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Abstract: In this study, we introduced a unified family of fractional-order derivatives of the error
function, bridging classical error function (α = 0) and Gaussian (α = 1) through Maclaurin
expansion and Lacroix’s fractional calculus. The adaptive model was validated against cubic
spline and Gaussian baselines using six days of real photovoltaic measurements from a tropical
environment. Moving-window optimization achieved competitive accuracy (Root Mean Squared
Error (RMSE): 0.0083–0.0104; Mean Absolute Error (MAE) 0.0068–0.0086) while preserving
physical interpretability via the fractional order α. Comparative analysis demonstrated significant
improvement over Gaussian fitting, with an average 14.17% reduction in RMSE across all test
days. The fractional approach also delivered more consistent daily performance and better captured
asymmetric transitions, despite spline’s occasional marginal RMSE advantages. Graphical analysis
revealed persistent diurnal α patterns: from 0.50 at sunrise, peaking at 0.90–0.91 near noon,
declining to 0.37 afternoon, with sunset rebound. Our results confirmed the model effectively
captures photovoltaic memory effects while offering superior interpretability and dynamic adaptation
versus traditional methods. The framework enables accurate energy forecasting and condition-based
maintenance, with future work focusing on real-time α tuning and machine learning integration.

Keywords: fractional calculus; error function; photovoltaic efficiency modeling; adaptive
optimization; memory effects; solar energy; diurnal dynamics

Nomenclature: t: time in hours (0–24); x: normalized time variable, x = (t − mid point)/spread; α:
adaptive fractional order estimated for each window; Φα(x): proposed fractional-order error function;
Φ(x): classical error function (α = 0); ϕ(x): Gaussian function, derivative of Φ(x) (α = 1) ; n:
summation index in the Maclaurin expansion; N: total number of sliding windows; w: window index;
window size: number of data points in each window; E(t): measured photovoltaic efficiency; Ê(t):
modeled efficiency using the fractional approach; Êspline(t): modeled efficiency using cubic spline;
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Êgauss(t): modeled efficiency using Gaussian fit; Γ(·): Euler Gamma function; RMSE: Root Mean
Squared Error; MAE: Mean Absolute Error; p: smoothing parameter for cubic spline (if applied);
A, µ, σ, b: Gaussian model parameters (amplitude, mean, width, baseline)

1. Introduction

The global energy landscape is undergoing a profound transformation, driven by a growing
awareness of climate change and the urgent need to transition toward sustainable energy sources. In this
context, photovoltaic (PV) systems have solidified their position as a cornerstone of clean electricity
generation, offering a promising solution to meet global energy demand and mitigate greenhouse
gas emissions. The efficiency with which these panels convert sunlight into electricity is a critical
parameter determining their economic viability, effective grid integration, and genuine contribution
to sustainability goals [1]. Therefore, accurate modeling of PV panel efficiency is of paramount
importance for their optimal design, performance prediction, and long-term strategic planning.

However, the actual efficiency of photovoltaic panels under operational conditions is an
inherently complex and dynamic phenomenon, influenced by a multitude of environmental and
operational factors. Elements such as fluctuating solar irradiance, significant variations in ambient
temperature [2, 3], dust and dirt accumulation on the panel surface [4–6], and challenges associated
with thermal management [7–9] contribute to non-linear behavior and the manifestation of memory
effects or historical dependencies in the panel’s performance. These phenomena, where the current
state of the system depends not only on immediate conditions but also on its past history, pose
significant challenges for accurate modeling using conventional integer-order derivative approaches.

While modeling strategies have been explored in recent years—including data-driven and
learning-based frameworks [10–12] traditional approaches such as cubic spline interpolation and
Gaussian fitting remain widely used for photovoltaic performance analysis. However, these methods
present limitations: Spline interpolation lacks physical interpretability despite exact data fitting, while
Gaussian fitting struggles to capture asymmetric daily patterns and memory effects inherent in real PV
systems. Here, we addresses these limitations through a novel fractional-order error function approach
that provides both mathematical rigor and physical interpretability, with comprehensive validation
against established baseline methods.

Unlike fractional-calculus applications in photovoltaic modeling that primarily employ
fixed-order operators, we introduce a continuously adaptive fractional-order error function that
dynamically interpolates between classical error function (α = 0) and Gaussian (α = 1) behavior.
Key innovations include real-time optimization of the fractional order α through moving windows,
direct physical interpretation of α as a memory indicator, and rigorous statistical validation against
baseline models using experimental data from tropical conditions.

The error function, a transcendental function defined through the integral of the normal
distribution, emerges as a fundamental element in various branches of mathematics, particularly in
the solutions of differential equations and in probability theory. In the realm of physics, it is frequently
associated with the description of diffusion problems and Brownian motion [13], nonlinear phase
modulation systems [14], and in the study of the psychometric function [15, 16]. Its mathematical
properties make it suitable for describing a wide range of physical phenomena that exhibit a gradual
distribution or a transition.
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On the other hand, Fractional Calculus (FC) represents a mathematical discipline dedicated to
the study of operators—derivatives and integrals—of arbitrary (i.e., non-integer) order. Its origins
trace back to Leibniz’s classic question about extending the notion of differentiation to fractional
orders. Although the field initially evolved as a theoretical branch of mathematics, the development of
precise measurement technologies revealed that classical integer-order models often failed to capture
the memory and non-local phenomena observed in real physical systems. This gap motivated the search
for more general frameworks.

Early foundational contributions, such as those by Oldham and Spanier [17], and later by Miller
and Ross [18], established the basic theoretical structure of FC. Podlubny’s seminal monograph [19]
further consolidated the analytical and numerical tools needed for solving fractional differential
equations, thereby broadening the applicability of the field.

Subsequent works expanded FC toward modern modeling and engineering practice. Baleanu
and collaborators [20, 22] advanced the use of fractional operators in control, nanotechnology, and
applied physics, while Golmankhaneh and Lambert [21] contributed to the understanding of fractional
dynamical systems. Uchaikin’s text [23] provided a comprehensive treatment of fractional derivatives
for physicists and engineers, strengthening the link between FC and complex physical processes.

Furthermore, key mathematical developments—such as Wyss’s formulation of the fractional
diffusion equation [24] and Westerlund’s work on causality in systems with memory [25] demonstrated
the relevance of fractional operators for describing anomalous transport, hereditary behavior, and
long-range temporal dependence.

Collectively, these contributions laid the theoretical and applied foundations that motivate the
present study, emphasizing the suitability of fractional-order formulations for modeling systems
governed by memory effects, such as photovoltaic energy conversion.

Definitions of fractional derivatives coexist, each with specific characteristics and applications.
The Riemann-Liouville (RL) definition is one of the most classical and comprehensive; however, its
fractional-order initial conditions often lack direct physical meaning, making it less convenient for
formulating real problems. In contrast, the Caputo fractional derivative is distinguished by employing
initial conditions given by integer-order derivatives, which provides it with direct physical meaning and
facilitates its application in practical problems [26]. Nevertheless, RL and Caputo definitions utilize a
singular kernel, which may limit their ability to accurately describe the full memory effect in certain
systems. To overcome this limitation, more definitions with regular kernels have emerged, such as
the one proposed in [27], the Atangana-Baleanu fractional derivative, which uses the Mittag-Leffler
function as its kernel [28], and the conformable fractional derivative [29]. A historical milestone in the
development of FC was the proposal of the Grünwald-Letnikov fractional derivative (GLFD) in 1867,
based on finite differences and equivalent to the RL definition [30].

The first documented physical application of FC is attributed to Abel in 1819, who used it
to solve an integral related to the tautochrone curve [31]. Since then, FC has demonstrated its
versatility and effectiveness in a multitude of areas of science and engineering. Its applications
range from image processing, in tasks such as edge detection [32, 33], to obtaining solutions for
the Schrödinger equation using the conformable derivative [34]. In the field of energy systems, it
has been employed for the analysis of installed photovoltaic capacity in Mexico using conformable
derivatives [35], and for analyzing efficiency behavior in balancing loops within system dynamics
environments [36], reinforcing its direct relevance to solar energy studies. Furthermore, it has
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found application in describing the electrical properties of metals [37], the analysis of electrical
circuits [38], and in the design and control of systems with fractional stability [39]. FC has been
successfully applied in advanced system identification and control, such as the design of auxiliary
model-based normalized fractional gradient algorithms for nonlinear output-error systems [40] and
fractional hierarchical gradient descent algorithms for parameter estimation of nonlinear control
autoregressive systems [41]. In biomedical engineering, novel nonlinear fractional-order models have
been developed for Parkinson’s disease, analyzing brain electrical activity rhythms through intelligent
adaptive Bayesian networks [42], and designing fractional innate immune responses with therapeutic
interventions using intelligent machine predictive exogenous networks [43].

In this context of seeking more precise models for complex and dynamic systems such
as photovoltaic panels, and recognizing the profound potential of fractional calculus to describe
phenomena exhibiting memory and historical dependencies qualities highly relevant to the behavior
of PV panels under varying and time-dependent conditions we propose a novel application of the
family of curves based on the fractional-order error function. This innovative mathematical tool is
utilized to model the efficiency of photovoltaic panels. To validate the effectiveness of the proposed
approach, the methodology is rigorously applied and evaluated using real efficiency data collected
over six consecutive days from operational photovoltaic panels at a private university in Cartagena
de Indias, Colombia. This location (Latitude: 10.4295° N, Longitude: –75.5380° W, approximate
altitude: 2 meters above sea level) is characterized by climatic conditions typical of the humid
tropics, with an average daily temperature between 26 °C and 38 °C, a very favorable average solar
irradiance (around 5.2 to 5.8 kWh/m²/day), and a relative humidity frequently above 80%. These
operating conditions, marked by high solar radiation throughout the year but also by the presence of
clouds, sea breeze, and significant transient temperature changes, are ideal for justifying the necessity
of a model capable of capturing complex dynamics and inherent memory effects.

Based on this framework, the key contributions of this study are as follows:
• Novel mathematical framework: Development of a unified family of fractional-order error

functions that continuously interpolate between the classical error function (α = 0) and its
Gaussian derivative (α = 1), grounded in Lacroix’s fractional derivative and the Maclaurin
series expansion.
• Adaptive modeling of photovoltaic efficiency: Implementation of a sliding-window local

optimization scheme for the fractional order α, capable of capturing non-stationary variations
in daily photovoltaic panel efficiency.
• Experimental validation in tropical environment: Rigorous application of the model to real

photovoltaic efficiency data measured over six consecutive days in Cartagena de Indias,
Colombia, under high-irradiance, high-humidity, and transient thermal variation conditions.
• Comparative analysis with baseline models: Comprehensive statistical validation against cubic

spline interpolation and Gaussian fitting, demonstrating advantages in physical interpretability
and adaptation to asymmetric patterns.
• Analysis of α dynamics: Examination of daily evolution patterns of the fractional order and

their relationship to irradiance and temperature conditions, revealing recovery of integer-order
dynamics at radiation peaks.
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• Potential for real-time implementation: Discussion of feasibility for integrating the model
into adaptive control systems and intelligent energy performance prediction frameworks, with
applications in generation forecasting and early anomaly detection.

2. Mathematical foundations

Before implementing the proposed modeling methodology, it is essential to establish the
mathematical foundations that support this work. In this section, we provide the necessary background
for understanding the construction of a new family of curves based on the fractional-order derivative
of the error function. First, we present the classical formulation of the error function and its
Maclaurin series expansion. Then, we introduce the concept of fractional derivatives, using the
fractional derivative proposed by Lacroix, which facilitates analytical development and is the core
of the fractional error function used in this study.

2.1. The error function

The error function is defined by

er f (x) =
2
√
π

∫ x

0
e−t2dt, (2.1)

and its representation on Maclaurin’s series is given by

er f (x) =
2
√
π

∞∑
n=0

(−1)n x2n+1

n! (2n + 1)
=

2
√
π

[
x −

x3

3
+

x5

10
−

x7

42
+ · · ·

]
. (2.2)

2.2. Lacroix’s fractional derivative

In 1819, Sylvestre François Lacroix presented a development to express the fractional derivative
of the function y = xm, all as a simple mathematical exercise [44, 45]. Despite being a very simple
result, it has had far-reaching implications.

Calculating the n-order derivative of the function y = xm, gives

dny
dxn =

m!
(m − n)!

xm−n, m ≤ n (2.3)

where m, n ∈ Z+.
The derivative of order α, where α ∈ R is built using the properties of the gamma function Γ(·)

dαy
dxα
= Dαx y =

Γ(m + 1)
Γ (m − α + 1)

xm−α (2.4)

α ∈ R and α ∈ [0,∞).

3. Theoretical development and analysis

To ensure the mathematical soundness of the proposed fractional-order error function and to
understand its fundamental properties, we present a detailed theoretical development. The construction
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of the function is based on a fractional generalization of the classical error function, where the
derivative order is allowed to vary continuously between zero and one. This generalized form allows
us to interpolate between the error function itself and its first derivative, which corresponds to the
Gaussian function.

In the first part of this section, we address the convergence of the resulting series expression. By
applying the d’Alembert ratio test, we verify that the fractional-order formulation converges absolutely
for all real values of the independent variable x, a necessary condition for the stability and usability of
the model in practical applications.

Following the convergence analysis, two special cases are examined: When α = 0 and α = 1.
These values demonstrate that the proposed series formulation consistently recovers the classical error
function and its Gaussian derivative, respectively, thereby validating the correctness of the generalized
model at both ends of the fractional spectrum.

Finally, we explore the qualitative behavior of the function across different values of the fractional
order α, by plotting its shape over a fixed domain of x. This graphical analysis provides insight into
how the fractional order influences the curve’s characteristics, which is essential for understanding its
role in the modeling of photovoltaic efficiency in later sections. Overall, this theoretical foundation
ensures that the mathematical object introduced is internally consistent and suitable for the adaptive
modeling framework developed in this study.

3.1. Development of the fractional error function

Applying the Lacroix fractional derivative on the expanded error function (2.2) yields.

Dαx
[
er f (x)

]
=

dα

dxα

 2
√
π

∞∑
n=0

(−1)n x2n+1

n! (2n + 1)

 , (3.1)

and simplifying the α-derived series gives

Dαx
[
er f (x)

]
=

2
√
π

∞∑
n=0

(−1)n (2n)! x2n+1−α

n! Γ [2(n + 1) − α]
. (3.2)

These expressions provide a generalized form of the error function through a fractional-order
derivative framework, that can capture intermediate behaviors between the classical error function
and its Gaussian derivative. The resulting family of curves varies smoothly with the order parameter
α, offering a flexible mathematical tool for modeling phenomena where memory effects or smooth
transitions are present. In the context of this study, this formulation is particularly suitable for
describing the non-instantaneous and history-dependent efficiency behavior of photovoltaic panels
under real operating conditions. In the following sections will demonstrate how this theoretical
construct is applied to real data and how the fractional order α can be optimized adaptively to better fit
the dynamic characteristics of PV efficiency.

This new fractional order function Dαx [erf(x)] smoothly interpolates between erf(x) and its first
derivative, the Gaussian function, as α varies from 0 to 1. In order to prove that the new expression is
able to capture the smooth transition between the error function and the Gaussian function, we analyze
its mathematical properties and validate it through numerical simulations.
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Convergence: To test the convergence of the series, the probe’s Alembert is applied to the resulting
series. Let

an(α) =
2
√
π

(−1)n (2n)!
n! Γ(2n + 2 − α)

x2n+1−α, (3.3)

and applying the limit

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+1 Γ(2(n+1)+1)

(n+1)! Γ(2(n+1)+2−α)
(−1)n Γ(2n+1)
n! Γ(2n+2−α)

∣∣∣∣∣∣∣∣ , (3.4)

simplifies

lim
n→∞

∣∣∣∣∣ (2n + 2)(2n + 1)
(n + 1)(2n − α + 4)(2n − α + 3)

x2
∣∣∣∣∣→ s(α)x2, (3.5)

where s(α) is an expression depending on α, since

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ < 1. (3.6)

The series converges absolutely. Furthermore, if s(α) x2 → 0, when x → 0, and x is finite for all
x ∈ R, the series converges for all x ∈ R.

The limit obtained in Eq (3.5) follows from the asymptotic behavior of ratios of Gamma functions,
which admit a well-defined expansion for large n. In particular, the convergence expressed through
s(α)x2 is consistent with the general results presented by Paris [46], where the asymptotics of Γ-ratio
structures are rigorously analyzed. This ensures that the application of the d’Alembert criterion to the
term in Eq (3.3) is mathematically justified and that the resulting series is absolutely convergent for all
x ∈ R. Furthermore, the fractional formulation used in this work aligns with modern fractional-calculus
frameworks employing nonlocal operators with weakly singular kernels [28], and the series-based
construction is consistent with the analytic expansion properties discussed in [47]. Finally, the special
cases α = 0 and α = 1 recover the classical error function and its Gaussian derivative, respectively,
consistent with the standard properties reported in [48].

Special cases: The formulation recovers the classical limits:

• The case when α = 0:

Dαx
[
er f (x)

]
α=0 =

2
√
π

∞∑
n=0

(−1)n (2n)! x2n+1

n! Γ [2(n + 1)]
, (3.7)

simplifying with the properties of the gamma function: Γ(n + 1) = n!, if n ∈ Z+.

Dαx
[
er f (x)

]
α=0 =

2
√
π

∞∑
n=0

(−1)n x2n+1

n! (2n + 1)
= er f (x). (3.8)

If α = 0, the fractional expression returns to the traditional error function er f (x), (2.2).

• The case when α = 1:

Dαx
[
er f (x)

]
α=1 =

2
√
π

∞∑
n=0

(−1)n (2n)! x2n+1−1

n! Γ [2(n + 1) − 1]
, (3.9)
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reducing, and using the property Γ(2n + 1) = (2n)!

Dαx
[
er f (x)

]
α=1 =

2
√
π

∞∑
n=0

(−1)n (2n)! x2n

n! (2n)!
, (3.10)

simplifying

Dαx
[
er f (x)

]
α=1 =

2
√
π

∞∑
n=0

(−1)n x2n

n!
=

2
√
π

e−x2
(3.11)

It is shown that, by using the fractional order α = 1 in the Eq (3.2), the result coincides with the
first derivative of the error function, which is the Gaussian function.

Behavior with varying α: The function was evaluated for 0 ≤ α ≤ 1 and 0 ≤ x ≤ 3. Figure 1
illustrates the continuous transition from er f (x) (α = 0) to the Gaussian (α = 1); only the real part is
plotted when complex values arise for certain parameter combinations.

0 0.5 1 1.5 2 2.5 3
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1.2

Figure 1. Fractional error function for representative values of α.

Figure 1 reveals the full behavioral spectrum of the fractional error function Dαx [erf(x)] as order
α varies from 0 to 1. For α = 0, the curve corresponds to the classical error function, exhibiting
its characteristic sigmoid shape and monotonic growth toward unity. As soon as α increases above
zero, the curves begin to flatten near the origin and develop a progressively more pronounced peak,
indicating that the fractional operator introduces an intermediate response between integration-like
and differentiation-like behavior. Values of α in the interval 0.1–0.5 produce smooth transitions where
the function rises less steeply and exhibits a shift of the maximum toward the left. For α > 0.5, the
curves increasingly resemble derivative-like responses: The initial slope becomes steeper, the peak
amplitude decreases, and the decay for larger x accelerates. As α approaches 1, the curve converges
to the Gaussian function 2

√
π
e−x2

, displaying an initial unit slope followed by rapid attenuation. This
continuous deformation as α varies demonstrates the flexibility of the fractional framework to capture

AIMS Energy Volume 13, Issue 6, 1583–1608.



1591

a wide range of dynamic behaviors between the classical erf(x) and its first derivative, validating the
suitability of the fractional error family as an adaptable modeling tool for systems with nonlocal or
memory-dependent characteristics.

4. Methodology

The proposed methodology for modeling photovoltaic panel efficiency employs a fractional-order
error function with adaptive optimization through sliding windows, designed to capture dynamic
variations and memory effects in PV systems under varying operating conditions.

4.1. Overview of the modeling approach

Figure 2 illustrates the complete workflow of the proposed methodology. The process begins with
data acquisition and progresses through temporal normalization, window segmentation, parallel model
computation, and final global reconstruction.

Figure 2. Graphical workflow of the proposed fractional-order modeling methodology.

4.2. Data acquisition and preprocessing

The photovoltaic efficiency data used in this study were obtained through direct experimental
measurements from operational monocrystalline silicon panels. All data correspond to actual
measurements under real operating conditions; no simulations or hybrid data generation methods
were employed.

The experimental setup and measurement specifications were as follows:
• Data collection: 200 measurements per day over six consecutive days.
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• Sampling frequency: 7.2-minute intervals (calculated from 200 samples/24 hours).
• Measurement system: Integrated data acquisition with pyranometer for irradiance and

thermocouples for temperature.
• Measurement uncertainty: ± 2% for efficiency calculations.
• Environmental conditions: Irradiance: 200–1100 W/m², Temperature: 26–38 °C.
• Quality control: Automated outlier removal and data validation.

The time variable was normalized using:

xi =
ti −mid point

spread
=

ti − 12
4
, (4.1)

where ti represents recorded time in hours. The normalization centers data around solar noon (12
hours) and scales the distribution to match the fractional error function’s domain.

Computational framework: The experimental measurements were processed in MATLAB, where
we implemented the fractional-order calculations, sliding window optimization (α adaptation), and
comparative analysis with baseline models. The moving-window approach with various sizes was
applied directly to the real measured data, with local optimization of the fractional order α performed
for each temporal segment.

4.3. Window segmentation strategy

The normalized data for each day were divided into disjoint fixed-size windows (window
sizes = [10, 20, 30, 40]). For each window k with indices Ik, three parallel modeling approaches
were applied:

4.4. Parallel model implementation

4.4.1. Fractional-order model

The core fractional-order error function was implemented as:

Fα(x) =
2
√
π

Nterms∑
n=0

(−1)n(2n)!
n! Γ(2(n + 1) − α)

x2n+1−α, (4.2)

with Nterms = 50 ensuring convergence. Local normalization within each window adapted the raw
output to observed efficiency ranges.

4.4.2. Baseline model 1: Cubic spline

A cubic spline interpolation served as a high-fidelity reference, implemented with MATLAB’s
spline function using the same window segmentation.

4.4.3. Baseline model 2: Gaussian fit

A Gaussian function was fitted within each window:

G(x) = A exp
(
−

(x − µ)2

2σ2

)
+ b, (4.3)

representing traditional symmetric efficiency modeling.
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4.5. Local optimization and evaluation

For each window, the following process was executed:

1. Initial comparison: RMSE and MAE were computed for all three models.

2. Fractional order optimization: For the fractional model, optimal. αk was determined via:

αk = arg min
α∈[0,1]

√
1
|Ik|

∑
i∈Ik

(ηi − η̂α(xi))2. (4.4)

3. Final comparison: RMSE/MAE were recomputed for the optimized fractional model.

4.6. Global model reconstruction

The complete daily efficiency profile was constructed by concatenating
window-optimized solutions:

η̂(xi) = η̂αk(xi), for i ∈ Ik. (4.5)

4.7. Performance evaluation framework

Model performance was quantified using:

• Root Mean Squared Error (RMSE): RMSEk =
√

1
|Ik |

∑
i∈Ik

(ηi − η̂(xi))2.

• Mean Absolute Error (MAE): MAEk =
1
|Ik |

∑
i∈Ik
|ηi − η̂(xi)|.

This comprehensive methodology enables direct comparison between the adaptive
fractional-order approach and traditional modeling techniques, while maintaining physical
interpretability through the evolving fractional order parameter α.

5. Experimental results and model validation

In this section, we present the experimental results validating the proposed fractional-order error
function model, emphasizing the benefits of its adaptive optimization via sliding windows. The
analysis compares the model’s performance against multi-day photovoltaic panel efficiency data,
reflecting realistic variations in solar irradiance and ambient temperature over a daily cycle. These
measurements inherently included memory effects and noise, which the model aims to capture and
mitigate. The time variable was normalized and mapped to the model’s input domain, as described
in section 5.

While fractional calculus has been used in solar energy applications, such as PV emulator
control [49] and modeling solar cell charge dynamics [50], we apply the fractional error function
to predict daily efficiency profiles with local optimization of α in sliding windows. Adapting α within
each window yields a more accurate representation of observed profiles, as confirmed by RMSE and
MAE metrics.

The subsections present visual and quantitative results for each day, including the observed
efficiency, locally optimized model fits, optimal α values, and error metrics per window. A comparative
summary table consolidates performance across all days and window sizes.
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The first evaluation used Day 1 data, showing a typical unimodal efficiency profile of a clear
day, with a peak near solar noon. Figure 3 shows the model fit using a 40-point window, accurately
capturing the curve’s ascent, peak, and descent. Annotated α values per window highlight the model’s
adaptability in closely matching real efficiency data.

Figure 3. Photovoltaic panel efficiency data fitted with the locally optimized fractional-order
model for Day 1 (window size: 40 points).

Figure 4 presents the optimal fractional order (α) values determined for each sliding window for
Day 1. It is evident that α adapts throughout the day, suggesting that the memory effects within the
system are not constant. For instance, α is observed to be around 0.50 in the early windows, increasing
to 0.57 and 0.91 during the mid-day windows, and then decreasing to 0.37 before rising to 0.77 in the
final window. This dynamic variation of α highlights the model’s ability to capture changing system
dynamics and intrinsic memory characteristics as environmental conditions evolve.

Figure 4. Optimal fractional order (α) values determined for each sliding window for Day 1
(window size: 40 points).
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To assess the model’s performance, Figure 5 shows the RMSE and MAE for each sliding window.
For Day 1, RMSE ranged from 5 × 10−3 to 12 × 10−3 and MAE from 4 × 10−3 to 10 × 10−3, with
overall averages of 0.0083 and 0.0068, respectively. These consistently low errors confirm the model’s
high accuracy and robustness, while the slight variations reflect the adaptive adjustment of α to
local conditions.

Figure 5. RMSE and MAE for each sliding window of the photovoltaic panel efficiency
model for Day 1 (window size: 40 points).

5.1. Performance analysis for day 2

Figure 6. Photovoltaic panel efficiency fitted with the locally optimized fractional-order
model for Day 2 (window size: 40 points).

Day 2 exhibited a typical unimodal efficiency profile under stable weather conditions, with a clear
peak around solar noon. Figure 6 shows the fit of the locally optimized fractional-order model (window
size: 40 points) against the observed efficiency. The model accurately follows the curve’s rise, peak,
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and decline, confirming its ability to replicate the real behavior.
Figure 7 presents the optimal α values per sliding window. Similar to Day 1, α starts near 0.50 in

the morning, increases to 0.57–0.88 at midday, and later ranges between 0.89 and 0.78. This variation
confirms the system’s dynamic memory adaptation under changing conditions.

Figure 7. Optimal fractional order (α) values for each sliding window on Day 2 (window
size: 40 points).

For a quantitative view, Figure 8 shows RMSE and MAE per window. Day 2 had an average
RMSE of 0.0096 and MAE of 0.0077, both consistently low. Minor variations reflect the necessary α
adjustments to local data.

Figure 8. RMSE and MAE for each sliding window on Day 2 (window size: 40 points).
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5.2. Performance analysis for Day 3

The analysis continued with the dataset for Day 3, which presented a distinctive efficiency
profile characterized by higher peak efficiency values, reaching up to 0.22 around solar noon. This
behavior was consistent with the environmental conditions observed, indicating a notably sunnier and
warmer day with temperatures exceeding 35 degrees Celsius. Figure 9 illustrates the fit of the locally
optimized fractional-order model against the real observed panel efficiency for Day 3, maintaining
the window size of 40 points. Qualitatively, the model sustained its excellent capacity to accurately
track the efficiency curve, capturing the accentuated peak and the overall shape characteristic of high
irradiance conditions.

Figure 9. Photovoltaic panel efficiency data fitted with the locally optimized fractional-order
model for Day 3 (window size: 40 points).

Figure 10 presents the optimal fractional order (α) values determined for each sliding window
for Day 3. This day exhibited a particularly interesting and more pronounced dynamic variation of α
compared to previous days. Notably, α values commenced around 0.50, slightly increased to 0.56, and
then reached a significant value of 1.00 during the mid-day windows. This occurrence of α = 1 was
highly coherent, as it signified that the model’s best fit at peak irradiance (solar noon) was achieved
by approximating an integer-order system behavior, where memory effects might be less dominant or
the system response aligns more closely with a classical integer derivative. Following this peak, α
decreased to 0.37 and subsequently rose to 0.77 in later windows. This dynamic range of α, especially
reaching unity, highlights the model’s flexibility and its ability to capture varying degrees of memory
and system dynamics under different environmental stresses and operational points.

For a quantitative assessment of the model’s performance on Day 3, Figure 11 presents the RMSE
and MAE for each sliding window. Consistent with the more dynamic α values and potentially more
challenging environmental conditions, the error metrics showed slightly larger variations compared to
previous days. The overall average RMSE for Day 3 was 0.0104, and the average MAE was 0.0086.
Despite these variations, these error magnitudes remained remarkably low, underscoring the model’s
precision and robust performance even when adapting to a more dynamic system response, including
instances where an integer-order approximation (α = 1) provided the best fit.
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Figure 10. Optimal fractional order (α) values determined for each sliding window for Day 3
(window size: 40 points).

Figure 11. RMSE and MAE for each sliding window of the photovoltaic panel efficiency
model for Day 3 (window size: 40 points).

5.3. Comparative analysis and pattern recognition over six days

In this section, we present a consolidated comparative analysis across the six-day observation
period, based on real experimental measurements of photovoltaic panel efficiency. The adaptive
fractional-order methodology was applied uniformly to all datasets, enabling the identification of
temporal patterns in the optimized fractional order (α) and its associated error metrics (RMSE and
MAE). This global view complements the per-day model analysis by revealing structural regularities
in the diurnal and inter-day behavior of the photovoltaic system.

Table 1 summarizes the model’s RMSE, MAE, and representative α values for each day.
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The consistently low RMSE (0.0083–0.0104) and MAE (0.0068–0.0086) confirm the stability and
reliability of the adaptive fractional-order approach varying irradiance and temperature conditions.
The relative uniformity of error magnitudes across days indicates that the model adapts effectively to
environmental fluctuations without significant loss of accuracy.

Table 1. Summary of average RMSE, MAE, and representative α values across six days
(window size = 40).

Day Average RMSE Average MAE Notable α values

1 0.0083 0.0068 0.50, 0.57, 0.91, 0.37, 0.77
2 0.0096 0.0077 0.50, 0.57, 0.88, 0.89, 0.78
3 0.0104 0.0086 0.50, 0.56, 1.00, 0.37, 0.77
4 0.0090 0.0073 0.50, 0.57, 0.91, 0.37, 0.78
5 0.0097 0.0078 0.50, 0.61, 0.90, 0.37, 0.78
6 0.0098 0.0081 0.50, 0.63, 0.89, 0.37, 0.76

Figure 12 depicts the temporal evolution of α for all days, showing a reproducible daily profile:
α starts near 0.50 during early morning, increases to 0.90–0.91 around solar noon, and declines
to approximately 0.37 toward sunset. Day 3 displays a transient peak of α = 1.00, suggesting
that under highly stable irradiance, the system tends to integer-order behavior, consistent with
steady-state conditions.

Figure 12. Temporal evolution of optimal α across six days (window size = 40).

Figure 13 presents a comprehensive heatmap visualization of the optimized fractional order α
across all six measurement days and their respective sliding windows (window size = 40). The vertical
axis corresponds to the day number (Day 1 to Day 6, bottom to top), while the horizontal axis represents
the time of day in hours (approximately 8:00 to 18:00). Each cell in the heatmap is color-coded
according to the value of α estimated for that time window, with the color gradient ranging from dark
blue (low α, e.g., α ≈ 0.37) to bright yellow (high α, α ≈ 1.00).
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Figure 13. Heatmap of the optimized fractional order α across all six days and sliding
windows (window size = 40). The color gradient from dark blue to bright yellow represents
low to high α values, illustrating the consistent diurnal pattern and inter-day variability.

The heatmap reveals a strikingly consistent and interpretable diurnal pattern across all days.
Lower α values (dark blue cells) systematically dominate the early morning (8:00–10:00) and late
afternoon (16:00–18:00) periods. This indicates a stronger memory dependence and diffusive behavior
during times of rapid environmental transition and lower irradiance. As solar noon approaches, a
distinct ridge of high α values (yellow cells) emerges consistently between 11:00 and 13:00. This
ridge peaks at values between 0.89 and 1.00 (see Table 1: Day 3, α = 1.00), signifying a shift toward
integer-order, memoryless dynamics when irradiance is maximal and most stable.

Notably, the pattern is highly reproducible but not perfectly identical. Day 3 shows the most
intense and compact high-α region, correlating with its status as the clearest, highest irradiance
day (peak efficiency of 0.22). In contrast, Days 5 and 6 exhibit a slightly more diffused high-α ridge
and marginally lower peak values (0.90 and 0.89, respectively), potentially reflecting the influence of
transient clouds or increased atmospheric variability. The heatmap thus provides a clear and elegant
visual synthesis: The adaptive fractional-order model successfully captures the recurring daily physics
of the PV system while also resolving subtle, weather-driven inter-day variations. The stability of
this pattern confirms that the optimization of α is not an artifact of noise but a robust indicator of the
system’s underlying time-varying memory characteristics.

5.4. Representative comparative visualization: measured vs. fractional vs. baseline models

To illustrate the qualitative and quantitative behavior of the proposed adaptive fractional-order
model, a representative comparison between measured data and the three modeling approaches,
fractional, cubic spline, and Gaussian is presented in Figure 14. This visualization corresponds
to Day 3, which exhibited one of the most stable irradiance patterns and a wide dynamic range
in efficiency.

The black points represent the measured photovoltaic efficiency obtained directly from the
experimental dataset. The red continuous curve corresponds to the adaptive fractional-order model,
the blue dashed line to the cubic spline interpolation, and the green dash-dotted curve to the Gaussian
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fitting model. All models were fitted under the same window size (40) and evaluated using identical
RMSE and MAE criteria.

Figure 14. Comparison for Day 3 (window = 40): Measured efficiency (black dots) versus
fractional-order model (red), cubic spline (blue), and Gaussian fit (green).

The figure demonstrates that the adaptive fractional-order curve closely follows the measured
diurnal trend, accurately reproducing both the rising and falling phases of efficiency with minimal
phase lag. Unlike the spline baseline, which exactly interpolates each point but over-smooths local
variations, the fractional model captures subtle asymmetries in the morning–afternoon transition and
preserves physical consistency through the α parameter. The Gaussian curve, while continuous,
underestimates early-morning and late-afternoon behavior, confirming its limitations for multi-peak
or asymmetric shapes.

Quantitatively, the RMSE and MAE values presented in Section 5.3 (Table 2) corroborate this
visual interpretation. The cubic spline achieves marginally lower RMSE in certain cases (e.g., Day 1
and Day 4), but this comes at the cost of interpretability and reproducibility, its output depends solely
on interpolation of known data points rather than any physical or memory-based process. In contrast,
the fractional-order formulation generalizes to unseen conditions while preserving a clear physical
meaning associated with α, which represents the system’s temporal memory or fractional diffusion rate.

Table 2. Average RMSE values for the three modeling approaches (Window = 40) across six
consecutive days, including fractional-to-Gaussian improvement.

Day Fractional Cubic spline Gaussian Improvement (%)

Day 1 0.0083 0.0057 0.0089 6.74%
Day 2 0.0096 0.0091 0.0117 17.95%
Day 3 0.0104 0.0086 0.0117 11.11%
Day 4 0.0090 0.0078 0.0102 11.76%
Day 5 0.0097 0.0079 0.0122 20.49%
Day 6 0.0098 0.0089 0.0118 16.95%
Average — — — 14.17%
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From a dynamic perspective, the fractional model acts as an adaptive smoothing operator
controlled by α, enabling the curve to self-adjust depending on the stability of irradiance and
temperature. During periods of steady illumination (around solar noon), the model naturally converges
toward α → 1, approximating an integer-order (memoryless) behavior. Under more transient
conditions, α decreases (typically 0.35 < α < 0.6), revealing stronger memory effects and inertia
in the photovoltaic conversion process. This behavior aligns with real-world thermal hysteresis and
charge carrier dynamics observed in crystalline PV modules.

Therefore, the adaptive fractional-order approach provides a dual advantage: It maintains
competitive numerical accuracy relative to purely empirical baselines while introducing a physically
meaningful interpretative layer. The combined quantitative and visual evidence reinforces its suitability
for dynamic efficiency modeling in realistic solar environments.

5.5. Statistical significance analysis

Comprehensive statistical analysis validates the superior performance of the fractional-order
modeling approach. The fractional model demonstrated an average improvement of 14.17%
over the Gaussian baseline across all six days, with daily improvements ranging from 6.74%
to 20.49% (Figure 15).

Figure 15. Statistical analysis results: (a) Percentage improvement of fractional model
over Gaussian baseline across six days; (b) RMSE comparison between all three modeling
approaches.

Paired t-tests confirmed statistically significant differences between modeling approaches:

• Fractional vs. Gaussian: t(5) = 6.17, p = 0.002 - highly significant
• Fractional vs. Cubic Spline: t(5) = -5.23, p = 0.003 - significant

Error propagation analysis revealed that the α optimization process contributes only 0.5% to the
total uncertainty budget, while measurement uncertainty accounts for 2.0%. This demonstrates the
robustness of our adaptive framework and confirms that the fractional-order optimization introduces
minimal additional error while providing substantial modeling benefits.

The consistent statistical significance across all comparison metrics reinforces the practical utility
of the fractional-order approach for photovoltaic efficiency modeling.
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6. Physical interpretation of α dynamics

The diurnal evolution of the fractional order α provides critical insights into photovoltaic
system physics, revealing how memory effects govern energy conversion under varying
environmental conditions.

During early morning (α ≈ 0.50), strong memory dependence emerges from thermal inertia
and gradual panel heating, where historical states significantly influence current efficiency. At
solar noon (α → 0.90–1.00), the system approaches integer-order behavior under stable irradiance,
indicating minimal memory effects and near-instantaneous response dynamics. The afternoon
decline (α ≈ 0.37) reflects renewed memory dominance from accumulated thermal stress and changing
irradiation angles, demonstrating extended temporal dependence.

This α evolution directly correlates with semiconductor properties: values associate with
longer carrier recombination times and thermal hysteresis, while transitions reflect the system’s
adaptive balance between instantaneous conversion and historical dependencies. The framework
enables hysteresis capture, environmental adaptation, and provides physical interpretation of memory
phenomena beyond conventional modeling approaches.

7. Conclusions

We introduced and validated a unified family of fractional-order derivatives of the error function,
providing a continuous transition between the classical error function (α = 0) and its Gaussian
derivative (α = 1). The formulation, constructed using the Maclaurin expansion and Lacroix’s
fractional differentiation, offers a mathematically consistent and flexible representation suitable for
systems exhibiting non-instantaneous and memory-dependent behavior.

The methodology was applied to real photovoltaic efficiency measurements collected over six
consecutive days. Using an adaptive moving-window optimization scheme (window size: 40), the
fractional-order model achieved stable performance, with RMSE values ranging from 0.0083 to 0.0104
and MAE values ranging from 0.0068 to 0.0086. These consistently low errors, even under significant
diurnal variability in irradiance and temperature, demonstrate the robustness of the proposed approach
compared with fixed-order formulations.

The temporal evolution of the fractional order α revealed a clear and physically meaningful daily
structure: values in the early morning, a gradual increase toward midday (approaching α ≈ 1 under
stable irradiance), and a decrease during the late afternoon. This recurrent pattern, confirmed across all
six days, reflects the combined influence of thermal inertia, irradiance transients, and memory effects
inherent to photovoltaic energy conversion.

A comparative visualization against two baseline models—cubic spline and Gaussian
fitting—showed that the adaptive fractional-order formulation offers a superior balance between
accuracy and interpretability. While the spline exactly interpolates the data but lacks physical
meaning, and the Gaussian model struggles to represent asymmetric or multi-phase diurnal patterns, the
fractional approach accurately captures the full daily profile and remains grounded in a parameter (α)
with direct physical interpretation.

Overall, the results confirm that fractional-order dynamics provide an effective and physically
coherent framework for modeling nonstationary PV efficiency behavior, particularly due to their
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capacity to adapt to real-time environmental conditions through the evolution of α.
Work we will focus on strengthening the framework through temporal-smoothing techniques for

α to enhance real-time applicability, and validating the observed patterns across diverse climates. The
integration with machine-learning techniques for prediction and anomaly detection, as demonstrated
in other domains [43, 51], represents a promising avenue. Extensions could also examine connections
with fractional-order control strategies in power systems.
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