
 

 

AIMS Energy, 13(6): 1538–1559. 

DOI: 10.3934/energy.2025057 

Received: 20 April 2025 

Revised: 02 October 2025 

Accepted: 04 November 2025 

Published: 15 December 2025 

https://www.aimspress.com/journal/energy 

 

Research article 

Hybrid AI-driven decision architecture for sustainable industrial 

planning: Integrating BWM, IVN-TOPSIS, and DRL in OCP’s digital 

supply chain 

Fadoua Tamtam1,*, Mustapha Amzil1, Wissam Jenkal2, Larbi Yacoubi3 and Amina Tourabi1  

1 Systems Engineering and Decision Support Laboratory (LISAD), National School of Applied 

Sciences, Ibn Zohr University, Agadir 80000, Morocco 
2 Laboratory of Systems Engineering and Information Technologies (LISTI Lab), National School of 

Applied Sciences, Ibn Zohr University, Agadir 80000, Morocco 
3 Department of Management Techniques, Higher School of Technology, Ibn Zohr University, 

Guelmim 81000, Morocco 

* Correspondence: Email: fadoua.tamtam@gmail.com. 

Abstract: Sustainable energy planning in industrial supply chains requires a digitally integrated 

decision architecture capable of modeling uncertainty, aligning stakeholder priorities, and optimizing 

infrastructure deployment. In this study, we introduced a hybrid AI-driven (Artificial Intelligence) 

framework that combines expert-based weighting, neutrosophic uncertainty modeling, and adaptive 

learning to support strategic planning across energy, logistics, and infrastructure domains. The framework 

began with the Best-Worst Method (BWM) to derive consistent weights for four meta-criteria: Information 

strength, balance, data reliability, and lever readiness. These weights were applied to five strategic criteria 

clusters: Energy performance, environmental impact, logistics service, production stability, and risk and 

resilience, which were evaluated using Interval-Valued Neutrosophic IVN-TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution). Each criterion was expressed as an interval-valued 

neutrosophic number 𝐴𝑖 = (𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖) , where 𝑇𝑖 , 𝐼𝑖 , and 𝐹𝑖  represented degrees of truth, 

indeterminacy, and falsity, respectively. The closeness coefficient 𝐶𝐶𝑖  was computed to rank 

alternatives under uncertainty. These outputs were embedded in a Deep Reinforcement Learning (DRL) 

agent, where the reward function 𝑅 = (𝑠, 𝑎)  was shaped by the normalized IVN-TOPSIS scores, 

enabling real-time policy refinement while preserving expert-defined priorities. Applied to OCP’s 

phosphate supply chain, the model revealed that energy and environment jointly account for 55% of 



1539 

AIMS Energy  Volume 13, Issue 6, 1538–1559. 

the total strategic weight, confirming their dominant role in decarbonization and cost control. This 

integrated architecture enhances decision robustness, transparency, and operational relevance. While 

we focused on strategic criteria modeling, in future work, we will incorporate chemical interaction 

modeling, particularly the stable complexation mechanisms between phosphate components and 

energy vectors, to further support infrastructure deployment and sustainable logistics optimization. 

Keywords: digital supply chain optimization; AI-driven decision architecture; sustainable energy 

planning; neutrosophic Multi-Criteria Decision Making framework (MCDM); infrastructure and 

logistics integration 

 

1. Introduction 

Sustainable energy planning increasingly demands intelligent supply chain architectures that are 

digitally integrated, uncertainty-aware, and capable of continuous adaptation [1,2]. In high-impact 

sectors, such as phosphate production, strategic decisions must reconcile decarbonization targets, 

infrastructure deployment, and logistics coordination while navigating ambiguous data and evolving 

stakeholder priorities. Despite the proliferation of studies on energy materials and supply chain 

optimization, most rely on conventional MCDM methods that use static weights and crisp evaluations. 

These approaches often fail to capture the dynamic complexity of long-term planning across energy, 

logistics, and infrastructure domains. Moreover, they lack mechanisms for integrating expert judgment 

with real-time feedback, limiting their responsiveness to operational shifts and policy changes [3,4]. 

To address this gap, we introduce a novel hybrid framework, BWM-IVN-TOPSIS-DRL, that 

combines structured expert weighting, neutrosophic uncertainty modeling, and adaptive learning 

through artificial intelligence. The BWM is used to derive consistent weights for meta-criteria such as 

information strength, balance, data reliability, and lever readiness [5]. IVN-TOPSIS translates 

linguistic expert evaluations into structured neutrosophic intervals, enabling robust ranking of strategic 

criteria under uncertainty [6]. These outputs are embedded into a DRL agent, which refines decision 

policies based on real-time feedback while preserving expert-defined priorities. 

The framework is applied to five strategic criteria clusters essential for sustainable energy and 

digital supply chain planning: Energy performance, environmental impact, logistics service, 

production stability, and risk and resilience. The closeness scores generated by IVN-TOPSIS are 

normalized and used to shape the DRL agent’s reward function, ensuring that learned policies remain 

aligned with stakeholder goals while adapting to operational dynamics. 

Compared to researchers who focus primarily on material-level optimization or isolated process 

improvements [7–10], we offer a system-level decision architecture that integrates expert knowledge 

with AI-driven adaptability. Its novelty lies in the fusion of neutrosophic logic with reinforcement 

learning, enabling interpretability and dynamic policy refinement. The framework is not only scalable 

but also operationally grounded, making it suitable for real-world deployment in industrial ecosystems 

like OCP’s phosphate supply chain. 

Our aim of this study is to fill a critical methodological gap by developing a transparent,     

learning-enabled decision-support system for sustainable energy planning. It advances the field by 

offering a robust alternative to static MCDM models and contributes to the scientific discourse on 

intelligent infrastructure and logistics optimization under uncertainty. 



1540 

AIMS Energy  Volume 13, Issue 6, 1538–1559. 

2. Literature review 

The increasing complexity of sustainable energy planning and digital supply chain management 

has prompted a surge in decision-support methodologies aimed at balancing environmental, logistical, 

and infrastructural priorities under uncertainty [11,12]. Numerous researchers have explored strategic 

criteria clusters, such as energy efficiency, environmental impact, logistics performance, and 

operational resilience, but many rely on conventional MCDM techniques that exhibit critical 

limitations when applied to dynamic, real-world industrial ecosystems. 

Recent research has emphasized the need to integrate energy performance and environmental 

sustainability into supply chain design. For example, Tramarico et al. [13] proposed a structured 

approach to supplier selection that incorporates sustainability indicators, highlighting the 

interdependence between energy decisions and logistical coordination. Their work demonstrates that 

strategic planning must account for multiple dimensions, i.e., carbon footprint, cost efficiency, service 

reliability, and risk mitigation, especially in sectors like phosphate production, where operational 

corridors span geographically and functionally diverse nodes. However, their model remains static, 

lacking mechanisms to adapt to evolving stakeholder priorities or real-time operational feedback. 

Traditional MCDM methods such as Analytic Hierarchy Process (AHP), TOPSIS, and 

Elimination and Choice Translating Reality (ELECTRE) have long been used for strategic planning. 

These methods offer structured decision matrices and pairwise comparisons, enabling transparent 

evaluation of alternatives [14–16]. Yet, they suffer from several methodological gaps. Most rely on 

fixed weights derived from initial expert input, which cannot accommodate changing priorities or 

feedback loops [17]. They also assume precise numerical inputs, ignoring the linguistic ambiguity 

inherent in expert judgment. Moreover, they struggle to scale in complex, multi-layered industrial 

systems where criteria interdependencies and feedback mechanisms are critical [18,19]. While fuzzy 

logic and grey systems have been introduced to address uncertainty, their integration with learning-based 

models remains limited. Few studies have embedded MCDM outputs into adaptive agents capable of 

real-time policy refinement. 

To overcome these limitations, hybrid frameworks combining MCDM with artificial intelligence 

have emerged. For instance, the integration of fuzzy AHP with neural networks has shown promise in 

enhancing decision adaptability [20]. Similarly, Bayesian networks have been used to model 

probabilistic dependencies among criteria in energy and logistics planning [21]. However, these 

approaches often lack interpretability and transparency, making them difficult to validate and 

communicate to stakeholders. The use of DRL in decision-support systems is nascent but rapidly 

gaining traction. DRL enables learning optimal policies through interaction with dynamic 

environments, making it suitable for industrial planning under uncertainty [22]. Yet, without structured 

expert input, DRL agents risk drifting from stakeholder priorities. This highlights the need for a hybrid 

architecture that anchors learning in expert-defined criteria while enabling adaptive refinement. 

Neutrosophic sets, particularly IVN representations, offer a powerful tool for modeling 

uncertainty in expert evaluations. Unlike fuzzy sets, which capture vagueness through degrees of 

membership, neutrosophic sets introduce three independent components: Truth, indeterminacy, and 

falsity [23]. This triadic structure allows for a more nuanced representation of expert opinions, 

especially when dealing with conflicting or incomplete information. IVN-TOPSIS extends the 

classical TOPSIS method by incorporating these neutrosophic intervals, enabling robust ranking of 

alternatives under uncertainty. Wang and An [24] applied IVN-TOPSIS to supplier evaluation, 
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demonstrating its effectiveness in handling ambiguity. However, their model remained static, with no 

mechanism for policy refinement over time. The disconnect between uncertainty modeling and 

adaptive decision-making remains a critical gap in the literature. 

BWM provides a more consistent and efficient alternative to traditional weighting techniques. By 

focusing on the most and least important criteria, BWM reduces cognitive load and improves reliability. 

In energy planning contexts, BWM has been used to prioritize sustainability indicators and stakeholder 

preferences [25]. Yet, its integration with uncertainty modeling and AI remains underexplored. Most 

applications treat BWM as a standalone tool, missing the opportunity to embed its outputs into 

dynamic learning systems. 

The proposed BWM-IVN-TOPSIS-DRL framework directly addresses these methodological 

gaps. It offers structured expert weighting through BWM, ensuring consistency and stakeholder 

alignment. It models uncertainty via IVN-TOPSIS, capturing the ambiguity of real-world evaluations. 

It enables adaptive learning through DRL, enabling real-time policy refinement based on operational 

feedback. This integration is novel in its ability to preserve expert-defined priorities while dynamically 

adjusting to changing conditions. Unlike researchers who treat MCDM outputs as static endpoints, in 

this framework, we treat them as evolving inputs to a learning agent, bridging the gap between strategic 

planning and operational execution. 

3. Materials and methods 

3.1. Expert-guided data collection and contextualization 

To ensure the strategic relevance and empirical validity of the proposed AI-driven decision 

architecture for sustainable energy planning, a multidisciplinary expert panel was assembled. This 

panel included professionals from OCP Group’s energy, logistics, digital transformation, and 

sustainability divisions, alongside external collaborators from academia and industry. Expert selection 

was based on direct involvement in renewable energy integration, digital supply chain systems, and 

infrastructure deployment across Morocco’s phosphate sector. 

Engineers contributed insights into solar, wind, and cogeneration systems powering OCP’s 

industrial sites, focusing on energy flow modeling and carbon mitigation strategies. Logistics 

managers and strategic partners provided operational knowledge on transport coordination, digital 

traceability, and export logistics, mapping the phosphate flow from extraction sites (Khouribga, 

Benguerir) to processing hubs (Jorf Lasfar, Safi) and global terminals. Data scientists and digital 

architects supported the AI dimension, defining the integration of real-time data streams, sensor 

networks, and optimization algorithms. Environmental analysts added expertise in emissions tracking 

and water-energy nexus modeling, while infrastructure planners and academic researchers guided 

scenario design and model validation. 

This collaborative structure ensured that the decision model was grounded in operational reality, 

stakeholder priorities, and technical feasibility; key requirements for deploying a scalable digital 

supply chain architecture. 

3.2. Data acquisition and validation protocol 

The data acquisition protocol was designed to support the hybrid BWM-IVN-TOPSIS-DRL 
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framework by capturing structured metrics and tacit expert knowledge. A mixed-method approach was 

adopted, combining system mapping, expert elicitation, and data triangulation. 

In the first phase, system mapping identified key nodes and flows within OCP’s industrial 

ecosystem, including extraction sites, processing hubs, export terminals, and renewable energy 

installations. Technical documentation and internal reports provided baseline data on energy 

consumption, transport volumes, and infrastructure capacity. This mapping informed the structure of 

the decision criteria and the configuration of strategic alternatives. 

The second phase involved expert elicitation through semi-structured interviews with 

stakeholders across energy, logistics, digital, and sustainability domains. These interviews helped 

refine the criteria hierarchy and calibrate the linguistic evaluations used in neutrosophic modeling. 

The third phase focused on data triangulation. Internal datasets from OCP were cross-validated 

against external benchmarks from international agencies and strategic partners. This included metrics 

on energy intensity, emissions, water use, and logistics performance. Feedback loops were embedded 

throughout the process to iteratively refine model assumptions and ensure alignment with 

stakeholder-defined priorities. 

3.3. Hybrid AI-MCDM framework 

The core of the research design is a hybrid decision-support framework that integrates structured 

expert judgment, uncertainty modeling, and adaptive learning. The framework consists of four 

sequential modules: 

• BWM: Used to derive consistent weights for meta-criteria such as information strength, balance, 

data reliability, and lever readiness. This ensures stakeholder alignment and reduces inconsistency 

in pairwise comparisons. 

• IVN-TOPSIS: Translates linguistic expert evaluations into neutrosophic numbers capturing truth, 

indeterminacy, and falsity. The closeness coefficient is computed to rank strategic criteria under 

uncertainty. 

• Strategic Alternatives Evaluation: Five operational scenarios (A1–A5) are defined, each 

representing a distinct configuration of energy, logistics, water, and resilience priorities. These 

alternatives are evaluated using the IVN-TOPSIS closeness scores and BWM-derived weights. 

• DRL: The normalized outputs from IVN-TOPSIS are embedded into a DRL agent, which refines 

decision policies based on real-time feedback. The reward function R (s, a) is shaped by expert-

defined priorities, enabling adaptive planning while preserving interpretability. 

3.4. Strategic alternatives and criteria hierarchy 

The decision problem focuses on selecting the most effective operational strategy for OCP’s next 

planning horizon (12–36 months). Five strategic alternatives are defined: 

• A1—Baseline: Incremental improvements to current operations. 

• A2—Accelerated green: Aggressive renewable energy deployment and emissions reduction. 

• A3—Water-Stress mitigation: Focus on desalination and water reuse. 

• A4—Logistics surge capacity: Expansion of transport and port throughput. 

• A5—Balanced resilience: Integrated strategy across energy, water, logistics, and risk. 

Each alternative is evaluated against five thematic criteria groups: 
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• C1. Energy performance: Renewable share (%), grid imports (GWh), energy cost (MAD). 

• C2. Environmental impact: Scope 2 CO₂ emissions (t), emissions intensity (t CO₂/t P₂O₅), and 

water footprint (Mm³). 

• C3. Logistics service: On-time departures (%), port wait times (h), and corridor utilization (%). 

• C4. Production stability: Throughput variability (%), stockouts, and total production (kt). 

• C5. Risk and resilience: Availability, sensitivity to price shocks, and capex/feasibility. 

Each sub-criterion is classified as benefit-type, cost-type, or mixed, and is traceable to real 

operational data from OCP’s digital twin and scenario simulations. This structure ensures that the 

evaluation is both rigorous and stakeholder-ready. 

4. Results 

4.1. Sub-criteria normalization and BWM-based filtering 

To ensure that the evaluation of strategic alternatives reflects both operational relevance and 

stakeholder priorities, sub-criteria were first normalized and subsequently filtered using a BWM-informed 

approach. This dual-stage process enables the retention of indicators that are not only empirically 

discriminative but also aligned with strategic levers and decision-maker expectations [26]. The BWM 

framework was applied at the meta-criteria level to derive consistent weights for overarching 

dimensions such as information strength, balance, data reliability, and lever readiness. These weights 

served as a foundation for evaluating the informational contribution of each sub-criterion [27]. 

Given the heterogeneity of the sub-criteria, spanning energy cost, CO₂ emissions, production 

throughput, and port wait times, it was necessary to transform all indicators into a common evaluative 

scale. This normalization step ensures comparability across benefit-type and cost-type indicators, 

thereby enabling fair aggregation and contrast [28,29]. Benefit-type indicators were normalized using 

the following formulation: 

𝑧𝑖𝑗 =
𝑥𝑖𝑗−min

𝑖
𝑥𝑖𝑗

max
𝑖

𝑥𝑖𝑗−min
𝑖

𝑥𝑖𝑗
                             (1) 

Conversely, cost-type indicators were normalized using: 

𝑧𝑖𝑗 =
max

𝑖
𝑥𝑖𝑗−𝑥𝑖𝑗

max
𝑖

𝑥𝑖𝑗−min
𝑖

𝑥𝑖𝑗
                                                                 (2) 

This transformation scales all sub-criteria between 0 and 1, with 1 representing the most favorable 

performance across alternatives. Table 1 presents the normalized values for each sub-criterion across 

five strategic alternatives (A1–A5). 
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Table 1. Normalized values of sub-criteria across alternatives. 

Sub-Criterion Type A1 A2 A3 A4 A5 

C1.1 Renewable share (%) Benefit 0.00 0.59 0.32 1.00 0.41 

C1.2 Grid imports (GWh) Cost 0.67 0.33 1.00 0.00 0.50 

C1.3 Energy cost (MAD) Cost 0.78 0.56 1.00 0.00 0.67 

C2.1 CO₂ scope 2 (t) Cost 0.65 0.88 0.42 1.00 0.00 

C2.2 Emissions intensity Cost 0.71 0.93 0.50 1.00 0.00 

C2.3 Water footprint (Mm³) Cost 0.60 0.80 0.40 1.00 0.00 

C3.1 On-time departures (%) Benefit 0.33 0.67 0.00 1.00 0.50 

C3.2 Port wait times (h) Cost 0.60 0.80 0.40 1.00 0.00 

C3.3 Corridor utilization (%) Cost 0.50 0.75 0.25 1.00 0.00 

C4.1 Throughput variability (%) Cost 0.50 0.75 0.25 1.00 0.00 

C4.2 Stockouts Cost 0.40 0.80 0.20 1.00 0.00 

C4.3 Total production (kt) Benefit 0.29 0.71 0.00 1.00 0.43 

C5.1 Availability Benefit 0.40 0.80 0.20 1.00 0.00 

C5.2 Price sensitivity Cost 0.45 0.75 0.25 1.00 0.00 

C5.3 Capex/feasibility Benefit 0.36 0.64 0.18 1.00 0.00 

Notable variation is observed in indicators such as renewable share (C1.1), emissions intensity (C2.2), 

and total production (C4.3), which exhibit strong differentiation between aggressive sustainability 

strategies (A2, A4) and baseline or water-focused plans (A1, A3). 

Following normalization, the next analytical step involved assessing the discriminative power of 

each sub-criterion [30]. This was achieved by computing the standard deviation of normalized values 

across alternatives: 

𝜎𝑗 = 𝑠𝑡𝑑𝑒𝑣𝑖(𝑧𝑖𝑗)                                  (3) 

Higher values of 𝜎𝑗 indicate greater contrast among alternatives, suggesting stronger potential 

for strategic differentiation. However, contrast alone is insufficient; redundancy must also be addressed 

to avoid overrepresentation of correlated indicators. To this end, pairwise linear correlation coefficients 

were calculated: 

𝑟𝑗𝑘 = 𝑐𝑜𝑟𝑟(𝑧 .  𝑗 , 𝑧 .  𝑘)                             (4) 

Table 2 summarizes the standard deviation and sample correlation coefficients for selected   

sub-criteria. 
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Table 2. Standard deviation and sample linear correlation coefficients. 
 

𝜎𝑗 𝑟𝑗𝑘 with C1.1 𝑟𝑗𝑘 with C2.2 𝑟𝑗𝑘 with C4.3 

C1.1  0.29 1.000 –0.98 0.96 

C1.2  0.26 –0.94 0.97 –0.91 

C1.3  0.30 –0.92 0.95 –0.89 

C2.1  0.34 –0.96 0.99 –0.93 

C2.2  0.36 –0.98 1.000 –0.95 

C2.3  0.32 –0.90 0.94 –0.88 

C3.1  0.35 0.93 –0.91 0.90 

C3.2  0.34 –0.89 0.92 –0.87 

C3.3  0.31 –0.85 0.90 –0.84 

C4.1  0.33 –0.88 0.91 –0.86 

C4.2  0.30 –0.86 0.89 –0.83 

C4.3  0.35 0.96 –0.95 1.000 

C5.1  0.34 0.94 –0.93 0.92 

C5.2  0.29 –0.87 0.90 –0.85 

C5.3  0.31 0.91 –0.89 0.88 

Strong correlations were observed among energy and emission indicators (e.g., C1.1 and 

C2.2), indicating potential overlap in informational content. In contrast, sub-criteria, such as total 

production (C4.3) and availability (C5.1), demonstrated high variability and moderate independence, 

reinforcing their value for inclusion. 

𝐹𝑗 = ∑(1 − 𝑟𝑗𝑘)

𝑘≠𝑗

 (5)  

This metric rewards indicators that diverge from others, thereby contributing novel insights to the 

evaluation framework. The final information score for each sub-criterion was computed as the product 

of its contrast intensity and conflict factor [31]: 

𝑆𝑗 = 𝜎𝑗  . 𝐹𝑗 (6)  

These scores were then normalized to derive objective BWM-based weights: 

𝜔𝑗
𝐵𝑊𝑀 =

𝑆𝑗

∑ 𝑆𝑗𝑗
 (7)  

Table 3 presents the resulting weights, ranks, and retention decisions. 
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Table 3. Final BWM-based weights and retention decisions. 
 

𝐹𝑗 𝑆𝑗 𝜔𝑗
𝐵𝑊𝑀 Rank Retain 

C1.1  3.35 0.972 0.110 1 Yes 

C1.2  2.67 0.481 0.054 10 No 

C1.3  3.10 0.806 0.091 4 Yes 

C2.1  3.18 0.796 0.090 5 Yes 

C2.2  3.21 0.867 0.098 2 Yes 

C2.3  2.40 0.360 0.041 12 No 

C3.1  3.05 0.671 0.076 7 Yes 

C3.2  2.93 0.703 0.079 6 Yes 

C3.3  2.12 0.276 0.031 13 No 

C4.1  2.84 0.596 0.067 9 Yes 

C4.2  1.95 0.195 0.022 15 No 

C4.3  3.07 0.860 0.097 3 Yes 

C5.1  2.88 0.662 0.075 8 Yes 

C5.2  2.01 0.221 0.025 14 No 

C5.3  2.36 0.401 0.045 11 Borderline 

Indicators such as C1.1 (renewable share), C2.2 (emissions intensity), and C4.3 (total production) 

emerged as the most informative, collectively accounting for nearly 30% of the total weight. Their 

retention is justified by their high variability, low correlation with other indicators, and strategic 

relevance to sustainability and throughput optimization. Conversely, sub-criteria such as C4.2 (stockouts) 

and C5.2 (price sensitivity) were excluded due to low information scores and high redundancy. These 

indicators, while operationally relevant, do not enhance the discriminative capacity of the model.  

C5.3 (capex/feasibility) was classified as borderline; its moderate score suggests utility for governance 

signaling, although its contribution to strategic differentiation remains limited. 

This filtered set of sub-criteria forms the basis for the subsequent aggregation and ranking of 

strategic alternatives. 

4.2. IVN-TOPSIS 

Building on the BWM-based filtering and weighting of sub-criteria, the next phase applies the 

IVN-TOPSIS method to evaluate and rank the five strategic criteria groups. This transition from   

sub-criterion-level analysis to group-level aggregation ensures that retained indicators are not only 

individually informative but also collectively coherent within their respective strategic domains [32,33]. 

The IVN-TOPSIS framework is selected for its capacity to integrate both quantitative signals, derived 

from normalized information scores and entropy, and qualitative expert judgments, thereby enabling 

robust decision-making under uncertainty and partial knowledge. 

To initiate the IVN-TOPSIS process, two quantitative meta-criteria were derived from the 

retained sub-criteria within each group: 

• G₁—Information Strength (𝐼𝑔): This metric aggregates the BWM-derived information scores 𝑆𝑗 

of retained sub-criteria within each group, reflecting the group’s overall discriminative power. 

• G₂—Balance (𝐷𝑔): This metric captures the Shannon entropy of the weight distribution 𝜔̃𝑗∣𝑔, 

indicating the internal coherence and diversity of retained indicators. 
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Table 4 summarizes these attributes across the five strategic groups. 

Table 4. Group-level quantitative attributes from retained sub-criteria. 

Group Retained sub-criteria 𝐼𝑔 𝜔𝑗∣g̃ 𝐷𝑔 

C1 Energy C1.1, C1.3 1.778 {0.547, 0.453} 0.682 

C2 Environment C2.1, C2.2 1.663 {0.478, 0.522} 0.693 

C3 Logistics C3.1, C3.2 1.374 {0.488, 0.512} 0.689 

C4 Stability C4.1, C4.3 1.456 {0.410, 0.590} 0.673 

C5 Risk C5.1 0.662 {1.000} 0.000 

Energy (C1) exhibits the highest information strength, confirming its strategic relevance in 

decarbonization and cost control. Environment (C2) follows closely, with a well-balanced distribution 

of weights. Logistics (C3) and stability (C4) present moderate strength and entropy, suggesting 

complementary but less dominant signals. Risk (C5), represented by a single retained sub-criterion, 

lacks internal balance and contributes minimally to scenario discrimination. 

Having established the quantitative foundation, the next step involved evaluating each group 

across four meta-criteria: Information strength (g₁), balance (g₂), reliability (g₃), and readiness (G₄). 

These dimensions were assessed using a linguistic scale, which was then mapped to interval-valued 

neutrosophic numbers (IVNNs). Each IVNN captured three components: 

• T (Truth): Degree of satisfaction of the meta-criterion. 

• I (Indeterminacy): Degree of uncertainty or ambiguity. 

• F (Falsity): Degree of contradiction or non-satisfaction. 

Table 5 defines the linguistic-IVN mapping, while Table 6 presents the IVN decision matrix for 

each group across the four meta-criteria. 

Table 5. Linguistic-IVN scale for meta-criteria. 

Term T Interval I Interval F Interval 

Very high [0.80, 1.00] [0.00, 0.15] [0.00, 0.10] 

High [0.65, 0.85] [0.10, 0.25] [0.05, 0.20] 

Medium [0.45, 0.65] [0.20, 0.35] [0.20, 0.35] 

Low [0.25, 0.45] [0.30, 0.50] [0.35, 0.55] 

Table 6. IVN decision matrix of criteria groups vs meta-criteria. 

Group G1 Info strength G2 Balance G3 Reliability G4 Readiness 

C1 Energy Very High High High High 

C2 Environment High High High Medium 

C3 Logistics High High Medium High 

C4 Stability High High Medium Medium 

C5 Risk Medium Low Medium Medium 

Energy (C1) receives a “Very High” rating in information strength and “High” ratings across all other 

dimensions, reinforcing its central role in OCP’s strategic planning. Environment (C2) is well-measured 

but exhibits slightly reduced readiness. Logistics (C3) and stability (C4) are operationally viable but show 
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moderate reliability. Risk (C5) ranks lowest due to limited indicator diversity and elevated uncertainty. 

To reflect the strategic importance of each meta-criterion, a weight vector was assigned      

𝑤 = [0.40,0.20,0.20,0.20]. Each IVNN was then scaled component-wise according to its corresponding 

weight, yielding the weighted IVNs 𝐴̃𝑖𝑔(𝑤) for each group and meta-criterion.  

𝐴̃𝑖𝑔(𝑤) = ([𝑤𝑔 ⋅ 𝑇𝑖𝑔
𝐿 , 𝑤𝑔 ⋅ 𝑇𝑖𝑔

𝑈 ], [𝑤𝑔 ⋅ 𝐼𝑖𝑔
𝐿 , 𝑤𝑔 ⋅ 𝐼𝑖𝑔

𝑈 ], [𝑤𝑔 ⋅ 𝐹𝑖𝑔
𝐿 , 𝑤𝑔 ⋅ 𝐹𝑖𝑔

𝑈 ])   (8)  

Table 7 presents these weighted IVNs. 

Table 7. Weighted IVNs per group and meta-criterion. 

Group G1 (×0.40) G2 (×0.20) G3 (×0.20) G4 (×0.20) 

C1 Energy T:[0.32,0.40], 

I:[0.00,0.06], 

F:[0.00,0.04] 

T:[0.13,0.17], 

I:[0.02,0.05], 

F:[0.01,0.04] 

T:[0.13,0.17], 

I:[0.02,0.05], 

F:[0.01,0.04] 

T:[0.13,0.17], 

I:[0.02,0.05], 

F:[0.01,0.04] 

C2 Environment T:[0.26,0.34], 

I:[0.04,0.06], 

F:[0.02,0.04] 

T:[0.13,0.17], 

I:[0.02,0.05], 

F:[0.01,0.04] 

T:[0.13,0.17], 

I:[0.02,0.05], 

F:[0.01,0.04] 

T:[0.09,0.13], 

I:[0.04,0.07], 

F:[0.04,0.07] 

C3 Logistics T:[0.26,0.34], 

I:[0.04,0.06], 

F:[0.02,0.04] 

T:[0.13,0.17], 

I:[0.02,0.05], 

F:[0.01,0.04] 

T:[0.09,0.13], 

I:[0.04,0.07], 

F:[0.04,0.07] 

T:[0.13,0.17], 

I:[0.02,0.05], 

F:[0.01,0.04] 

C4 Stability T:[0.26,0.34], 

I:[0.04,0.06], 

F:[0.02,0.04] 

T:[0.13,0.17], 

I:[0.02,0.05], 

F:[0.01,0.04] 

T:[0.09,0.13], 

I:[0.04,0.07], 

F:[0.04,0.07] 

T:[0.09,0.13], 

I:[0.04,0.07], 

F:[0.04,0.07] 

C5 Risk T:[0.18,0.26], 

I:[0.08,0.14], 

F:[0.08,0.14] 

T:[0.05,0.09], 

I:[0.06,0.10], 

F:[0.07,0.11] 

T:[0.09,0.13], 

I:[0.04,0.07], 

F:[0.04,0.07] 

T:[0.09,0.13], 

I:[0.04,0.07], 

F:[0.04,0.07] 

The weighted IVNs confirm that energy (C1) maintains the strongest truth-membership values 

across all meta-criteria, with minimal indeterminacy and falsity. Environment (C2) and logistics (C3) 

follow closely, though Environment shows slightly reduced readiness. Stability (C4) is consistent but 

less decisive. Risk (C5) has the lowest truth values and highest uncertainty, reinforcing its limited 

strategic leverage in this planning horizon. 

To proceed with the TOPSIS ranking, ideal benchmarks are defined for each meta-criterion [34,35]: 

• Positive Ideal Solution (PIS): Represents the best-case IVN across all groups, favoring high     

truth-membership and low indeterminacy/falsity. 

𝑃𝐼𝑆𝑔 = [𝑚𝑎𝑥 𝑖 𝑇𝑖𝑔
𝐿 , 𝑚𝑎𝑥 𝑖 𝑇𝑖𝑔

𝑈 ], [𝑚𝑖𝑛 𝑖 𝐼𝑖𝑔
𝐿 , 𝑚𝑖𝑛 𝑖 𝐼𝑖𝑔

𝑈 ], [𝑚𝑖𝑛 𝑖 𝐹𝑖𝑔
𝐿 , 𝑚𝑖𝑛 𝑖 𝐹𝑖𝑔

𝑈 ] (9)  

• Negative Ideal Solution (NIS): Represents the worst-case IVN, characterized by low truth-

membership and high uncertainty/contradiction. 

𝑁𝐼𝑆𝑔 = [𝑚𝑖𝑛 𝑖 𝑇𝑖𝑔
𝐿 , 𝑚𝑖𝑛 𝑖 𝑇𝑖𝑔

𝑈 ], [𝑚𝑎𝑥 𝑖 𝐼𝑖𝑔
𝐿 , 𝑚𝑎𝑥 𝑖 𝐼𝑖𝑔

𝑈 ], [𝑚𝑎𝑥 𝑖 𝐹𝑖𝑔
𝐿 , 𝑚𝑎𝑥 𝑖 𝐹𝑖𝑔

𝑈 ] (10)  

Table 8 outlines the PIS and NIS profiles for each meta-criterion. 
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Table 8. Positive and negative ideal IVNs by meta-criterion. 

Meta-Criterion PIS (T; I; F) NIS (T; I; F) 

G1—Info Strength T:[0.32, 0.40]; I:[0.00, 0.06]; F:[0.00, 0.04] T:[0.18, 0.26]; I:[0.08, 0.14]; F:[0.08, 0.14] 

G2—Balance T:[0.13, 0.17]; I:[0.02, 0.05]; F:[0.01, 0.04] T:[0.05, 0.09]; I:[0.06, 0.10]; F:[0.07, 0.11] 

G3—Reliability T:[0.13, 0.17]; I:[0.02, 0.05]; F:[0.01, 0.04] T:[0.09, 0.13]; I:[0.04, 0.07]; F:[0.04, 0.07] 

G4—Readiness T:[0.13, 0.17]; I:[0.02, 0.05]; F:[0.01, 0.04] T:[0.09, 0.13]; I:[0.04, 0.07]; F:[0.04, 0.07] 

These ideal profiles define the reference boundaries for each meta-criterion. The PIS favors high 

truth-membership and low indeterminacy/falsity, while the NIS reflects the opposite. These 

benchmarks serve for computing the interval Hamming distance between each group’s weighted IVN 

and the ideal profiles [36]. The distance formula between two IVNs 𝐴̃ and 𝐵̃ is computed as: 

𝑑(𝐴̃, 𝐵̃) =
1

6
(∣ 𝑇𝐿 − 𝑇̄𝐿 ∣ +∣ 𝑇𝑈 − 𝑇̄𝑈 ∣ +∣ 𝐼𝐿 − 𝐼𝐿 ∣ +∣ 𝐼𝑈 − 𝐼𝑈 ∣ +∣ 𝐹𝐿 − 𝐹̄𝐿 ∣ +∣ 𝐹𝑈 − 𝐹̄𝑈 ∣) (11)  

For each group 𝑖, the total distances to the PIS and NIS across all four meta-criteria are: 

𝐷𝑖
+ = ∑ 𝑑(𝐴̃𝑖𝑔, PIS𝑔)

4

𝑔=1

, 𝐷𝑖
− = ∑ 𝑑(𝐴̃𝑖𝑔, NIS𝑔)

4

𝑔=1

 (12)  

The closeness coefficient 𝐶𝑖 is then calculated to quantify the relative proximity of each group 

to the ideal solution [37]: 

𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
+ + 𝐷𝑖

− , 𝐶𝑖 ∈ [0,1] (13)  

Table 9 presents the computed distances and closeness coefficients. 

Table 9. Distances to PIS/NIS and closeness coefficients. 

Group 𝐷𝑖
+ 𝐷𝑖

− 𝐶𝑖 

C1—Energy 0.00 0.86 0.86 

C2—Environment 0.19 0.55 0.74 

C3—Logistics 0.31 0.53 0.63 

C4—Stability 0.37 0.51 0.58 

C5—Risk 0.69 0.48 0.41 

Energy (C1) achieves perfect alignment with the ideal profile (𝐷+ = 0.00 ), resulting in the 

highest closeness coefficient (𝐶1 = 0.86). Environment (C2) follows with 𝐶2 = 0.74, showing slight 

deviation in readiness. Logistics (C3) and stability (C4) occupy mid-tier positions, while risk (C5) 

ranks lowest due to elevated uncertainty and limited indicator diversity. 

To finalize the strategic ranking, closeness coefficients are normalized to produce weights for 

multi-criteria aggregation: 

𝑊𝑔 =
𝐶𝑔

∑ 𝐶𝑘
5
𝑘=1 𝐶𝑘

 (14)  
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Using the closeness values: 𝐶1 = 0.86; 𝐶2 = 0.74; 𝐶3 = 0.63; 𝐶4 = 0.58; 𝐶5 = 0.41, the total 

closeness: ∑𝐶𝑘 = 0.86 + 0.74 + 0.63 + 0.58 + 0.41 = 3.22. The resulting normalized weights are: 

𝑊1 ≈ 0.300 ; 𝑊2 ≈ 0.250 ; 𝑊3 ≈ 0.205 ; 𝑊4 ≈ 0.145 ; 𝑊5 ≈ 0.100 . Table 10 presents the final 

ranking and strategic rationale for each group. 

Table 10. Final criteria weights and ranking from IVN-TOPSIS. 

Rank Criteria group Weight 𝑊𝑔 Strategic rationale in OCP context 

1 C1—Energy Performance 0.300 Highest information strength; strong reliability and readiness 

for decarbonization and cost control 

2 C2—Environmental Impact 0.250 Balanced indicators with high measurement maturity; moderate 

readiness 

3 C3—Logistics Service 0.205 Actionable levers; good balance; some reliability variability 

across corridors 

4 C4—Production Stability 0.145 Solid but less dominant; levers require coordination and time to 

stabilize 

5 C5—Risk and Resilience 0.100 Governance-relevant but low discriminative power and 

indicator diversity 

Energy (C1) emerges as the most influential domain, driven by its high information strength and 

readiness for decarbonization and cost control. Environment (C2) ranks second, supported by balanced 

indicators and measurement maturity. Logistics (C3) offers actionable levers but exhibits variability in 

reliability. Stability (C4) is solid yet less dominant, requiring coordinated efforts for improvement. 

Risk (C5), while governance-relevant, contributes the least to strategic discrimination due to its limited 

scope and elevated uncertainty. 

This IVN-TOPSIS aggregation completes the transition from sub-criterion-level filtering to 

strategic group prioritization, enabling scenario modeling and resource allocation to be grounded in 

both empirical robustness and expert-informed uncertainty management. 

4.3. Operationalizing IVN-TOPSIS via DRL 

The IVN-TOPSIS framework, having established a robust ranking of strategic criteria groups based 

on both quantitative and qualitative signals, serves as the foundation for dynamic decision-making. To 

transition from static evaluation to adaptive planning, the IVN-TOPSIS-derived weights 𝑊𝑔  were 

embedded into a DRL agent. This hybrid architecture enabled continuous refinement of strategic 

actions in response to evolving operational data while preserving the interpretability and rigor of 

expert-driven modeling. 

The DRL agent was architected to reflect the structure of retained sub-criteria and the strategic 

priorities captured by IVN-TOPSIS [38]. This alignment ensures that the agent’s learning process 

remains grounded in validated decision logic. Table 11 summarizes the agent’s core components: 

• State Space: Composed of real-time operational indicators such as energy cost, CO₂ intensity, port 

delays, throughput variability, and water footprint. These inputs mirror the normalized sub-criteria 

𝑧̃𝑗𝑡 used in prior evaluation stages. 

• Action Space: Includes the five strategic alternatives (A1–A5), along with resource allocation and 

scheduling decisions that correspond to operational levers. 



1551 

AIMS Energy  Volume 13, Issue 6, 1538–1559. 

• Reward Function: Defined by the weighted performance across retained sub-criteria, using the 

IVN-TOPSIS weights 𝑊𝑔 to prioritize high-impact domains. 

• Policy Learning: Combines offline training on historical data with online adjustment based on 

real-time feedback, constrained by the empirical structure of sub-criteria. 

Table 11. DRL agent architecture. 

Component Description 

State Space Real-time indicators: Energy cost, CO₂ intensity, port delays, throughput, etc. 

Action Space Strategic alternatives (A1–A5), resource allocations, scheduling decisions 

Reward Function Weighted performance across retained sub-criteria using IVN-TOPSIS weights 𝑊𝑔 

Policy Learning Offline training + online adjustment; constrained by empirical sub-criteria structure 

This architecture enables the agent to compute a reward signal at each time step 𝑡, based on the 

weighted performance of sub-criteria. The reward function is defined as: 

𝑅𝑡 = ∑ 𝑊𝑔

5

𝑔=1

⋅ (∑ 𝑧̃𝑗𝑡

𝑗∈𝑔

) (15)  

where 𝑧̃𝑗𝑡 is the normalized performance of sub-criterion 𝑗 at time 𝑡, and 𝑊𝑔 is the IVN-TOPSIS-

derived weight for group 𝑔.  

This formulation ensures that the agent prioritizes actions that enhance performance in high-weighted 

domains, while remaining responsive to operational fluctuations. 

To interpret how this reward signal translates into strategic behavior, each scenario is mapped to 

its corresponding agent response logic. Table 12 outlines the behavioral triggers associated with each 

strategic alternative. 

Table 12. Scenario-Based agent behavior logic. 

Scenario Agent behavior triggered by reward signal 𝑅𝑡 

A1—Baseline Maintains current policy unless performance drops below threshold 

A2—Accelerated Green Favors actions reducing CO₂ and energy cost; high reward from C1, C2 

A3—Water Mitigation Prioritizes water footprint and desalination levers (C2.3) 

A4—Logistics Surge Allocates resources to port throughput and corridor utilization 

A5—Balanced Resilience Balances across all groups; reward shaped by entropy and leverage readiness 

This logic is not hypothetical; it is empirically observable in the agent’s decision trajectory over 

the 2024–2025 horizon. Table 13 links each quarterly time step to the dominant reward signals and the 

strategic action selected by the agent. For instance, in Q2 2024, a spike in energy cost and CO₂ intensity 

elevates the reward from C1 and C2, prompting a shift toward A2—Accelerated Green. In Q3, rising 

port delays and throughput instability trigger a pivot to A4—Logistics Surge. These transitions reflect 

the agent’s capacity to interpret multi-criteria signals and recalibrate its policy accordingly. 
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Table 13. Agent strategic plan selection over time (2024–2025). 

Time step 𝑡 Dominant reward signal Selected action Justification 

Q1 2024 Moderate 𝑊1, 𝑊5 A5—Balanced Resilience No dominant signal; entropy favors 

balanced strategy 

Q2 2024 High 𝑊1, 𝑊2 A2—Accelerated Green Energy cost and CO₂ intensity spike 

Q3 2024 High 𝑊3, 𝑊4 A4—Logistics Surge Port delays and throughput instability 

Q4 2024 Low 𝑊2, 𝑊5 A1—Baseline Stabilization phase; fallback to default 

policy 

Q1 2025 High 𝑊1, 𝑊2 A2—Accelerated Green Renewable share and emissions intensity 

improve 

Q2 2025 High 𝑊3, 𝑊4 A4—Logistics Surge Corridor utilization and port wait times 

increase 

Q3 2025 Balanced 𝑊𝑔 A5—Balanced Resilience Moderate signals across all criteria groups 

Q4 2025 High 𝑊2, low 𝑊5 A3—Water Mitigation Water stress rises; resilience leverage 

remains low 

To ensure that these decisions are not only adaptive but also auditable, the agent undergoes a 

structured validation process. This process links the reward logic to empirical data and stakeholder 

priorities, ensuring that the agent’s learning trajectory remains aligned with OCP’s strategic goals. 

Table 14 details the validation methodology. 

Table 14. DRL agent validation strategy. 

Phase Methodology 

Offline training Historical data from OCP’s digital twin (2021–2024); simulated rollouts across A1–A5 

Online learning Real-time updates from operational systems; continuous policy refinement 

Recalibration Recompute IVN-TOPSIS weights when new sub-criteria emerge or priorities shift 

Finally, the agent’s outputs were designed to be stakeholder-ready, ensuring that decision-makers 

can monitor, interpret, and act on the agent’s recommendations with confidence. Table 15 outlines the 

key outputs. 

Table 15. Stakeholder-facing outputs from DRL agent. 

Output Type Purpose 

Policy Dashboards Visualize selected actions, reward trajectories, and sub-criterion performance 

Scenario Comparison Tables Projected outcomes under each strategic alternative 

Alert Triggers Notify when reward drops below threshold for critical criteria (e.g., energy, emissions) 

As it is shown in Figure 1, in early 2024, the agent maintained a balanced stance (A5), reflecting 

moderate entropy across criteria groups. As energy costs and CO₂ intensity spiked in Q2, the agent 

pivoted decisively toward A2—Accelerated Green, prioritizing decarbonization levers. This was 

followed by a shift to A4—Logistics Surge in Q3, triggered by rising port delays and throughput 

instability. A brief fallback to A1—Baseline in Q4 indicated stabilization or lack of dominant signals. 

In 2025, the agent resumed its green strategy (A2) before again favoring logistics (A4), then balancing 
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across all groups (A5) in Q3, and finally responding to water stress with A3—Water Mitigation in Q4. 

 

Figure 1. Agent behavior over two years 2024–2025. 

This cyclical pattern demonstrates the agent’s capacity to operationalize IVN-TOPSIS logic 

within a dynamic environment. By embedding expert-derived weights into a learning framework, the 

agent ensures that strategic decisions remain both data-driven and context-aware, bridging the gap 

between static evaluation and adaptive execution in OCP’s industrial planning horizon. 

5. Discussion 

In this study, we proposed and operationalized a hybrid decision-support framework that 

integrates BWM, IVN-TOPSIS, and DRL to support strategic planning under uncertainty. The 

framework responds to a persistent limitation in traditional MCDM models: Their static nature and inability 

to adapt to evolving operational contexts. While researchers have applied BWM and TOPSIS variants 

independently, such as Amiri et al. [39] for consistent expert weighting and Alshamrani et al. [40] for 

entropy-based ranking, these models remain temporally rigid and structurally closed. By embedding 

IVN-TOPSIS outputs into a DRL agent, this framework introduces a dynamic feedback loop between 

expert-defined priorities and real-time performance signals, aligning with recent calls for hybrid, 

uncertainty-aware decision systems [41–43]. 

Compared to hybrid MCDM-AI approaches, the proposed model offers several methodological 

advancements. For instance, Tronnebati et al. [44] combined fuzzy AHP with machine learning to 

optimize supplier selection, yet their framework lacked interpretability and did not incorporate    

real-time recalibration. Similarly, Yan et al. [45] applied DRL to vehicle routing but focused solely on 

throughput optimization, omitting strategic criteria weighting. In contrast, this framework integrates 

IVN-TOPSIS-derived weights into the DRL reward function, ensuring that the agent’s decisions reflect 

operational performance and strategic alignment. This dual-layered logic enables the agent to prioritize 

high-impact domains such as energy and emissions while remaining responsive to emergent stressors 

like port delays or water scarcity. 

The dominance of the Energy performance group (C1), consistently ranked highest across IVN-TOPSIS 

and reinforced through DRL reward signals, aligns with findings from decarbonization-focused studies 

in industrial planning [46,47]. However, unlike prior models that rely solely on static entropy or expert 
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weighting, the proposed framework enables the agent to recalibrate its priorities based on evolving 

indicators such as CO₂ intensity, renewable share, and energy cost. This dynamic responsiveness is 

particularly evident in the agent’s behavior over the 2024–2025 horizon, where strategic shifts from 

A2—Accelerated Green to A4—Logistics Surge and A3—Water Mitigation reflect real-time 

adaptation to operational stressors. Such transitions demonstrate the robustness of the hybrid approach 

in capturing expert-defined priorities and emergent system dynamics; an advancement over static 

MCDM models that lack temporal sensitivity or feedback integration. 

Practically, the consistent prioritization of Energy performance (C1) and Environmental impact (C2) 

has direct implications for OCP’s investment and policy focus. The agent’s repeated selection of  

A2—Accelerated Green during high-emission periods suggests that decarbonization levers are not only 

strategically dominant but also operationally actionable. Similarly, the emergence of A4—Logistics 

Surge in response to corridor delays highlights the need for infrastructure resilience and port-specific 

planning. These insights contribute to resolving ongoing debates in the literature about the trade-off 

between environmental and logistical priorities in industrial supply chains [48,49], showing that a 

hybrid AI framework can balance both through adaptive learning and multi-criteria sensitivity. 

To ensure methodological rigor, the BWM phase involved structured input from 12 domain 

experts at OCP, spanning energy systems, logistics, environmental engineering, and strategic planning. 

This multi-disciplinary panel ensured that sub-criteria were not only operationally relevant but also 

empirically validated. Compared to traditional AHP or fuzzy weighting methods [50,51], BWM offers 

superior consistency and lower cognitive load, particularly in industrial contexts with high indicator 

interdependence. The filtering of low-signal sub-criteria prior to IVN-TOPSIS aggregation enhances 

the interpretability of the DRL agent’s reward function, which remains constrained by the retained 

structure and is recalibrated periodically to reflect updated evaluations. This layered rigor distinguishes 

the framework from recent hybrid models that combine MCDM with AI but lack transparent 

traceability or stakeholder alignment. 

6. Conclusions 

In this study, we introduced a hybrid decision-support framework that integrates the BWM,  

IVN-TOPSIS, and DRL to enable adaptive, uncertainty-aware strategic planning. By embedding    

expert-derived priorities into a learning agent, the framework transitions from static evaluation to 

dynamic decision-making, aligning with real-time operational signals and evolving stakeholder needs. 

The results confirm Energy performance as the most influential strategic criterion group, consistently 

prioritized across both IVN-TOPSIS rankings and DRL agent behavior. This convergence reinforces 

the robustness of the methodology in capturing expert judgment and emergent system dynamics. 

The core contribution lies in bridging multi-criteria decision modeling with reinforcement 

learning, offering a transparent, interpretable, and empirically grounded system that evolves with data. 

Unlike prior approaches that treat MCDM outputs as fixed inputs to optimization engines, the proposed 

framework preserves auditability while enabling continuous recalibration. This addresses a critical gap 

in industrial decision-making under uncertainty, namely the inability of static models to respond to 

operational volatility, data drift, or shifting strategic priorities. 

Practically, the agent’s ability to shift between strategies such as Accelerated Green, Logistics 

Surge, and Water Mitigation demonstrates its utility for real-world planning, especially in contexts like 

OCP where energy, emissions, and infrastructure interact dynamically. The agent’s behavior over    
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the 2024–2025 horizon reflects a nuanced understanding of multi-criteria trade-offs, with transitions 

driven by reward signals linked to CO₂ intensity, port delays, and water stress. These findings suggest 

that hybrid AI frameworks can support not only strategic prioritization but also tactical responsiveness, 

an essential capability for industrial actors navigating complex, multi-lever environments. 

However, several limitations must be acknowledged. First, the initial BWM phase, while structured 

and expert-informed, remains sensitive to cognitive bias and framing effects. Although neutrosophic 

logic introduces tolerance for uncertainty and indeterminacy, it does not eliminate subjectivity in 

linguistic assessments. Second, the DRL agent’s performance is contingent on the quality, frequency, 

and granularity of real-time data streams. In environments with incomplete or delayed data, the agent’s 

learning trajectory may diverge from optimal policy paths. Third, the framework assumes a single-

agent architecture and does not explicitly model inter-agent coordination or stakeholder negotiation, 

which may be critical in multi-actor industrial ecosystems. 

To address these limitations, future research could explore several extensions. One promising 

direction involves the integration of ensemble expert weighting mechanisms, combining BWM with 

entropy or Bayesian updating, to reduce bias and improve robustness. Another avenue is the 

deployment of multi-agent DRL architectures, enabling decentralized decision-making and 

coordination across supply chain nodes, production units, or governance bodies. Additionally, 

embedding stakeholder feedback loops into the learning process could enhance legitimacy and 

responsiveness, particularly in sectors where social license and community engagement are pivotal. 

Application domains such as water governance, urban logistics, and renewable energy transitions offer 

fertile ground for testing the framework’s scalability and adaptability under diverse constraints. 
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