
mean FRI was equivalent to the value originally specified in the source LANDFIRE model.  

2.2. Distribution type 

ST-Sim allows users to specify either a normal or a beta distribution. We used the beta 
distribution because it can be bounded between the minimum and maximum multipliers specified.   

2.3. Standard deviation 

We selected a standard deviation of the beta distribution for each fire severity type heuristically 
by visualizing the resulting changes in the frequency distribution shape and selecting the final 
simulation standard deviation that best approximated a bell-shaped distribution while maintaining the 
widest range of possible values (i.e. the minimum and maximum FRI; Figure 3).  

2.4. Minimum and maximum multipliers 

The minimum and maximum multipliers are used to bound the distribution to satisfy the 
minimum and maximum FRI values specified in each LANDFIRE model. We used the inverse of the 
estimated minimum and maximum relative to the inverse of the mean FRI values for each fire 
severity as reported in the model documentation. By taking the inverse of the minimum, maximum 
and mean, the FRIs are converted to annual probabilities. The minimum and maximum probabilities 
are then relativized to the mean probability so that across all model iterations the mean FRI is equal 
to the mean FRI specified in the LANDFIRE model. The minimum and maximum multipliers were 
calculated using the formulae:  
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Figure 4. Results of HRV simulations showing the state class mean, range and 
variability for the (A) Mixed Conifer (B) Pinyon-Juniper and (C) 
Spruce-Fir-Hardwood BpS. 
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value for the class, the widest gap between the current amount and the simulated range for the three 
BpS. This BpS exhibited the narrowest range of variation across classes and had the greatest 
proportion of area mapped into the Uncharacteristic class of the models we tested (Figure 4C). 

4. Discussion 

Using our method, the simulated range of state class variability is largely a function of the 
interaction between the state class age ranges and the fire frequency distribution. One might 
anticipate that the greater the spread in the FRI range (as translated into minimum and maximum 
transition multipliers), the greater the resulting state class range should be. If this were the case, then 
the Spruce-Fir-Hardwood model, which had the largest FRI spread, would have the greatest range of 
state class variability, but this was not the result. In fact, the relationship between the model inputs 
and the results was more complex and reflected the fire regime characteristics of each BpS. 

The dynamics of the Mixed Conifer model were largely controlled by its most frequently 
modeled disturbances, surface and mixed severity fires. Surface fire that maintained the open classes 
occurred on average every 22‒25 years, and mixed fire that transitioned closed to open classes 
occurred on average every 33 years. These disturbances mediated the dynamic between the open and 
closed classes in the model, and they occurred frequently enough to affect the Mid and Late classes 
that had start ages of 30 years and above. Although replacement fire occurred less frequently than the 
other fire severities, it occurred often enough to increase the variability in the Early 1 class.  

The Pinyon-Juniper BpS was most sensitive to mixed severity fire, its most frequently modeled 
disturbance. Despite the wide mixed FRI range (10 to 1,000 years), the average overall mixed FRI 
was still relatively infrequent at 370 years. On average, less than one fire would have occurred for 
any given simulation cell in this BpS before it reached the Late2 Open class, which started at 300 
years. In the Late2 Open class the wide mixed FRI range had the greatest impact and resulted in the 
greatest range of state class variation in the Late Open class (which pooled results for Late1 Open 
and Late2 Open) for the BpS. 

The fire dynamics of the Spruce-Fir-Hardwood model were dominated by infrequent 
replacement severity fires occurring about every 909 years. On average, replacement fire would only 
occur 1.1 times for any given cell during a 1,000 timestep simulation, and given the low disturbance 
rate, most cells would reach the Late1 Closed class (with a starting age of 71 years) prior to any 
replacement fire event occurring. Therefore, the Late1 Closed class exhibited the widest state class 
range for the Spruce-Fir-Hardwood BpS, but it had relatively narrow state classes ranges compared 
to the other BpS we tested. It should also be noted that this BpS was the only one we tested where 
fire was not the dominant disturbance, and therefore, other disturbances played an important role in 
the dynamics of the model.  

4.1. Management implications 

Simulating the potential HRV in state class distribution can provide for a more nuanced 
assessment of current vegetation conditions. For example, the current amount of the Pinyon-Juniper 
classes, with the exception of the early state, fell nearly within the extent of the simulated range. The 
HRV results illustrate that these classes, while departed from the mean, are not too far outside of the 
possible simulated range. Similarly, the Mixed Conifer Mid1 Open class could be considered 
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departed based on determining departure from the mean, even though its current amount was well 
within the simulated state class range. In contrast, the Mixed Conifer Mid1 Closed, Late1 Open and 
Late1 Closed classes were not only departed from the mean, but they fell well outside of the 
simulated range. While beyond the scope of this study to explain the difference between the current 
amount and the simulated HRV, we noted that the Mixed Conifer results were consistent with 
patterns found in other studies that have documented increasing closed canopy forest conditions in 
the 20th century, possibly as a result of fire suppression and other land use changes [32,33,34]. 

Restoration activities that incorporate information about the possible range of state class values 
could allow for more ecological variation on the landscape. For example, the Mixed Conifer Early1, 
Mid1 Open and Late1 classes and the Pinyon-Juniper Late Open class had wider simulated ranges of 
variability than the other state classes within each BpS. Restoration actions based on the HRV could 
provide managers with greater flexibility in their management actions and allow for the possibility of 
more ecological variability where Mixed Conifer and Pinyon-Juniper are present. 

The Spruce-Fir-Hardwood results depict a situation where a substantial portion of the ecosystem 
has shifted to an uncharacteristic state that was not present in the reference condition model. We 
speculate that conversion to northern hardwoods and low canopy cover relative to the reference 
condition, possibly as a result of past forest management activities, could account for these 
uncharacteristic conditions. The LANDFIRE model description also notes that spruce budworm 
(Choristoneura fumiferana) can cause changes in the BpS that would be outside of the HRV [28]. 
While there may be silvicultural options for shifting the uncharacteristic state closer to HRV, one 
might question whether that is possible or desirable. In this case, the value of the HRV analysis may 
be to provide an objective assessment of the current situation and help determine whether these 
conditions are attainable under current ecological and social conditions.  

4.2. Impacts of scale 

Our model results for Spruce-Fir-Hardwood BpS show a relatively narrow range of state class 
variation partially because fire occurred relatively infrequently in the STSM. At the scale of the 
entire BpS this result may be appropriate, but at finer scales, for example, at the scale of individual 
watersheds, the replacement severity fire disturbance events that characterize this BpS could cause 
major fluctuations in state class distribution. These fluctuations cannot be resolved using our method 
because we did not tie our simulations to an actual geography or spatial extent and our simulations 
were non-spatial. We also assumed that the mean FRI for each model iteration did not vary 
temporally. For these reasons, we submit that the technique presented here is best suited to broad 
scale analyses at least an order of magnitude larger than the upper end of the size distribution of fire 
events typically observed on a particular landscape. Studies have shown that landscape variability 
can increase as the size of the modeled assessment area decreases relative to the size of disturbance 
events [35,36,37]. More realistic spatial and temporal variability patterns could be simulated by 
modifying our method to include the use of a spatially explicit STSM and the addition of temporally 
varying fire (or other disturbance) probabilities and a fire size distribution. 
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4.3. Utility and limitations of the STSM approach 

An advantage of our approach is that it relies primarily on existing data and software tools to 
develop an ecologically meaningful estimate of HRV that does not require extensive spatial modeling 
expertise. The demand for model parameterization using our method is relatively low compared to 
spatially explicit HRV modeling approaches, and expert judgment can supplement empirical data, if 
needed. The approach is suitable for the hundreds of existing LANDIFRE models as well as other 
STSMs that are in or can be transferred into the ST-Sim modeling framework.  

In addition to the STSM, our method requires an estimate of the FRI mean and range and the 
standard deviation of the fire frequency distribution. About 50% of the LANDFIRE models in the 
conterminous United States and Hawaii specify a FRI range for at least one of the modeled fire 
severity types; however the level of information supporting the existing estimates varies between 
BpS [25,38]. Literature review, field studies and/or expert estimate could be used to create new and 
refine existing disturbance range estimates. Methods from recent studies on systematically eliciting 
expert opinion for STSMs [39,40] could be applied to LANDFIRE models where FRI ranges have 
not been provided. 

We chose to use a bell-shaped beta distribution, but the method is flexible with regard to the 
type and shape of the distribution. For systems where fire is not the dominant disturbance, other 
probabilities could be altered to improve the HRV estimates. The models presented here included 
non-fire disturbances that could be varied using the technique we outlined for fire if data were 
available, but LANDFIRE models only estimate the mean frequency of non-fire disturbances and do 
not include estimates of the minimum and maximum return interval.  

4.4. HRV in a changing climate  

A criticism of management approaches that use the HRV to set management targets is that 
historical conditions may no longer be relevant under a climate system that is without historical 
precedent [41,42]. Management targets based on historical conditions may be increasingly costly to 
maintain and create ecosystems that are poorly adapted to current conditions [41]. This criticism does 
not necessarily discount the value of understanding the HRV [43,44]. In fact, a changing climate may 
make understanding the historical context of an ecosystem more important for addressing current and 
future management challenges [8,44,45]. Higgs and others [8] suggest that restoration-based 
ecosystem management activities can use historical information not as a target but as a guide to 
increase knowledge of how ecosystems responded to change in the past that can provide clues for 
how they might respond to change in the future. 

Information about historical conditions can be used as a guide to plan for anticipated climate 
conditions and inform the development of forest management strategies consistent with that future 
climate. For example, in The Rogue Basin Action Plan for Resilient Watersheds and Forests in a 
Changing Climate, the Southern Oregon Forest Restoration Collaborative and partners targeted 
treatments that promoted the development of historically open forest structures by removing 
small-diameter trees and fire-sensitive tree species [46]. These treatments, informed by historical 
stand structure and composition, should reduce wildfire risk and may over time increase stable 
carbon stocks [46,47]. It is expected that these changes will help forests in the Rogue Basin to better 
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adapt to the predicted hotter, drier and more fire-prone climate conditions anticipated in the future [46]. 
Given the lack of certainty in climate projections, Keane and others [1] suggest that the use of 

HRV to inform land management may be a prudent approach in the near-term. However, HRV 
analysis is probably most useful when combined with approaches that account for changing climate 
conditions and the projected future ranges of variability that define the characteristics of probable 
future ecosystems [1,48]. With modifications, the method for determining a range of state class 
variability presented here could be adapted for exploring future or desired ranges of variability. 
Modeling future scenarios using this approach may identify policies and management strategies that 
are sustainable and increase ecosystem resilience as well as identify ecosystems where restoring or 
maintaining the HRV is unlikely regardless of available resources. 

5. Conclusion 

Providing objective and reasonable estimates for the HRV for a particular ecosystem is a vexing 
challenge given the limited historical data available. The approach presented here offers one way to 
estimate the HRV using readily available data and free software tools that we believe could provide 
additional and useful information for land management planning and decision-making. For broad 
scale assessments, this method could provide a first approximation of the HRV that could be refined 
with local information. The technique is flexible and the assumptions we made about the type and 
shape of the fire frequency distribution could be changed. Future work in this area could examine the 
impact of these assumptions on the HRV results. In light of the ongoing debate about the relevance 
of HRV, we suggest that if, as the old adage reminds us, change is constant, then perhaps a better 
understanding of past ecosystem conditions will provide useful insights to guide future land 
management activities. 

Acknowledgments 

We thank two anonymous reviewers for helpful comments on the manuscript. This work was 

partially funded by the LANDFIRE Program through Cooperative Agreement USFS 

14-CA-11132543-043. 

Conflict of Interest 

Authors declare no conflicts of interest in this paper. 

References 

1. Keane RE, Hessburg PF, Landres PB, et al. (2009) The use of historical range and variability 
(HRV) in landscape management. Forest Ecol Manag 258: 1025-1037. 

2. Forbis T, Provencher L, Frid L, et al. (2006) Great Basin land management planning using 
ecological modeling. Environ Manag 38: 62-83.  

3. Provencher L, Forbis T, Frid L, et al. (2007) Comparing alternative management strategies of fire, 
grazing, and weed control using spatial modeling. Ecol Model 209: 249-263.  



266 
 

AIMS Environmental Science  Volume 2, Issue 2, 253-268 

4. Low G, Provencher L, Abele S (2010) Enhanced conservation action planning: Assessing 
landscape condition and predicting benefits of conservation strategies. J Conserv Plan 6: 36-60.  

5. Hann WJ, Bunnell DL (2001) Fire and land management planning and implementation across 
multiple scales. Int J Wildland Fire 10: 389-403.  

6. Shedd M, Gallagher J, Jiménez M, et al. (2012) Incorporating HRV in Minnesota National Forest 
Land and Resource Management Plans: A Practitioner's Story. In: Historical Environmental 
Variation in Conservation and Natural Resource Management Chichester, UK: John Wiley & 
Sons, Ltd. 176-193.  

7. MacKinnon A, Saunders S (2012) Incorporating Concepts of Historical Range of Variation in 
Ecosystem-Based Management of British Columbia's Coastal Temperate Rainforest. In: 
Historical Environmental Variation in Conservation and Natural Resource Management. 
Chichester, UK: John Wiley & Sons, Ltd. 166-175. 

8. Higgs E, Falk A, Guerrini A, et al. (2014) The changing role of history in restoration ecology. 
Front Ecol Environ 12: 499-506.  

9. Landres PB, Morgan PM, Swanson FJ (1999) Overview of the use of natural variability concepts 
in managing ecological systems. Ecol Appl 9: 1179-1188. 

10. Romme WH, Wiens JA, Safford HD (2012) Setting the Stage: Theoretical and Conceptual 
Background of Historical Range of Variation. In: Historical Environmental Variation in 
Conservation and Natural Resource Management. Chichester, UK: John Wiley & Sons, Ltd. 
3-18.  

11. Wong CM, Iverson K (2004) Range of natural variability: applying the concept to forest 
management in central British Columbia, BC. JEM Extension 4: 1-56. 

12. Hayward GD, Veblen TT, Suring LH, et al. (2012) Historical Ecology, Climate Change, and 
Resource Management: Can the Past Still Inform the Future? In: Historical Environmental 
Variation in Conservation and Natural Resource Management Chichester, UK: John Wiley & 
Sons, Ltd. 32-45.  

13. Haugo R, Zanger C, DeMeo T, et al. (2015) A new approach to evaluate forest structure 
restoration needs across Oregon and Washington, USA. Forest Ecol Manag 335: 37-50. 

14. Hemstrom M, Merzenich J, Reger A, et al. (2007) Integrated analysis of landscape management 
scenarios using state and transition models in the upper Grande Ronde River Subbasin, Oregon, 
USA. Landscape Urban Plan 80: 198-211. 

15. Daniel CJ, Frid L (2012) Predicting Landscape Vegetation Dynamics Using State-and-Transition 
Simulation Models. In: Proceedings of the First Landscape State-and-Transition Simulation 
Modeling Conference. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific 
Northwest Research Station 5-22.  

16. ESSA Technologies Ltd. (2010) Vegetation Dynamics Development Tool. Available from: 
http://essa.com/tools/vddt/. 

17. Apex Resource Management Solutions Ltd. (2014) ST-Sim: State-and-Transition Simulation 
Model Framework. Available from: http://www.apexrms.com/.  

18. Barrett S, Havlina D, Jones J, et al. (2010) Interagency Fire Regime Condition Class Guidebook. 
Version 3.0. Available from: http://www.frcc.gov. 

19. Rollins MG (2009) LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel 
assessment. Int J Wildland Fire 18: 235-249. 



267 
 

AIMS Environmental Science  Volume 2, Issue 2, 253-268 

20. Lolley M, McNicoll C, Encinas J, et al. (2006) Restoring the functionality of fire adapted 
ecosystems, Gila National Forest, restoration need and opportunity. Unpublished report. Gila 
National Forest. 

21. Provencher L, Campbell J, Nachlinger J (2008) Implementation of mid-scale fire regime 
condition class mapping at Mt. Grant, Nevada. Int J Wildland Fire 17: 390-406. 

22. Helmbrecht D, Williamson M, Abendroth D (2012) Bridger-Teton National Forest Vegetation 
Condition Assessment. Prepared for Bridger-Teton National Forest. U.S. Department of 
Agriculture. Unpublished report. 38 p. Available from: 
https://www.conservationgateway.org/Files/Pages/BridgerTetonHelmbrecht.aspx.  

23. Shlisky AJ, Guyette RP, Ryan KC (2005) Modeling reference conditions to restore altered fire 
regimes in oak-hickory-pine forests: validating coarse models with local fire history data. In: 
EastFire Conference Proceedings. George Mason University. Fairfax, VA. 4 p. 

24. Weisz R, Tripeke J, Truman R (2009) Evaluating the ecological sustainability of a ponderosa 
pine ecosystem on the Kaibab Plateau in Northern Arizona. Fire Ecol 5: 100-114. 

25. Swetnam TL, Brown PM (2010) Comparing selected fire regime condition class (FRCC) and 
LANDFIRE vegetation model results with tree-ring data. Int J Wildland Fire 19: 1-13. 

26. McGarigal K, Romme W, Goodwin D, et al. (2003) Simulating the dynamics in landscape 
structure and wildlife habitat in Rocky Mountain landscapes: The Rocky Mountain Landscape 
Simulator (RMLANDS) and associated models. Department of Natural Resources Conservation, 
University of Massachusetts, Amherst, MA. Unpublished report. 19 p. Available from: 
http://www.umass.edu/landeco/research/rmlands/documents/RMLANDS_overview.pdf.  

27. Keane RE, Holsinger LM, Pratt SD (2006) Simulating historical landscape dynamics using the 
landscape fire succession model LANDSUM version 4.0. Gen. Tech. Rep. RMRS-GTR-171CD. 
Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research 
Station. 73 p. 

28. LANDFIRE (2014) LANDFIRE Vegetation Dynamics Models. U.S. Department of Agriculture, 
Forest Service; U.S. Department of Interior. April 8, 2014. Available from: 
http://www.landfire.gov/index.php.  

29. Johnson NL, Kotz S, Balakrishnan N (1995) Chapter 21: Beta Distributions. In: Continuous 
Univariate Distributions Vol. 2 (2nd ed.) New York, NY: Wiley. John Wiley & Sons, Ltd.  

30. LANDFIRE (2014) LANDFIRE 1.2.0 Biophysical Settings layer. U.S. Department of Interior, 
Geological Survey. April 8, 2014. Available from: http://landfire.cr.usgs.gov/viewer/. 

31. LANDFIRE (2014) LANDFIRE 1.2.0 Succession Class layer. U.S. Department of Interior, 
Geological Survey. April 8, 2014. Available from: http://landfire.cr.usgs.gov/viewer/. 

32. Skinner CN (1995) Change in spatial characteristics of forest openings in the Klamath 
Mountains of northwestern California, USA. Landscape Ecol 10: 219-228. 

33. Hessburg PF, Smith BG, Kreiter SG, et al. (1999) Historical and current forest and range 
landscapes in the Interior Columbia River Basin and portions of the Klamath and Great Basins. 
Part 1. Linking vegetation patterns and landscape vulnerability to potential insect and pathogen 
disturbances. Gen. Tech. Rep. PNW-GTR-458. Portland, OR: U.S. Department of Agriculture, 
Forest Service, Pacific Northwest Research Station. 357 p. 

34. Hessburg PF, Smith BG, Salter RB, et al. (2000) Recent changes (1930s–1990s) in spatial 
patterns of interior northwest forests, USA. Forest Ecol Manag136: 53-83. 



268 
 

AIMS Environmental Science  Volume 2, Issue 2, 253-268 

35. Turner MG, Romme WH, Gardner RH, et al. (1993) A revised concept of landscape equilibrium: 
Disturbance and stability on scaled landscapes. Landscape Ecol 8: 213-227. 

36. Wimberly MC, Spies TA, Long CJ, et al. (2000) Simulating Historical Variability in the amount of 
old forests in the Oregon Coast Range. Conserv Biol 14: 167-180. 

37. Meyer CB, Knight DH, Dillon GK (2010) Use of the historic range of variability to evaluate 
ecosystem sustainability. In: Climate Change and Sustainable Development. Urbana, IL: Linton 
Atlantic Books, Ltd. 251-261. 

38. Blankenshi, K, Smith J, Swaty R, et al. (2012) Modeling on the Grand Scale: LANDFIRE 
Lessons Learned. In: Proceedings of the First Landscape State-and-Transition Simulation 
Modeling Conference. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific 
Northwest Research Station 43-56. 

39. Czembor CA, Morris WK, Wintle BA, et al. (2011) Quantifying variance components in 
ecological models based on expert opinion. J Appl Ecol 48: 736-745.  

40. Czembor CA, Vesk PA (2009) Incorporating between-expert uncertainty into state-and-transition 
simulation models for forest restoration. Forest Ecol Manag 259: 165-175. 

41. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: 
managing in the face of uncertainty. Ecol Appl 17: 2145-2151.  

42. Millar CI (2014) Historic variability: informing restoration strategies, not prescribing targets. J 
Sustain Forest 33: S28-S42.  

43. Balaguer L, Escudero A, Martín-Duque J, et al. (2014) The historical reference in restoration 
ecology: Re-defining a cornerstone concept. Biol Conserv 176: 12-20. 

44. Millar CI, Woolfenden WB (1999) The role of climate change in interpreting historical variability. 
Ecol Appl 9:1207-1216. 

45. Safford HD, Hayward GD, Heller NE, et al. (2012) Historical Ecology, Climate Change, and 
Resource Management: Can the Past Still Inform the Future? In: Historical Environmental 
Variation in Conservation and Natural Resource Management Chichester, UK: John Wiley & 
Sons, Ltd. 46-62.  

46. Myer G (2013) The Rogue Basin Action Plan for Resilient Watersheds and Forests in a Changing 
Climate. Thaler, T, Griffith, G, Perry, A, Crossett, T, et al. (Eds). Model Forest Policy Program in 
Association with the Southern Oregon Forest Restoration Collaborative, the Cumberland River 
Compact and Headwaters Economics. Sagle, ID.  

47. North M, Hurteau M, Innes J (2009) Fire suppression and fuels treatment effects on mixed-conifer 
carbon stocks and emissions. Ecol Appl 19: 1385-1396. 

48. Hessburg PF, Salter RB, Reynolds KM, et al. (2014) Landscape Evaluation and Restoration 
Planning. USDA Forest Service / UNL Faculty Publications. Paper 268. Available from: 
http://digitalcommons.unl.edu/usdafsfacpub/268. 

© 2015, Kori Blankenship, et al., licensee AIMS Press. This is an open access article distributed 
under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0) 


