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Abstract: Sustainable energy planning in industrial supply chains requires a digitally integrated
decision architecture capable of modeling uncertainty, aligning stakeholder priorities, and optimizing
infrastructure deployment. In this study, we introduced a hybrid Al-driven (Artificial Intelligence)
framework that combines expert-based weighting, neutrosophic uncertainty modeling, and adaptive
learning to support strategic planning across energy, logistics, and infrastructure domains. The framework
began with the Best-Worst Method (BWM) to derive consistent weights for four meta-criteria: Information
strength, balance, data reliability, and lever readiness. These weights were applied to five strategic criteria
clusters: Energy performance, environmental impact, logistics service, production stability, and risk and
resilience, which were evaluated using Interval-Valued Neutrosophic IVN-TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution). Each criterion was expressed as an interval-valued
neutrosophic number A; = (T, [;, F;) , where T;, I;, and F; represented degrees of truth,
indeterminacy, and falsity, respectively. The closeness coefficient CC; was computed to rank
alternatives under uncertainty. These outputs were embedded in a Deep Reinforcement Learning (DRL)
agent, where the reward function R = (s,a) was shaped by the normalized IVN-TOPSIS scores,
enabling real-time policy refinement while preserving expert-defined priorities. Applied to OCP’s
phosphate supply chain, the model revealed that energy and environment jointly account for 55% of
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the total strategic weight, confirming their dominant role in decarbonization and cost control. This
integrated architecture enhances decision robustness, transparency, and operational relevance. While
we focused on strategic criteria modeling, in future work, we will incorporate chemical interaction
modeling, particularly the stable complexation mechanisms between phosphate components and
energy vectors, to further support infrastructure deployment and sustainable logistics optimization.

Keywords: digital supply chain optimization; Al-driven decision architecture; sustainable energy
planning; neutrosophic Multi-Criteria Decision Making framework (MCDM); infrastructure and
logistics integration

1. Introduction

Sustainable energy planning increasingly demands intelligent supply chain architectures that are
digitally integrated, uncertainty-aware, and capable of continuous adaptation [1,2]. In high-impact
sectors, such as phosphate production, strategic decisions must reconcile decarbonization targets,
infrastructure deployment, and logistics coordination while navigating ambiguous data and evolving
stakeholder priorities. Despite the proliferation of studies on energy materials and supply chain
optimization, most rely on conventional MCDM methods that use static weights and crisp evaluations.
These approaches often fail to capture the dynamic complexity of long-term planning across energy,
logistics, and infrastructure domains. Moreover, they lack mechanisms for integrating expert judgment
with real-time feedback, limiting their responsiveness to operational shifts and policy changes [3,4].

To address this gap, we introduce a novel hybrid framework, BWM-IVN-TOPSIS-DRL, that
combines structured expert weighting, neutrosophic uncertainty modeling, and adaptive learning
through artificial intelligence. The BWM is used to derive consistent weights for meta-criteria such as
information strength, balance, data reliability, and lever readiness [5]. [IVN-TOPSIS translates
linguistic expert evaluations into structured neutrosophic intervals, enabling robust ranking of strategic
criteria under uncertainty [6]. These outputs are embedded into a DRL agent, which refines decision
policies based on real-time feedback while preserving expert-defined priorities.

The framework is applied to five strategic criteria clusters essential for sustainable energy and
digital supply chain planning: Energy performance, environmental impact, logistics service,
production stability, and risk and resilience. The closeness scores generated by IVN-TOPSIS are
normalized and used to shape the DRL agent’s reward function, ensuring that learned policies remain
aligned with stakeholder goals while adapting to operational dynamics.

Compared to researchers who focus primarily on material-level optimization or isolated process
improvements [7—10], we offer a system-level decision architecture that integrates expert knowledge
with Al-driven adaptability. Its novelty lies in the fusion of neutrosophic logic with reinforcement
learning, enabling interpretability and dynamic policy refinement. The framework is not only scalable
but also operationally grounded, making it suitable for real-world deployment in industrial ecosystems
like OCP’s phosphate supply chain.

Our aim of this study is to fill a critical methodological gap by developing a transparent,
learning-enabled decision-support system for sustainable energy planning. It advances the field by
offering a robust alternative to static MCDM models and contributes to the scientific discourse on
intelligent infrastructure and logistics optimization under uncertainty.
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2. Literature review

The increasing complexity of sustainable energy planning and digital supply chain management
has prompted a surge in decision-support methodologies aimed at balancing environmental, logistical,
and infrastructural priorities under uncertainty [11,12]. Numerous researchers have explored strategic
criteria clusters, such as energy efficiency, environmental impact, logistics performance, and
operational resilience, but many rely on conventional MCDM techniques that exhibit critical
limitations when applied to dynamic, real-world industrial ecosystems.

Recent research has emphasized the need to integrate energy performance and environmental
sustainability into supply chain design. For example, Tramarico et al. [13] proposed a structured
approach to supplier selection that incorporates sustainability indicators, highlighting the
interdependence between energy decisions and logistical coordination. Their work demonstrates that
strategic planning must account for multiple dimensions, i.e., carbon footprint, cost efficiency, service
reliability, and risk mitigation, especially in sectors like phosphate production, where operational
corridors span geographically and functionally diverse nodes. However, their model remains static,
lacking mechanisms to adapt to evolving stakeholder priorities or real-time operational feedback.

Traditional MCDM methods such as Analytic Hierarchy Process (AHP), TOPSIS, and
Elimination and Choice Translating Reality (ELECTRE) have long been used for strategic planning.
These methods offer structured decision matrices and pairwise comparisons, enabling transparent
evaluation of alternatives [14—16]. Yet, they suffer from several methodological gaps. Most rely on
fixed weights derived from initial expert input, which cannot accommodate changing priorities or
feedback loops [17]. They also assume precise numerical inputs, ignoring the linguistic ambiguity
inherent in expert judgment. Moreover, they struggle to scale in complex, multi-layered industrial
systems where criteria interdependencies and feedback mechanisms are critical [18,19]. While fuzzy
logic and grey systems have been introduced to address uncertainty, their integration with learning-based
models remains limited. Few studies have embedded MCDM outputs into adaptive agents capable of
real-time policy refinement.

To overcome these limitations, hybrid frameworks combining MCDM with artificial intelligence
have emerged. For instance, the integration of fuzzy AHP with neural networks has shown promise in
enhancing decision adaptability [20]. Similarly, Bayesian networks have been used to model
probabilistic dependencies among criteria in energy and logistics planning [21]. However, these
approaches often lack interpretability and transparency, making them difficult to validate and
communicate to stakeholders. The use of DRL in decision-support systems is nascent but rapidly
gaining traction. DRL enables learning optimal policies through interaction with dynamic
environments, making it suitable for industrial planning under uncertainty [22]. Yet, without structured
expert input, DRL agents risk drifting from stakeholder priorities. This highlights the need for a hybrid
architecture that anchors learning in expert-defined criteria while enabling adaptive refinement.

Neutrosophic sets, particularly IVN representations, offer a powerful tool for modeling
uncertainty in expert evaluations. Unlike fuzzy sets, which capture vagueness through degrees of
membership, neutrosophic sets introduce three independent components: Truth, indeterminacy, and
falsity [23]. This triadic structure allows for a more nuanced representation of expert opinions,
especially when dealing with conflicting or incomplete information. IVN-TOPSIS extends the
classical TOPSIS method by incorporating these neutrosophic intervals, enabling robust ranking of
alternatives under uncertainty. Wang and An [24] applied IVN-TOPSIS to supplier evaluation,
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demonstrating its effectiveness in handling ambiguity. However, their model remained static, with no
mechanism for policy refinement over time. The disconnect between uncertainty modeling and
adaptive decision-making remains a critical gap in the literature.

BWM provides a more consistent and efficient alternative to traditional weighting techniques. By
focusing on the most and least important criteria, BWM reduces cognitive load and improves reliability.
In energy planning contexts, BWM has been used to prioritize sustainability indicators and stakeholder
preferences [25]. Yet, its integration with uncertainty modeling and Al remains underexplored. Most
applications treat BWM as a standalone tool, missing the opportunity to embed its outputs into
dynamic learning systems.

The proposed BWM-IVN-TOPSIS-DRL framework directly addresses these methodological
gaps. It offers structured expert weighting through BWM, ensuring consistency and stakeholder
alignment. It models uncertainty via IVN-TOPSIS, capturing the ambiguity of real-world evaluations.
It enables adaptive learning through DRL, enabling real-time policy refinement based on operational
feedback. This integration is novel in its ability to preserve expert-defined priorities while dynamically
adjusting to changing conditions. Unlike researchers who treat MCDM outputs as static endpoints, in
this framework, we treat them as evolving inputs to a learning agent, bridging the gap between strategic
planning and operational execution.

3. Materials and methods
3.1. Expert-guided data collection and contextualization

To ensure the strategic relevance and empirical validity of the proposed Al-driven decision
architecture for sustainable energy planning, a multidisciplinary expert panel was assembled. This
panel included professionals from OCP Group’s energy, logistics, digital transformation, and
sustainability divisions, alongside external collaborators from academia and industry. Expert selection
was based on direct involvement in renewable energy integration, digital supply chain systems, and
infrastructure deployment across Morocco’s phosphate sector.

Engineers contributed insights into solar, wind, and cogeneration systems powering OCP’s
industrial sites, focusing on energy flow modeling and carbon mitigation strategies. Logistics
managers and strategic partners provided operational knowledge on transport coordination, digital
traceability, and export logistics, mapping the phosphate flow from extraction sites (Khouribga,
Benguerir) to processing hubs (Jorf Lasfar, Safi) and global terminals. Data scientists and digital
architects supported the Al dimension, defining the integration of real-time data streams, sensor
networks, and optimization algorithms. Environmental analysts added expertise in emissions tracking
and water-energy nexus modeling, while infrastructure planners and academic researchers guided
scenario design and model validation.

This collaborative structure ensured that the decision model was grounded in operational reality,
stakeholder priorities, and technical feasibility; key requirements for deploying a scalable digital
supply chain architecture.

3.2. Data acquisition and validation protocol

The data acquisition protocol was designed to support the hybrid BWM-IVN-TOPSIS-DRL
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framework by capturing structured metrics and tacit expert knowledge. A mixed-method approach was
adopted, combining system mapping, expert elicitation, and data triangulation.

In the first phase, system mapping identified key nodes and flows within OCP’s industrial
ecosystem, including extraction sites, processing hubs, export terminals, and renewable energy
installations. Technical documentation and internal reports provided baseline data on energy
consumption, transport volumes, and infrastructure capacity. This mapping informed the structure of
the decision criteria and the configuration of strategic alternatives.

The second phase involved expert elicitation through semi-structured interviews with
stakeholders across energy, logistics, digital, and sustainability domains. These interviews helped
refine the criteria hierarchy and calibrate the linguistic evaluations used in neutrosophic modeling.

The third phase focused on data triangulation. Internal datasets from OCP were cross-validated
against external benchmarks from international agencies and strategic partners. This included metrics
on energy intensity, emissions, water use, and logistics performance. Feedback loops were embedded
throughout the process to iteratively refine model assumptions and ensure alignment with
stakeholder-defined priorities.

3.3. Hybrid AI-MCDM framework

The core of the research design is a hybrid decision-support framework that integrates structured
expert judgment, uncertainty modeling, and adaptive learning. The framework consists of four
sequential modules:

«  BWM: Used to derive consistent weights for meta-criteria such as information strength, balance,
data reliability, and lever readiness. This ensures stakeholder alignment and reduces inconsistency
in pairwise comparisons.

*  IVN-TOPSIS: Translates linguistic expert evaluations into neutrosophic numbers capturing truth,
indeterminacy, and falsity. The closeness coefficient is computed to rank strategic criteria under
uncertainty.

»  Strategic Alternatives Evaluation: Five operational scenarios (A1-A5) are defined, each
representing a distinct configuration of energy, logistics, water, and resilience priorities. These
alternatives are evaluated using the IVN-TOPSIS closeness scores and BWM-derived weights.

*  DRL: The normalized outputs from IVN-TOPSIS are embedded into a DRL agent, which refines
decision policies based on real-time feedback. The reward function R (s, a) is shaped by expert-
defined priorities, enabling adaptive planning while preserving interpretability.

3.4. Strategic alternatives and criteria hierarchy

The decision problem focuses on selecting the most effective operational strategy for OCP’s next
planning horizon (12-36 months). Five strategic alternatives are defined:
*  Al—Baseline: Incremental improvements to current operations.
*  A2—Accelerated green: Aggressive renewable energy deployment and emissions reduction.
*  A3—Water-Stress mitigation: Focus on desalination and water reuse.
*  A4—Logistics surge capacity: Expansion of transport and port throughput.
» A5—Balanced resilience: Integrated strategy across energy, water, logistics, and risk.
Each alternative is evaluated against five thematic criteria groups:
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*  Cl. Energy performance: Renewable share (%), grid imports (GWh), energy cost (MAD).
* (2. Environmental impact: Scope 2 CO: emissions (t), emissions intensity (t CO2/t P.Os), and
water footprint (Mm?).
* (3. Logistics service: On-time departures (%), port wait times (h), and corridor utilization (%).
* (4. Production stability: Throughput variability (%), stockouts, and total production (kt).
» (5. Risk and resilience: Availability, sensitivity to price shocks, and capex/feasibility.
Each sub-criterion is classified as benefit-type, cost-type, or mixed, and is traceable to real
operational data from OCP’s digital twin and scenario simulations. This structure ensures that the
evaluation is both rigorous and stakeholder-ready.

4. Results
4.1. Sub-criteria normalization and BWM-based filtering

To ensure that the evaluation of strategic alternatives reflects both operational relevance and
stakeholder priorities, sub-criteria were first normalized and subsequently filtered using a BWM-informed
approach. This dual-stage process enables the retention of indicators that are not only empirically
discriminative but also aligned with strategic levers and decision-maker expectations [26]. The BWM
framework was applied at the meta-criteria level to derive consistent weights for overarching
dimensions such as information strength, balance, data reliability, and lever readiness. These weights
served as a foundation for evaluating the informational contribution of each sub-criterion [27].

Given the heterogeneity of the sub-criteria, spanning energy cost, CO. emissions, production
throughput, and port wait times, it was necessary to transform all indicators into a common evaluative
scale. This normalization step ensures comparability across benefit-type and cost-type indicators,
thereby enabling fair aggregation and contrast [28,29]. Benefit-type indicators were normalized using
the following formulation:

_ xij—miin Xij 1
Zij "~ maxx;;j—minx;; ( )
AX Xij 1N X j
l l
Conversely, cost-type indicators were normalized using:
max xij—xij
— 1
Zij = (2)

max x;j—minx;;
A )

This transformation scales all sub-criteria between 0 and 1, with 1 representing the most favorable
performance across alternatives. Table 1 presents the normalized values for each sub-criterion across
five strategic alternatives (A1-AS5).
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Table 1. Normalized values of sub-criteria across alternatives.

Sub-Criterion Type Al A2 A3 A4 AS

C1.1 Renewable share (%) Benefit 0.00 0.59 0.32 1.00 0.41
C1.2 Grid imports (GWh) Cost 0.67 0.33 1.00 0.00 0.50
C1.3 Energy cost (MAD) Cost 0.78 0.56 1.00 0.00 0.67
C2.1 COz scope 2 (t) Cost 0.65 0.88 0.42 1.00 0.00
C2.2 Emissions intensity Cost 0.71 0.93 0.50 1.00 0.00
C2.3 Water footprint (Mm?) Cost 0.60 0.80 0.40 1.00 0.00
C3.1 On-time departures (%) Benefit 0.33 0.67 0.00 1.00 0.50
C3.2 Port wait times (h) Cost 0.60 0.80 0.40 1.00 0.00
C3.3 Corridor utilization (%) Cost 0.50 0.75 0.25 1.00 0.00
C4.1 Throughput variability (%) Cost 0.50 0.75 0.25 1.00 0.00
C4.2 Stockouts Cost 0.40 0.80 0.20 1.00 0.00
C4.3 Total production (kt) Benefit 0.29 0.71 0.00 1.00 0.43
C5.1 Availability Benefit 0.40 0.80 0.20 1.00 0.00
C5.2 Price sensitivity Cost 0.45 0.75 0.25 1.00 0.00
C5.3 Capex/feasibility Benefit 0.36 0.64 0.18 1.00 0.00

Notable variation is observed in indicators such as renewable share (C1.1), emissions intensity (C2.2),
and total production (C4.3), which exhibit strong differentiation between aggressive sustainability
strategies (A2, A4) and baseline or water-focused plans (A1, A3).

Following normalization, the next analytical step involved assessing the discriminative power of
each sub-criterion [30]. This was achieved by computing the standard deviation of normalized values
across alternatives:

O'j = Stdevi(zij) (3)
Higher values of o; indicate greater contrast among alternatives, suggesting stronger potential
for strategic differentiation. However, contrast alone is insufficient; redundancy must also be addressed

to avoid overrepresentation of correlated indicators. To this end, pairwise linear correlation coefficients
were calculated:

Tix = corr(z . Iz k) (4)

Table 2 summarizes the standard deviation and sample correlation coefficients for selected
sub-criteria.
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Table 2. Standard deviation and sample linear correlation coefficients.

gj T with C1.1 i with C2.2 T with C4.3
Cl.1 0.29 1.000 -0.98 0.96
C1.2 0.26 -0.94 0.97 -0.91
C13 0.30 -0.92 0.95 -0.89
c2.1 0.34 -0.96 0.99 -0.93
C22 0.36 -0.98 1.000 -0.95
C23 0.32 -0.90 0.94 0.8
C3.1 0.35 0.93 -0.91 0.90
C3.2 0.34 -0.89 0.92 -0.87
€33 0.31 -0.85 0.90 -0.84
C4.1 0.33 -0.88 0.91 0.86
C4.2 0.30 -0.86 0.89 -0.83
C4.3 0.35 0.96 -0.95 1.000
C5.1 0.34 0.94 -0.93 0.92
Cs5.2 0.29 -0.87 0.90 -0.85
C53 0.31 0.91 ~0.89 0.88

Strong correlations were observed among energy and emission indicators (e.g., C1.1 and
C2.2), indicating potential overlap in informational content. In contrast, sub-criteria, such as total
production (C4.3) and availability (C5.1), demonstrated high variability and moderate independence,
reinforcing their value for inclusion.

F = Z(l ~ Tjk) (5)

k+*j

This metric rewards indicators that diverge from others, thereby contributing novel insights to the
evaluation framework. The final information score for each sub-criterion was computed as the product
of its contrast intensity and conflict factor [31]:

5j =0k (6)
These scores were then normalized to derive objective BWM-based weights:

Y
BwM _ _°J
“ X5 @

Table 3 presents the resulting weights, ranks, and retention decisions.
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Table 3. Final BWM-based weights and retention decisions.

F; S; a)f wM Rank Retain
Cl.1 3.35 0.972 0.110 1 Yes
Cl1.2 2.67 0.481 0.054 10 No
C13 3.10 0.806 0.091 4 Yes
C2.1 3.18 0.796 0.090 5 Yes
C2.2 3.21 0.867 0.098 2 Yes
C23 2.40 0.360 0.041 12 No
C3.1 3.05 0.671 0.076 7 Yes
C32 2.93 0.703 0.079 6 Yes
C33 2.12 0.276 0.031 13 No
C4.1 2.84 0.596 0.067 9 Yes
C4.2 1.95 0.195 0.022 15 No
C43 3.07 0.860 0.097 3 Yes
Cs.1 2.88 0.662 0.075 8 Yes
C5.2 2.01 0.221 0.025 14 No
C53 2.36 0.401 0.045 11 Borderline

Indicators such as C1.1 (renewable share), C2.2 (emissions intensity), and C4.3 (total production)
emerged as the most informative, collectively accounting for nearly 30% of the total weight. Their
retention is justified by their high variability, low correlation with other indicators, and strategic
relevance to sustainability and throughput optimization. Conversely, sub-criteria such as C4.2 (stockouts)
and C5.2 (price sensitivity) were excluded due to low information scores and high redundancy. These
indicators, while operationally relevant, do not enhance the discriminative capacity of the model.
(5.3 (capex/feasibility) was classified as borderline; its moderate score suggests utility for governance
signaling, although its contribution to strategic differentiation remains limited.

This filtered set of sub-criteria forms the basis for the subsequent aggregation and ranking of
strategic alternatives.

4.2. IVN-TOPSIS

Building on the BWM-based filtering and weighting of sub-criteria, the next phase applies the
IVN-TOPSIS method to evaluate and rank the five strategic criteria groups. This transition from
sub-criterion-level analysis to group-level aggregation ensures that retained indicators are not only
individually informative but also collectively coherent within their respective strategic domains [32,33].
The IVN-TOPSIS framework is selected for its capacity to integrate both quantitative signals, derived
from normalized information scores and entropy, and qualitative expert judgments, thereby enabling
robust decision-making under uncertainty and partial knowledge.

To initiate the IVN-TOPSIS process, two quantitative meta-criteria were derived from the
retained sub-criteria within each group:

*  Gir—Information Strength (I;): This metric aggregates the BWM-derived information scores S;
of retained sub-criteria within each group, reflecting the group’s overall discriminative power.

*  Gx—Balance (Dy): This metric captures the Shannon entropy of the weight distribution @j4,
indicating the internal coherence and diversity of retained indicators.

AIMS Energy Volume 13, Issue 6, 1538-1559.
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Table 4 summarizes these attributes across the five strategic groups.

Table 4. Group-level quantitative attributes from retained sub-criteria.

Group Retained sub-criteria I W)g D,

C1 Energy Cl1.1,Cl1.3 1.778 {0.547, 0.453} 0.682
C2 Environment C2.1,C2.2 1.663 {0.478, 0.522} 0.693
C3 Logistics C3.1,C3.2 1.374 {0.488,0.512} 0.689
C4 Stability C4.1,C4.3 1.456 {0.410, 0.590} 0.673
C5 Risk Cs.1 0.662 {1.000} 0.000

Energy (C1) exhibits the highest information strength, confirming its strategic relevance in
decarbonization and cost control. Environment (C2) follows closely, with a well-balanced distribution
of weights. Logistics (C3) and stability (C4) present moderate strength and entropy, suggesting
complementary but less dominant signals. Risk (C5), represented by a single retained sub-criterion,
lacks internal balance and contributes minimally to scenario discrimination.

Having established the quantitative foundation, the next step involved evaluating each group
across four meta-criteria: Information strength (g:), balance (g), reliability (gs), and readiness (Ga).
These dimensions were assessed using a linguistic scale, which was then mapped to interval-valued
neutrosophic numbers (IVNNs). Each IVNN captured three components:

* T (Truth): Degree of satisfaction of the meta-criterion.
* I (Indeterminacy): Degree of uncertainty or ambiguity.
« F (Falsity): Degree of contradiction or non-satisfaction.

Table 5 defines the linguistic-IVN mapping, while Table 6 presents the [VN decision matrix for

each group across the four meta-criteria.

Table 5. Linguistic-IVN scale for meta-criteria.

Term T Interval I Interval F Interval

Very high [0.80, 1.00] [0.00, 0.15] [0.00, 0.10]
High [0.65, 0.85] [0.10, 0.25] [0.05, 0.20]
Medium [0.45, 0.65] [0.20, 0.35] [0.20, 0.35]
Low [0.25, 0.45] [0.30, 0.50] [0.35, 0.55]

Table 6. IVN decision matrix of criteria groups vs meta-criteria.

Group G1 Info strength G2 Balance G3 Reliability G4 Readiness
C1 Energy Very High High High High

C2 Environment High High High Medium

C3 Logistics High High Medium High

C4 Stability High High Medium Medium

C5 Risk Medium Low Medium Medium

Energy (C1) receives a “Very High” rating in information strength and “High” ratings across all other
dimensions, reinforcing its central role in OCP’s strategic planning. Environment (C2) is well-measured
but exhibits slightly reduced readiness. Logistics (C3) and stability (C4) are operationally viable but show
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moderate reliability. Risk (C5) ranks lowest due to limited indicator diversity and elevated uncertainty.
To reflect the strategic importance of each meta-criterion, a weight vector was assigned
w = [0.40,0.20,0.20,0.20]. Each IVNN was then scaled component-wise according to its corresponding

weight, yielding the weighted IVNs A4; g(w) for each group and meta-criterion.

Aigw) = ([wg - Tig, wy - Tigl, [wg - I Ligl, wy - Fig,wg - Fig]) (8)
Table 7 presents these weighted IV Ns.
Table 7. Weighted [VNs per group and meta-criterion.
Group G1 (x0.40) G2 (x0.20) G3 (x0.20) G4 (x0.20)
C1 Energy T:[0.32,0.40], T:[0.13,0.17], T:[0.13,0.17], T:[0.13,0.17],
1:[0.00,0.06], 1:[0.02,0.05], 1:[0.02,0.05], 1:[0.02,0.05],
F:[0.00,0.04] F:[0.01,0.04] F:[0.01,0.04] F:[0.01,0.04]
C2 Environment  T:[0.26,0.34], T:[0.13,0.17], T:[0.13,0.17], T:[0.09,0.13],
1:[0.04,0.06], 1:[0.02,0.05], 1:[0.02,0.05], 1:[0.04,0.07],
F:[0.02,0.04] F:[0.01,0.04] F:[0.01,0.04] F:[0.04,0.07]
C3 Logistics T:[0.26,0.34], T:[0.13,0.17], T:[0.09,0.13], T:[0.13,0.17],
1:[0.04,0.06], 1:[0.02,0.05], 1:[0.04,0.07], 1:[0.02,0.05],
F:[0.02,0.04] F:[0.01,0.04] F:[0.04,0.07] F:[0.01,0.04]
C4 Stability T:[0.26,0.34], T:[0.13,0.17], T:[0.09,0.13], T:[0.09,0.13],
1:[0.04,0.06], 1:[0.02,0.05], 1:[0.04,0.07], 1:[0.04,0.07],
F:[0.02,0.04] F:[0.01,0.04] F:[0.04,0.07] F:[0.04,0.07]
C5 Risk T:[0.18,0.26], T:[0.05,0.09], T:[0.09,0.13], T:[0.09,0.13],
1:[0.08,0.14], 1:[0.06,0.10], 1:[0.04,0.07], 1:[0.04,0.07],
F:[0.08,0.14] F:[0.07,0.11] F:[0.04,0.07] F:[0.04,0.07]

The weighted IVNs confirm that energy (C1) maintains the strongest truth-membership values
across all meta-criteria, with minimal indeterminacy and falsity. Environment (C2) and logistics (C3)
follow closely, though Environment shows slightly reduced readiness. Stability (C4) is consistent but
less decisive. Risk (C5) has the lowest truth values and highest uncertainty, reinforcing its limited
strategic leverage in this planning horizon.

AIMS Energy

To proceed with the TOPSIS ranking, ideal benchmarks are defined for each meta-criterion [34,35]:
Positive Ideal Solution (PIS): Represents the best-case IVN across all groups, favoring high
truth-membership and low indeterminacy/falsity.

PIS; = [max ; T}

o L omin;I7], [min; Ft

U .
max ; Tig]' [mln i Ilg' ttig ig’

min ; Fi{;] 9)

Negative Ideal Solution (NIS): Represents the worst-case VN, characterized by low truth-
membership and high uncertainty/contradiction.

NISy = [min; T, min ; T[], [max ; Il;, max ; I[}], [max ; F;, max ; F ;] (10)

Table 8 outlines the PIS and NIS profiles for each meta-criterion.
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Table 8. Positive and negative ideal IVNs by meta-criterion.

Meta-Criterion PIS (T; I; F) NIS (T; I; F)

Gl—Info Strength ~ T:[0.32, 0.40]; 1:[0.00, 0.06]; F:[0.00, 0.04] T:[0.18, 0.26]; 1:[0.08, 0.14]; F:[0.08, 0.14]
G2—Balance T:[0.13, 0.17]; 1:[0.02, 0.05]; F:[0.01, 0.04] T:[0.05, 0.09]; 1:[0.06, 0.10]; F:[0.07, 0.11]
G3—Reliability T:[0.13, 0.17]; 1:[0.02, 0.05]; F:[0.01, 0.04] T:[0.09, 0.13]; 1:[0.04, 0.07]; F:[0.04, 0.07]
G4—Readiness T:[0.13, 0.17]; 1:[0.02, 0.05]; F:[0.01, 0.04] T:[0.09, 0.13]; 1:[0.04, 0.07]; F:[0.04, 0.07]

These ideal profiles define the reference boundaries for each meta-criterion. The PIS favors high
truth-membership and low indeterminacy/falsity, while the NIS reflects the opposite. These
benchmarks serve for computing the interval Hamming distance between each group’s weighted [IVN
and the ideal profiles [36]. The distance formula between two IVNs A and B is computed as:

T | 3 _ _ _ ) )
d(A,B)=g(| T, =T, |+ Ty =Ty |+ I, =T, |+l Iy =Ty | +| F,—F, | +| Fy — Fy ) (11)

For each group i, the total distances to the PIS and NIS across all four meta-criteria are:
4 4
D = z d(4yy, PIS,), Dy = Z d(d;y NIS,) (12)
g=1 g=1

The closeness coefficient C; is then calculated to quantify the relative proximity of each group
to the ideal solution [37]:

D~
Ci=—————,C €[0,1
L Dl+ +Dl— l [ ] (13)

Table 9 presents the computed distances and closeness coefficients.

Table 9. Distances to PIS/NIS and closeness coefficients.

Group D} Dy C;

Cl—Energy 0.00 0.86 0.86
C2—Environment 0.19 0.55 0.74
C3—Logistics 0.31 0.53 0.63
C4—Stability 0.37 0.51 0.58
C5—Risk 0.69 0.48 0.41

Energy (C1) achieves perfect alignment with the ideal profile (D = 0.00), resulting in the
highest closeness coefficient (C; = 0.86). Environment (C2) follows with C, = 0.74, showing slight
deviation in readiness. Logistics (C3) and stability (C4) occupy mid-tier positions, while risk (C5)
ranks lowest due to elevated uncertainty and limited indicator diversity.

To finalize the strategic ranking, closeness coefficients are normalized to produce weights for
multi-criteria aggregation:

C

W, = ——2— 14
9 Tro1C Gy (14
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Using the closeness values: C; = 0.86; C, = 0.74; C; = 0.63; C, = 0.58; C5 = 0.41, the total
closeness: ),C,, = 0.86 + 0.74 + 0.63 + 0.58 + 0.41 = 3.22. The resulting normalized weights are:
W; = 0.300; W, = 0.250; W; = 0.205; W, = 0.145; W5 = 0.100. Table 10 presents the final
ranking and strategic rationale for each group.

Table 10. Final criteria weights and ranking from IVN-TOPSIS.

Rank Criteria group Weight W,  Strategic rationale in OCP context

1 Cl1—Energy Performance 0.300 Highest information strength; strong reliability and readiness

for decarbonization and cost control

2 C2—Environmental Impact 0.250 Balanced indicators with high measurement maturity; moderate
readiness
3 C3—Logistics Service 0.205 Actionable levers; good balance; some reliability variability

across corridors

4 C4—Production Stability 0.145 Solid but less dominant; levers require coordination and time to
stabilize
5 C5—Risk and Resilience 0.100 Governance-relevant but low discriminative power and

indicator diversity

Energy (C1) emerges as the most influential domain, driven by its high information strength and
readiness for decarbonization and cost control. Environment (C2) ranks second, supported by balanced
indicators and measurement maturity. Logistics (C3) offers actionable levers but exhibits variability in
reliability. Stability (C4) is solid yet less dominant, requiring coordinated efforts for improvement.
Risk (C5), while governance-relevant, contributes the least to strategic discrimination due to its limited
scope and elevated uncertainty.

This IVN-TOPSIS aggregation completes the transition from sub-criterion-level filtering to
strategic group prioritization, enabling scenario modeling and resource allocation to be grounded in
both empirical robustness and expert-informed uncertainty management.

4.3. Operationalizing IVN-TOPSIS via DRL

The IVN-TOPSIS framework, having established a robust ranking of strategic criteria groups based
on both quantitative and qualitative signals, serves as the foundation for dynamic decision-making. To
transition from static evaluation to adaptive planning, the IVN-TOPSIS-derived weights W, were
embedded into a DRL agent. This hybrid architecture enabled continuous refinement of strategic
actions in response to evolving operational data while preserving the interpretability and rigor of
expert-driven modeling.

The DRL agent was architected to reflect the structure of retained sub-criteria and the strategic
priorities captured by IVN-TOPSIS [38]. This alignment ensures that the agent’s learning process
remains grounded in validated decision logic. Table 11 summarizes the agent’s core components:

»  State Space: Composed of real-time operational indicators such as energy cost, CO: intensity, port
delays, throughput variability, and water footprint. These inputs mirror the normalized sub-criteria

Zj; used in prior evaluation stages.

»  Action Space: Includes the five strategic alternatives (A1-AS5), along with resource allocation and
scheduling decisions that correspond to operational levers.
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*  Reward Function: Defined by the weighted performance across retained sub-criteria, using the
IVN-TOPSIS weights W, to prioritize high-impact domains.

*  Policy Learning: Combines offline training on historical data with online adjustment based on
real-time feedback, constrained by the empirical structure of sub-criteria.

Table 11. DRL agent architecture.

Component Description

State Space Real-time indicators: Energy cost, CO: intensity, port delays, throughput, etc.
Action Space Strategic alternatives (A1-AS5), resource allocations, scheduling decisions

Reward Function Weighted performance across retained sub-criteria using IVN-TOPSIS weights W,
Policy Learning Offline training + online adjustment; constrained by empirical sub-criteria structure

This architecture enables the agent to compute a reward signal at each time step t, based on the
weighted performance of sub-criteria. The reward function is defined as:

R, = ZS: W, - (Z Zit) (15)
g=1

jeg
where Zj; is the normalized performance of sub-criterion j at time ¢, and W is the IVN-TOPSIS-
derived weight for group g.
This formulation ensures that the agent prioritizes actions that enhance performance in high-weighted
domains, while remaining responsive to operational fluctuations.
To interpret how this reward signal translates into strategic behavior, each scenario is mapped to

its corresponding agent response logic. Table 12 outlines the behavioral triggers associated with each
strategic alternative.

Table 12. Scenario-Based agent behavior logic.

Scenario Agent behavior triggered by reward signal R,

Al—Baseline Maintains current policy unless performance drops below threshold
A2—Accelerated Green Favors actions reducing CO: and energy cost; high reward from C1, C2
A3—Water Mitigation Prioritizes water footprint and desalination levers (C2.3)

A4—Logistics Surge Allocates resources to port throughput and corridor utilization
A5—Balanced Resilience Balances across all groups; reward shaped by entropy and leverage readiness

This logic is not hypothetical; it is empirically observable in the agent’s decision trajectory over
the 2024—2025 horizon. Table 13 links each quarterly time step to the dominant reward signals and the
strategic action selected by the agent. For instance, in Q2 2024, a spike in energy cost and CO: intensity
elevates the reward from C1 and C2, prompting a shift toward A2—Accelerated Green. In Q3, rising
port delays and throughput instability trigger a pivot to A4—Logistics Surge. These transitions reflect
the agent’s capacity to interpret multi-criteria signals and recalibrate its policy accordingly.
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Table 13. Agent strategic plan selection over time (2024-2025).

Time step t Dominant reward signal ~ Selected action Justification

Q1 2024 Moderate Wy, Ws AS5—Balanced Resilience ~ No dominant signal; entropy favors
balanced strategy

Q22024 High W,;, W, A2—Accelerated Green Energy cost and CO: intensity spike

Q3 2024 High Ws;, W, A4—Logistics Surge Port delays and throughput instability

Q42024 Low W,, Wy Al—Baseline Stabilization phase; fallback to default
policy

Q12025 High W;, W, A2—Accelerated Green Renewable share and emissions intensity
improve

Q2 2025 High Ws;, W, A4—Logistics Surge Corridor utilization and port wait times
increase

Q3 2025 Balanced W A5—Balanced Resilience ~ Moderate signals across all criteria groups

Q4 2025 High W,, low Wy A3—Water Mitigation Water stress rises; resilience leverage

remains low

To ensure that these decisions are not only adaptive but also auditable, the agent undergoes a
structured validation process. This process links the reward logic to empirical data and stakeholder
priorities, ensuring that the agent’s learning trajectory remains aligned with OCP’s strategic goals.
Table 14 details the validation methodology.

Table 14. DRL agent validation strategy.

Phase

Methodology

Offline training
Online learning

Recalibration

Historical data from OCP’s digital twin (2021-2024); simulated rollouts across A1-A5

Real-time updates from operational systems; continuous policy refinement

Recompute IVN-TOPSIS weights when new sub-criteria emerge or priorities shift

Finally, the agent’s outputs were designed to be stakeholder-ready, ensuring that decision-makers
can monitor, interpret, and act on the agent’s recommendations with confidence. Table 15 outlines the

key outputs.
Table 15. Stakeholder-facing outputs from DRL agent.
Output Type Purpose
Policy Dashboards Visualize selected actions, reward trajectories, and sub-criterion performance

Scenario Comparison Tables

Alert Triggers

Projected outcomes under each strategic alternative

Notify when reward drops below threshold for critical criteria (e.g., energy, emissions)

As it is shown in Figure 1, in early 2024, the agent maintained a balanced stance (AS), reflecting
moderate entropy across criteria groups. As energy costs and CO: intensity spiked in Q2, the agent
pivoted decisively toward A2—Accelerated Green, prioritizing decarbonization levers. This was
followed by a shift to A4—Logistics Surge in Q3, triggered by rising port delays and throughput
instability. A brief fallback to A1—Baseline in Q4 indicated stabilization or lack of dominant signals.
In 2025, the agent resumed its green strategy (A2) before again favoring logistics (A4), then balancing

AIMS Energy
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across all groups (AS5) in Q3, and finally responding to water stress with A3—Water Mitigation in Q4.

0.6 - A1 - Baseline
—— A2 - Accelerated

Green
9.54 — A3 - Water
\ Mitigation
~ - A5 - Balianced
1.4 BalaneedR \/ Resilience

0.21
:)' 2 1 T T T T T
Q224 Q224 Q125 Q224 Q425
2024 2024 2025 2025 2025
Time Step t

Figure 1. Agent behavior over two years 2024-2025.

This cyclical pattern demonstrates the agent’s capacity to operationalize IVN-TOPSIS logic
within a dynamic environment. By embedding expert-derived weights into a learning framework, the
agent ensures that strategic decisions remain both data-driven and context-aware, bridging the gap
between static evaluation and adaptive execution in OCP’s industrial planning horizon.

5. Discussion

In this study, we proposed and operationalized a hybrid decision-support framework that
integrates BWM, IVN-TOPSIS, and DRL to support strategic planning under uncertainty. The
framework responds to a persistent limitation in traditional MCDM models: Their static nature and inability
to adapt to evolving operational contexts. While researchers have applied BWM and TOPSIS variants
independently, such as Amiri et al. [39] for consistent expert weighting and Alshamrani et al. [40] for
entropy-based ranking, these models remain temporally rigid and structurally closed. By embedding
IVN-TOPSIS outputs into a DRL agent, this framework introduces a dynamic feedback loop between
expert-defined priorities and real-time performance signals, aligning with recent calls for hybrid,
uncertainty-aware decision systems [41-43].

Compared to hybrid MCDM-AI approaches, the proposed model offers several methodological
advancements. For instance, Tronnebati et al. [44] combined fuzzy AHP with machine learning to
optimize supplier selection, yet their framework lacked interpretability and did not incorporate
real-time recalibration. Similarly, Yan et al. [45] applied DRL to vehicle routing but focused solely on
throughput optimization, omitting strategic criteria weighting. In contrast, this framework integrates
IVN-TOPSIS-derived weights into the DRL reward function, ensuring that the agent’s decisions reflect
operational performance and strategic alignment. This dual-layered logic enables the agent to prioritize
high-impact domains such as energy and emissions while remaining responsive to emergent stressors
like port delays or water scarcity.

The dominance of the Energy performance group (C1), consistently ranked highest across [IVN-TOPSIS
and reinforced through DRL reward signals, aligns with findings from decarbonization-focused studies
in industrial planning [46,47]. However, unlike prior models that rely solely on static entropy or expert
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weighting, the proposed framework enables the agent to recalibrate its priorities based on evolving
indicators such as CO: intensity, renewable share, and energy cost. This dynamic responsiveness is
particularly evident in the agent’s behavior over the 2024—2025 horizon, where strategic shifts from
A2—Accelerated Green to A4—Logistics Surge and A3—Water Mitigation reflect real-time
adaptation to operational stressors. Such transitions demonstrate the robustness of the hybrid approach
in capturing expert-defined priorities and emergent system dynamics; an advancement over static
MCDM models that lack temporal sensitivity or feedback integration.

Practically, the consistent prioritization of Energy performance (C1) and Environmental impact (C2)
has direct implications for OCP’s investment and policy focus. The agent’s repeated selection of
A2—Accelerated Green during high-emission periods suggests that decarbonization levers are not only
strategically dominant but also operationally actionable. Similarly, the emergence of A4—Logistics
Surge in response to corridor delays highlights the need for infrastructure resilience and port-specific
planning. These insights contribute to resolving ongoing debates in the literature about the trade-off
between environmental and logistical priorities in industrial supply chains [48,49], showing that a
hybrid Al framework can balance both through adaptive learning and multi-criteria sensitivity.

To ensure methodological rigor, the BWM phase involved structured input from 12 domain
experts at OCP, spanning energy systems, logistics, environmental engineering, and strategic planning.
This multi-disciplinary panel ensured that sub-criteria were not only operationally relevant but also
empirically validated. Compared to traditional AHP or fuzzy weighting methods [50,51], BWM ofters
superior consistency and lower cognitive load, particularly in industrial contexts with high indicator
interdependence. The filtering of low-signal sub-criteria prior to IVN-TOPSIS aggregation enhances
the interpretability of the DRL agent’s reward function, which remains constrained by the retained
structure and is recalibrated periodically to reflect updated evaluations. This layered rigor distinguishes
the framework from recent hybrid models that combine MCDM with Al but lack transparent
traceability or stakeholder alignment.

6. Conclusions

In this study, we introduced a hybrid decision-support framework that integrates the BWM,
IVN-TOPSIS, and DRL to enable adaptive, uncertainty-aware strategic planning. By embedding
expert-derived priorities into a learning agent, the framework transitions from static evaluation to
dynamic decision-making, aligning with real-time operational signals and evolving stakeholder needs.
The results confirm Energy performance as the most influential strategic criterion group, consistently
prioritized across both IVN-TOPSIS rankings and DRL agent behavior. This convergence reinforces
the robustness of the methodology in capturing expert judgment and emergent system dynamics.

The core contribution lies in bridging multi-criteria decision modeling with reinforcement
learning, offering a transparent, interpretable, and empirically grounded system that evolves with data.
Unlike prior approaches that treat MCDM outputs as fixed inputs to optimization engines, the proposed
framework preserves auditability while enabling continuous recalibration. This addresses a critical gap
in industrial decision-making under uncertainty, namely the inability of static models to respond to
operational volatility, data drift, or shifting strategic priorities.

Practically, the agent’s ability to shift between strategies such as Accelerated Green, Logistics
Surge, and Water Mitigation demonstrates its utility for real-world planning, especially in contexts like
OCP where energy, emissions, and infrastructure interact dynamically. The agent’s behavior over
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the 20242025 horizon reflects a nuanced understanding of multi-criteria trade-offs, with transitions
driven by reward signals linked to CO: intensity, port delays, and water stress. These findings suggest
that hybrid Al frameworks can support not only strategic prioritization but also tactical responsiveness,
an essential capability for industrial actors navigating complex, multi-lever environments.

However, several limitations must be acknowledged. First, the initial BWM phase, while structured
and expert-informed, remains sensitive to cognitive bias and framing effects. Although neutrosophic
logic introduces tolerance for uncertainty and indeterminacy, it does not eliminate subjectivity in
linguistic assessments. Second, the DRL agent’s performance is contingent on the quality, frequency,
and granularity of real-time data streams. In environments with incomplete or delayed data, the agent’s
learning trajectory may diverge from optimal policy paths. Third, the framework assumes a single-
agent architecture and does not explicitly model inter-agent coordination or stakeholder negotiation,
which may be critical in multi-actor industrial ecosystems.

To address these limitations, future research could explore several extensions. One promising
direction involves the integration of ensemble expert weighting mechanisms, combining BWM with
entropy or Bayesian updating, to reduce bias and improve robustness. Another avenue is the
deployment of multi-agent DRL architectures, enabling decentralized decision-making and
coordination across supply chain nodes, production units, or governance bodies. Additionally,
embedding stakeholder feedback loops into the learning process could enhance legitimacy and
responsiveness, particularly in sectors where social license and community engagement are pivotal.
Application domains such as water governance, urban logistics, and renewable energy transitions offer
fertile ground for testing the framework’s scalability and adaptability under diverse constraints.
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