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Abstract: Amid growing concerns about climate change and efforts to reduce greenhouse gas
emissions, electric vehicles (EVs) have become a central component in achieving sustainable
transportation. Advances in technology and supportive policies have driven the rise of Battery Electric
Vehicles (BEVs), Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and
Fuel Cell Electric Vehicles (FCEVs), which offer lower emissions and improved energy efficiency.
However, their success depends on accurate powertrain modeling and intelligent energy management.
In this paper, we reviewed key modeling approaches for EV design, simulation, and control, covering
individual components, such as batteries, fuel cells, motors, and converters, and full system-level
energy-flow models. Furthermore, we examined energy management strategies, ranging from
straightforward rule-based approaches to advanced, real-time optimization algorithms. These
strategies are essential to improving driving range, enhancing system reliability, and extending the
lifespan of energy storage components.

Emphasis is placed on balancing model accuracy with computational efficiency, especially for
real-time control applications. We also highlight several pressing challenges in EV modeling,
including incorporating thermal and aging effects, addressing uncertainties in battery behavior, and
integrating renewable energy sources for vehicle charging. Additionally, we highlight the increasing
importance of machine learning (ML) and hybrid modeling techniques in improving prediction
accuracy and adaptive control. We employed suitable modeling frameworks for the development of
EVs. Thereafter, we concluded by outlining future directions in EV modeling, including the need for
more adaptive, scalable, and cross-domain simulation environments that reflect the complexity of
real-world applications.



1433

However, due to the high complexity of the modeling frameworks, a comprehensive quantitative
comparison of the electrochemical, mathematical, electrical, and data-driven modeling approaches has
not been well studied. This paper fills the gap by systematically comparing models in terms of accuracy,
computational cost, and relevance to EV design and control.

Keywords: clectric vehicle; hybrid vehicle; fuel cell; modelling

1. Introduction

The rapid development of the lithium-ion battery (LIB) for EVs was driven by advances in
materials chemistry and cell architecture. Lu et al. [1] highlighted the benefits of electrolyte homeostasis
for safety and long-term cycling. Tu et al. [2] provided a complete overview of the evolution of cathode
materials is provided, with particular focus on the increase of energy density from LiCoO: to high-
nickel-manganese-cobalt oxide (NMC) configurations. Lu et al. [3] investigated primary restrictions to
electrode reversibility and ionic conductivity that led to the fabrication of hybrid electrolyte systems.
Wang et al. [4] identified silicon-carbon composites as a key breakthrough for future anodes due to their
high theoretical capacity. Cui et al. [5] also shed light on the chemistry of solid-state batteries and are
considered the foundation for the design of modern solid electrolytes. Zhao et al. [6] and Lee et al. [7]
demonstrated that enhancement of electrode microstructure can directly affect thermal stability and
charge-discharge uniformity. Bai et al. [8] applied electrochemical and thermal simulations to
investigate the effect of material progress on system-level efficiency, while Cabello et al. [9] reviewed
advanced diagnostic methods linking material degradation to electrochemical impedance behavior.

Understanding these events is critical not just for optimizing chemistry but also for building models
that describe how they affect voltage response, material degradation, and safety in the ever-changing
environment of an EV. In the following sections, we address the key advances in chemistry and
materials and make a critical attempt to describe how these events are captured in today’s
modeling techniques.

The choice of cathode material greatly influences the cost and energy density of lithium-ion
batteries. The material-specific properties, such as voltage, cycle life, and specific energy, are the
building blocks for accurate modeling of traction batteries, Plett [10] argued. The CRU Group [11]
noted that evolving industry trends, particularly the shift toward high-nickel chemistries, directly affect
battery performance and calibration procedures. These findings provide a proof point of how
advancements on a material level drive the development of realistic modeling frameworks for electric
car energy systems. Table 1 summarizes the principal electrochemical characteristics of prevalent
lithium-ion cathode chemistries utilized in EV battery modeling, encompassing specific energy, cycle
life, and operational voltage ranges.

The energy storage devices used for EVs are mostly based on NMC and lithium nickel cobalt
aluminum oxide (NCA) chemistries due to their good trade-off between energy density and stability.
Camargos et al. [12] suggested that NMC cells are more thermally stable and safer under normal
operating conditions. In contrast, NCA types have higher specific energy but pose greater challenges
for thermal management and financial viability. Miao et al. [13] demonstrated that lithium iron
phosphate (LFP) batteries exhibit longer cycle life and better thermal stability, making them
appropriate for harsh, high-temperature environments. Liu et al. [14] reported that the 3D
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microstructural electrochemical lithium manganese oxide (LMO) cathode exhibits reduced internal
resistance and enhanced power capability, which are critical for real-time model validation. In sum,
these results demonstrate the effects of different cathode chemistries on electrochemical performance
and on the parameterization accuracy of battery modeling schemes used for EV simulation and control.

The Evolution of LCO Chemistry Energy-wise, specific high power and its rapid delivery were
validated by Wang et al. [15], which made it dominant in the early consumer electronics and small
electric car (EC) applications. However, they also identified thermal instability and safety risks during
high-load operation, highlighting the importance of accurate thermal-electrical modeling to predict
overheating. Wu et al. [16] and Battery University [17] reviewed lithium titanate oxide (LTO) -based
anodes as a safer alternative to graphite, with higher thermal stability and an exceptional cycle life of
more than 4000 cycles. Even though research has shown reduced specific energy for LTO chemistry,
for long-duration applications in rail systems, for instance, its uniform thermal behavior makes it an
attractive candidate when model fidelity and temperature control are crucial. In this context, these
contributions provide the necessary input and define the boundary conditions for realistic
electrothermal simulations of the Li-ion battery.

Table 1. Summarizes essential cathode chemistries commonly parameterized in
electrochemical and electrical battery models for EV simulation.

Symbol Specific energy (Wh/kg) Number of cycles Voltage (V)
NCA 210-250 400-600 3.65

NMC 160-210 1500-2200 3.84.2
LFP 80-130 1500-2200 2.4-2.6
LMO 110-150 400-800 4.1

LCO 140-210 600-1200 3.84

LTO 60-90 4000-6000 2.4-2.6

When determining which battery types are most suitable for a specific application, it is crucial to
consider the unique characteristics of each chemistry. For instance, LTO chemistry is well-suited for
railway applications due to its excellent safety, specific power output, and extended lifespan. Choosing
the most suitable battery type for a particular application requires a thorough understanding of each
chemistry’s unique properties. Railroad and tramway applications favor LTO batteries due to their
exceptional safety, high power output, and extended lifespan [18]. LTO is less feasible for automotive
usage than LFP and NMC batteries, mostly due to its higher cost and lower specific energy [19].
Figure 1 delineates the principal performance attributes of predominant LIB chemistries employed in
EVs, encompassing specific energy, specific power, cost, safety, lifespan, and overall performance.

It is essential to monitor every cell in the numerous modules that comprise a power source’s
overall grid. Each cell operates differently due to variations in temperature, state of charge (SoC), and
state of health (SoH). Maximizing the energy potential of lithium-ion batteries and increasing the
driving range of electric cars depend on their safe and effective maintenance. To establish management
strategies for the battery management system (BMS), models that rely on sample operating conditions
are typically used to predict battery states. The models integrated into the BMS must therefore operate
in real time and with high accuracy. The technical literature has created and reported numerous
electrical, spectroscopy-based, data-driven, mathematical, and electrochemical models. For real-time
monitoring, data-driven, electrical, and electrochemical models can all be employed, but each serves
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a distinct purpose. Since electrical models simplify the battery’s electrical behavior, they help
predict key performance indicators in real time. On the other hand, electrochemical models offer
a more comprehensive understanding of internal chemical processes. Another method for tracking
battery conditions is provided by data-driven models, which use past data to spot trends and
forecast future events.

Specific energy Specific energy

Cost Specific power Cost ( b Specific power

<

Life span Safety Life span Safety

\>

Performance Performance

- 1CO ==LMO — LFP — NMC — LTO

Figure 1. Essential battery chemistries whose characteristics function as inputs for EV
simulation frameworks.

Ahmad et al. [20] demonstrated that electrical models can capture the dynamics of voltage and
current in lithium-ion cells with sufficient accuracy for safety and performance analysis. Cao et al. [21]
reported that including a solid-state process in the electrical equivalent circuit yields more accurate
high-power simulations. Furthermore, Lu et al. [1] demonstrated that multi-RC network models can
reconstruct rapid charging operations, further verifying their suitability for automotive applications.
Chen et al. [22], exploiting this observation, highlighted a trend in industry towards data-driven
electrical models, in which hybrid approaches combine experimental data and equivalent circuit
representations to enhance model calibration and reliability in BMS integration.

Collectively, these studies demonstrate that electrical models offer a better opportunity to monitor
the LIB pack and optimize pack sizing in both EV and electric rail applications. Their combination
of computational efficiency and strong predictive accuracy enables these models to be used for
scalable, real-time management, which is key for future intelligent battery systems.

We thoroughly review the electrical models for characterizing lithium-ion batteries based on the
most recent scientific literature. By emphasizing key approaches for simulating critical characteristics,
such as internal capacity and SoH, we clarify these models’ theoretical underpinnings and real-world
applications. The impact of temperature, charge and discharge cycles, and ambient circumstances on
these parameters will be discussed. Additionally, we critically assess the advantages and disadvantages
of various modeling techniques, ranging from empirical approaches to complex electrochemical
models, evaluating their suitability for practical applications, particularly in the electrification of
transportation networks. This study offers valuable insights into the development of battery technology
and management techniques by examining current case studies. Ultimately, it helps researchers and
practitioners select the most suitable modeling methodologies for their specific requirements.

Overall, the literature reveals a coordinated effort across material design, cell architecture, and
chemical engineering to address the key performance metrics of next-generation EV batteries. The
trend is shifting toward practical validation using industry-scale cells and conditions resembling
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real-world use. As the technology matures, integrating these innovations will be crucial for making
electric mobility more accessible, efficient, and reliable.

The remainder of the paper is structured as follows: In Section 2, we highlight the benefits and
drawbacks of electrical models while outlining several methods for simulating lithium-ion batteries.
In Section 3, we provide simulation results and discuss electric battery vehicles. We then conclude
the paper.

We focus on mathematical and computational modeling of battery chemistries to achieve higher
energy density and shorter charge times. In the remainder of the article, we categorize electrochemical,
mathematical, electrical, and data-driven modeling strategies and compare them on their ability to
relate material behavior to system performance predictions.

The major contributions of this survey are:

(1) To review and categorize the most critical modeling approaches for EV powertrain and battery.

(i1)) To provide a quantitative comparison of electrochemical, mathematical, electrical, and data-
driven models in terms of accuracy, complexity, and applicability.

(ii1)) To relate the surveyed modeling techniques with simulation-based validation for system-level
performance evaluation.

Our goals are motivated by prior work indicating a growing demand for model consistency,
computational efficiency, and real-time controller integration in EV systems.

2. Classification of battery models

We categorize battery models into electrochemical, mathematical, electrical, reduced-order,
spectroscopy-based, and data-driven techniques. This classification is chosen to optimize physical
fidelity, computational expense, and applicability. Electrochemical models are based on fundamental
principles of physics and chemistry and address coupled partial differential equations to represent
charge transport and reaction kinetics within electrodes. Conversely, mathematical models rely on
empirical or stochastic equations that simulate battery behavior at the system level, providing
simplicity at the expense of physical complexity. We outline these characteristics, providing a
systematic framework that helps researchers and engineers select models based on the trade-off among
accuracy, interpretability, and computational requirements.

Battery modeling is the creation of mathematical models to predict how a battery will respond to
specific inputs in terms of its state and output. These models aid in clarifying basic battery behaviors
and predicting performance under a range of operating conditions, as they are based on substantial data
collection and study [23]. Modeling techniques and parameters must be tailored to different purposes.
Battery models can be categorized in various ways, with no strict rules [24]. These models are crucial
for numerous applications, requiring flexible methods and parameters tailored to specific use cases.
The following categories are commonly used to classify battery models:

e Electrochemical

e Mathematical

e Electrical

e Reduced-order electrochemical model
e Based on spectroscopy

e Data-driven
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Battery models may be further classified into the following classes according to their transparency
and comprehensibility:

e  White box models provide an in-depth and clear illustration of the system’s underlying operations.
Understanding how a system of equations, a set of physical laws, or well-known techniques
affects output variables is straightforward. There may be electrochemical and mathematical
models in this area.

e Black box models: These models do not understand or consider the precise underlying
mechanisms or causal links influencing the system's behavior. They provide the system’s inputs
and outputs. As a black box, the system's core operations are kept secret, drawing all attention to
the visible outcomes. This category encompasses data-driven models, including those based on
neural networks (NN).

e  (Gray box models: These versions strike a balance between white-box and black-box variants. It
combines the flexibility and adaptability of black-box models with the transparency and
understandability of white-box models. In addition to unknown or simplified modeled
components, it frequently combines known and explicitly modeled components. This model is
often used when one wants to include specific facts or theoretical limitations in their modeling,
but do not fully grasp the system. This category includes, for example, reduced-order
electrochemical and electrical models.

Electrochemical models describe ion transport and interfacial kinetics in solid electrolytes,
providing insights into dendrite growth morphology, formation, and stability [25]. Mathematical
models enable rapid estimates of capacity and percentage energy efficiency [26]. Electrical equivalent-
circuit models are beneficial for integrating state-space networks (SSNs) into BMS [27]. Model-based
methods predict degradation paths for solid-state chemistries [28]. Spectroscopic models validate
interfacial stability and degradation pathways [29]. Low-order models were developed to decimate
solid-state complexity for large-scale simulations [30].

2.1. Electrochemical models

Although electrochemical models are more sophisticated and require more calculation time,
they delve into the fundamental mechanics and complex physical architecture of battery power
generation. These complex mathematical models are used to comprehend the essential chemical
reactions in batteries. Models of electrochemical batteries offer comprehensive insights into the
microscopic dynamics of electrochemical processes; Fuller, Doyle, and Newman proposed it in the
mid-1990s [31-33]. Electrochemical models commonly utilize the Butler-Volmer equation to
characterize electrode kinetics, establishing a relationship between current density and overpotential
as follows [34]:

j=Jo-{exp [*57] —exp |22 0

where j, denotes the exchange current density, n represents the overpotential, F signifies Faraday’s
constant, R indicates the gas constant, and T refers to temperature. Fick’s law of diffusion frequently
characterizes concentration gradients within porous electrodes:

ac _

= = pV2c )
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Boundary conditions are established at the electrode-electrolyte interface to provide a precise
representation of mass transport. Moreover, charge conservation is maintained by solving coupled
equations for ionic and electronic potentials, thereby ensuring coherence between electrochemical
reactions and current continuity. These formulations are essential in sophisticated models, such as the
Doyle-Fuller-Newman framework, and are especially crucial for solid-state batteries, where ion
transport constraints and interface stability significantly impact performance.

These models use porous-electrode theory to analyze ion diffusion, mass transfer, and distribution
within the battery cell. They thoroughly grasp battery operation by connecting construction
components (such as electrode materials and separator thickness) to electrical properties (such as
voltage and current) and thermal behavior. Nevertheless, there are some difficulties in using
electrochemical models. They require solutions to intricate time-coupled spatial partial differential
equation systems, which necessitate sophisticated numerical techniques and substantial processing
power. Obtaining all the necessary information for accurate modeling can be challenging and costly,
as it requires a thorough understanding of cellular chemistry and the manufacturing procedures
involved. Despite these difficulties, battery behavior may be described with unheard-of precision using
electrochemical models [35]. Although the relationships governing electrochemical models are
complex, techniques have been developed to enable their use in real time, including the single-particle
model (SPM) [36,37]. The SPM is a streamlined method for simulating the electrochemical behavior
of lithium-ion batteries. It facilitates computations and simulations by representing each active
electrode particle as a distinct object. This model enables rapid calculation of electric variables,
including voltage, current, and SoC, by describing ion diffusion and chemical reactions during
charging and discharging. Despite its simplicity, the SPM is often employed in commercial BMSs and
effectively captures the dynamics of Li-ion cells.

2.2. Mathematical model

System-level behavior, including battery runtime, efficiency, and capacity, is predicted using
mathematical models that use empirical equations or stochastic techniques. These models can be
categorized into two types: Stochastic and empirical models.

Empirical models employ straightforward equations to explain various battery phenomena.
Their major advantages are their minimal complexity and real-time parameter detection, albeit with
a 5% to 20% margin of error, which makes them suitable for specific applications. One prominent
example is the kinetic battery model (KiBaM), developed by Manwell and McGowan [23,38,39] and
based on chemical kinetic processes. It provides a clear illustration of how batteries work. In the
KiBaM model, the battery charge is divided into two compartments: The accessible charge well and
the restricted charge well (Figure 2). A fraction of capacity c is stored in the limited charge well y(t),
while the remaining portion (1-c) is assigned to the available charge well x(t).

While the limited charge well can only transfer electrons to the accessible charge, the available
charge well provides electrons directly to the load i(t). Through a “valve” with set conductance k,
charge moves from the limited to the accessible charge well. In addition to this variable, the height
differential between the two wells affects the rate at which the charge moves between them. The
following provides the two wells’ heights:

AIMS Energy Volume 13, Issue 6, 1432-1462.
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Figure 2. The charge-transfer dynamics between the available and bound energy wells,
which determine the battery’s state-of-charge behavior throughout the simulation, are
depicted schematically in the Kinetic Battery Model.

hy = 3)
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Modern batteries exhibit a different discharge profile than the one shown in the equation above.
The two-well variant of the KiBaM can be used, though, if battery life is more important than discharge
voltage, since it accurately reflects both charging capacity and recovery effect [23]. Conversely,
discrete-time Markov chains serve as the foundation for stochastic models. These models can maintain
low complexity and short simulation times while achieving higher accuracy than empirical models.
Based on the battery’s physical attributes, these models describe its behavior using probability and
concentrate on the recovery effect. Chiasserini created the first models of stochastic batteries [40]. In
its simplest form, the battery is depicted in Figure 3 as a time-discrete Markov chain with N + 1 states,
numbered 0 through N. Based on the battery’s physical attributes, these models describe its behavior
using probability and concentrate on the recovery effect. Initial Markov-based methodologies for
estimating battery performance and longevity were presented by Panigrahi et al. [41], use stochastic
modeling to forecast battery lifespan in mobile embedded systems subjected to fluctuating
load circumstances.

The most straightforward depiction of the battery is a time-discrete Markov chain with N + 1
states, numbered O through N, as shown in Figure 3. The theoretical capacity of the battery (T > N)
equals the number of T charge units [42]. Mathematical models are useful for applications with stable
operating conditions; however, they are less effective at predicting battery behavior in real time.
Although these models are computationally efficient and based on simple equations, their accuracy
depends on the parameters used; therefore, they must be properly calibrated and verified against real
data. Moreover, their development can be complex and requires substantial experimental data, which
may not be readily available.

AIMS Energy Volume 13, Issue 6, 1432-1462.
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Figure 3. A Markov chain model, which describes probabilistic state transitions
characterizing charge, discharge, and rest states in EVs operation, is used to anticipate
battery behavior.

2.3.  Electrical models

LIB electrical models mimic cell behavior by optimizing component values based on laboratory
test data to closely resemble the actual cells’ current and voltage responses. These models function
well when tested, but may experience issues when not subjected to rigorous testing. Electrical models
that employ resistors, capacitors, and voltage sources to represent battery behavior are well known for
their simplicity and effectiveness. Due to their rapid simulation rates and low computing costs, they
are ideal for real-time applications in the BMS. However, because electrical models provide little
information about the internal electrochemical states of batteries, they cannot accurately forecast
output behavior. When used outside of tested settings, this simplification may result in errors.
Furthermore, many resistor-capacitor (RC) networks may be required to achieve high accuracy, which
would complicate the model and potentially reduce computing efficiency. Error drift caused by
parameter SoC dependence is one issue with electrical models. However, several techniques (such as
artificial neural networks (ANNs), Kalman Filters, Coulomb Counting, etc.) can accurately estimate
SoC in electrical models.

2.4. Reduced-order electrochemical model

Electrochemical models are appropriate only during the battery design stages because
determining all the required parameters is complex and challenging. Model order reduction techniques
can be employed to simplify the electrochemical model, yielding reduced-order models (ROMs) that
are resilient and computationally efficient. A finite-dimensional rational transfer function,
minor-degree differential equations, and independence from some factors deemed insignificant are
common characteristics of ROMs. LIB modeling and management rely heavily on ROMs, which
successfully balance computing efficiency and complexity. One of their major advantages is their
capacity to reduce the underlying electrochemical processes into a more understandable form. This
simplification enables faster simulations, which is especially advantageous for real-time applications.
ROMs’ lower processing requirements enable more frequent updates and battery-state monitoring,
which improve operational safety and efficiency, particularly in dynamic environments such as those
found in EVs and other applications [43]. Furthermore, ROMs can facilitate the integration of battery
models with control systems, thereby enhancing the system’s ability to adapt to changing operating
conditions. They are also adaptable across applications, from renewable energy storage solutions to
electric cars, thanks to their flexibility with multiple battery chemistries and topologies. This
adaptability enables customized solutions that, depending on particular use cases, might maximize
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energy management. ROMs do have certain inherent drawbacks. The primary concern is that
simplifying complex dynamics may lead to a loss of accuracy. Inaccurate forecasts and subpar
performance might result from the ROMs inability to accurately capture the battery’s essential features,
such as nonlinear responses to charge and discharge cycles. ROMs cannot accurately record the
performance of cells that have been cycled at high C-rates and/or temperatures, as well as those of
older cells. Moreover, a ROM’s effectiveness depends on the quality of the full-order model on which
it is built. The resultant ROM might not offer trustworthy insights if the full-order model is not fidelity-
rich, especially in edge instances or harsh operating environments. Furthermore, ROMs must be
carefully calibrated and validated against experimental data to guarantee their dependability as
electrical models. These activities may require numerous resources, and repeated modifications may
be necessary if model forecasts and actual performance diverge. Last, although ROMs are beneficial
for increasing battery analysis speed and efficiency, their use must be handled carefully, with their
drawbacks recognized and controlled [44].

2.5. Electrochemical impedance spectroscopy

The dynamic behavior of lithium-ion batteries can be better understood through electrochemical
impedance spectroscopy (EIS), which measures impedance over a range of frequencies. Spectroscopic
models in battery research primarily involve fitting and interpreting experimental spectra to derive
functional parameters. EIS is frequently used to model equivalent-circuit components, including
resistances, constant-phase elements, and Warburg impedances, which represent charge-transfer
resistance, double-layer capacitance, and ion diffusion, respectively. X-ray diffraction (XRD) provides
information on phase evolution and lattice parameters, which can be modeled to connect structural
dynamics to electrochemical performance. Nuclear magnetic resonance (NMR) offers direct insights into
the mobility and diffusion pathways of lithium ions in solid electrolytes. These spectroscopy-informed
models provide three primary contributions:

(i) Parameterization: Through the provision of empirically based inputs to electrical and
electrochemical models.

(i1) Validation: By comparing experimental spectra to the simulated output of the model as a
complement.

(i11) Insight: By understanding interfacial stability, surface degradation, and ion transport mechanisms
that are difficult to record by theory alone.

EIS frequently identifies three frequency areas: High, mid, and low. Each of these regions
corresponds to distinct battery characteristics. A Nyquist plot, where resistance is plotted against
reactance, is frequently used to illustrate the impedance data. After applying an AC input current, the
AC voltage is analyzed using Fast Fourier Transform (FFT) to calculate the impedance. Randle’s
Circuit, which comprises elements such as bulk resistance (Rb), surface film layer resistance and
capacitance (RSEI, CSEI), charge transfer resistance (Rct), double layer capacitance (Cdl), and
Warburg impedance (Zw), is a widely used method in LIB modeling. As shown in Figure 4, these
components correlate to different electrochemical reactions within the battery. Rb is the cell’s bulk
resistance, which explains the electrical conductivity of the electrodes, separator, and electrolyte.
High-frequency impedances are linked to. RSEI, CSEI, both resistance and capacitance, are properties
of the surface film layer on the electrodes, which includes the solid electrolyte interphase (SEI) layer.
The capacitance at the interface between the electrode and the electrolyte is represented by the
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double-layer capacitance (Cdl). On the other hand, the resistance that develops during charge transfer
across this contact is indicated by the charge transfer resistance (Rb).

RO Cdl

Rb )| ! A
]
Rsei Rct

Figure 4. The dynamic voltage response of lithium-ion batteries under load circumstances
is simulated using an equivalent circuit approximation of Randle’s model.

These two components explain the mid-frequency response. The diffusion of lithium ions
between the active material and the electrolyte is indicated by the Warburg impedance Zw, which
appears at extremely low frequencies as a line with a 45° slope. An inductance is occasionally added
in series with the bulk resistor to explain the positive reactance observed at high frequencies [45].
The effects of this Warburg impedance may also be replicated by several resistor-capacitor (RC)
networks linked in series [46]. A fixed number of RC pairs is frequently enough to operate the circuit
correctly, even if a perfect equivalent requires an infinite RC pair network within a specific frequency
range. Moreover, because it becomes apparent only at extremely high frequencies, the double-layer
capacitance Cdl is commonly ignored.

By analyzing impedance characteristics, EIS provides essential insights into the aging,
degradation, and performance of batteries. Li-ion cell health may be assessed using impedance models.
Moreover, while an increase in Rsei and Csei implies an expansion of the solid electrolyte interface, a
rise in Rct indicates a loss of lithium from the cell. Changes in Warburg impedance frequently imply
a decrease in active material [47]. However, because it always necessitates the deployment of a signal
generator, this approach is challenging to use in real-time applications.

2.6. Data-driven models

Numerous data-driven approaches have been studied for predicting battery life and degradation
trajectories. Pastor-Fernandez et al. [48] proposed a diagnostic scheme that compared EIS with
incremental capacity analysis to identify degradation mechanisms that affect the life cycle. Liu et al. [49]
proposed a layered machine-learning framework that directly leveraged state-of-health data for online
prediction and demonstrated superior adaptability to actual duty cycles. Lucu et al. [50] proposed
self-adaptive aging models that continuously recalibrate key parameters using historical cycling data,
thereby substantially improving long-term predictive performance. Liu et al. [51] applied probabilistic
autoregressive and Bayesian inference methods to quantify prediction uncertainty and enhance the
trustworthiness of remaining useful life (RUL) predictions.

AIMS Energy Volume 13, Issue 6, 1432-1462.
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This method is suitable for real-time modeling since high precision is necessary for effective
performance management and monitoring in EV systems. Data-driven models utilize large datasets to
provide precise forecasts, thereby enhancing decision-making in dynamic settings. However, the
inability to grasp the underlying network processes that produce the output findings is a significant
drawback of data-driven models. This lack of transparency might make it difficult to detect problems
or further enhance the model, as it obscures how different elements affect battery performance.
Furthermore, NN have significant data requirements for training; to produce a strong, reliable model,
they require large, high-quality datasets. The requirement for comprehensive data collection might be
a deterrent, especially for new applications where these datasets might not be easily accessible.
Figure 5 shows the overarching workflow of the data-driven architecture for forecasting battery
parameters and residual usable life . The procedure commences with model initialization and database
specification, followed by parameter estimates and evaluation. The calculated error is assessed
iteratively until a predetermined accuracy threshold is reached.

Start

Normalization and
standardization of

Initializaing
weights and —)

battery data training
No
Initialization of err<e J
model parameters
Yes
Architecture and
database Testi
definition esting
Parameter
estimation
End

Figure 5. Block diagram for predicting battery parameters and RUL.

Developments in data-driven modeling go beyond simple regression. NNs are widely used for
SoC and SoH estimation under complex duty cycles, achieving significant improvements in estimation
accuracy [52]. Gaussian process regression (GPR) has also been employed to capture nonlinear
interactions and provide prediction uncertainty, which is extremely helpful in evaluating battery
reliability [53]. Developments in reinforcement learning (RL) algorithms have been applied to energy
management, enabling adaptive, real-time decisions under dynamic driving conditions [54].

Despite the improvement, data-driven approaches face long-lasting challenges. The lack of data
often limits their applicability, especially for solid-state batteries, where long-term cycling and
interfacial degradation data are insufficient. An interpretable representation is a crucial constraint, as
NNs and deep learning models in general often act as “black boxes” with limited physical intuition.
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Generalizability is limited because the models trained on specific chemicals or cycles may not transfer
well to other systems. Possible negative features of solid-state battery technology, such as complex
ion conduction mechanisms and unstable interfaces, exacerbate these problems. Therefore, hybrid
models that combine ML with physics-based constraints are increasingly advocated to ensure both
predicted accuracy and physical interpretability [55].

2.7. Real-world scenarios for different battery models

Depending on the complexity and amount of detail considered, the numerous models used to
depict Li-ion batteries have unique applications in various industrial and scientific contexts. The
electrochemical model is widely used in the design and optimization of battery cells. To create new
cells with cutting-edge features, this type of model is used to mimic intricate electrochemical processes,
such as the degradation of the active material, and it provides a comprehensive understanding of the
chemical reactions within the battery [56]. Mathematical models are effective when operating
conditions are stable or standardized; however, they are less suitable for dynamic and variable
environments due to their inherent simplicity [57].

In contrast, electrical models are commonly utilized in stationary storage and traction applications,
as they focus on the battery’s electrical characteristics such as voltage and current, making them well-
suited for systems requiring high operational stability [58]. For applications requiring rapid and
efficient simulations, such as real-time battery management systems (BMS), low-order models are
often preferred. Many commercial BMS solutions integrate these models alongside electrical ones. In
advanced research, particularly in techniques such as electrochemical spectroscopy, multiple models
are employed to study the battery’s dynamic response across various frequencies [59]. Additionally,
with advancements in artificial intelligence (AI) and ML, data-driven models have become
increasingly popular for monitoring performance and predicting battery life [60]. A comprehensive
overview of these models is presented in Table 2.

Table 2. Battery model applications.

Model Applications

Electrochemical used in the design of cells

Mathematical Only suitable for situations of continuous operation
Electrical Energy storage devices and electric cars

Reduced order BMS and real-time control systems

Spectroscopy Analyze how dynamic behavior changes with frequency.
Data-driven Predicting battery life and tracking performance

2.8. Future trends and limitations

Recent developments in Li-ion battery modeling have yielded unique trends tailored to specific
industrial needs. To accurately forecast battery performance, advanced electrochemical models that
incorporate charge and mass transfer, as well as chemical reaction analysis, are becoming increasingly
prevalent [61]. Differential equations and other mathematical and simulation models are being revised
to reflect dire situations better. Data-driven models are more dynamic and responsive because they
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anticipate and evaluate battery performance using ML techniques [62]. However, there are serious
issues with these new trends.

Advanced electrochemical models may not be as valuable in commercial contexts, as they require
extensive experimental data and a thorough understanding of the underlying processes. However,
real-time applications cannot use mathematical and simulation models due to their complexity and
high processing resource requirements. Despite its intrigue, data-driven models have fundamental
limitations. The quantity and quality of available data determine the effectiveness of prediction models.
The risk of overfitting and inaccurate predictions increases when representative data is lacking.

NNs and other models based on complex algorithms operate as “black boxes,” making it difficult
to understand the underlying mechanics of predictions. New chemistries and technologies can be
complex for data-driven models to adapt to, leading to expensive, time-consuming training and
validation procedures. Research attempts to develop hybrid approaches combining data-driven and
physical models to address these issues and improve prediction understanding and accuracy. The
limitations of data-driven models may be overcome by hybrid approaches to battery modeling, which
might also encourage advancements in Li-ion battery technology [60].

2.9. Comparison and interplay among models

When methodologies are integrated rather than used independently, for example, spectroscopy-based
techniques such as (EIS) and (XRD), can provide experimental data to calibrate parameters in
electrochemical models. Data-driven techniques, such as NNs and Gaussian processes, can function
as surrogate models for reduced-order or mathematical frameworks, enhancing simulation speed while
maintaining precision. Electrical equivalent-circuit models, although computationally efficient, are
frequently parameterized using data obtained from electrochemical or spectroscopic sources, ensuring
that practical control-oriented models are physically grounded. ROMs serve as intermediaries,
converting intricate physics into formats appropriate for extensive simulations or embedded devices.

Table 3 provides a comparative analysis of the primary battery modeling methodologies for their
standard inputs, outputs, degree of interaction with other models, and breadth of application. It
delineates the distinctions among electrochemical, mathematical, electrical, and ROMs concerning
their data requisites, anticipated variables, and appropriateness for vehicle simulation and control.

Table 4 presents a quantitative synthesis of representative modeling frameworks derived from the
literature to enhance the comparative study. These metrics, accuracy, computational cost, and
parameter dependency, underscore the practical trade-offs across models in real-world EV simulations.

Table 4 presents quantitative results showing distinct trade-offs among modeling frameworks in
terms of accuracy, computational speed, and parameter dependence. Electrochemical models have
high accuracy (95-99%) and are thus best suited for material-level design, degradation studies, and
validation in lab-controlled environments. However, their computation time, which ranges from
minutes to hours, makes them unsuitable for real-time or embedded system applications. On the other
hand, electrical and ROMs provide an appropriate trade-off between accuracy and speed, since their
results can be obtained within milliseconds to seconds; hence, they are applicable in BMS that require
control-centric applications. Data-driven models, though a bit less precise, offer the fastest calculations
with maximum flexibility, enabling condition estimation and life prediction to be conducted in real
time, provided sufficient datasets are available.
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Table 3. A comparative framework of the main battery modeling techniques that displays
their input and output variables as well as their degrees of integration with electric car

simulation systems.

Model type Typical inputs Outputs Integration with Application scope
other models
Electrochemical [37] Material properties,  Voltage, SoC, Validated by Physics-based design
kinetics degradation spectroscopy; & optimization
informs ROMs
Mathematical [38] Empirical Capacity, efficiency =~ Benchmarked Quick approximations
parameters against

Electrical [39]

Reduced-order [42]

Data-driven [40]

Spectroscopy-based [41]

R-C elements,

impedance data

Simplified PDEs,

system inputs

Experimental

datasets

EIS, XRD, and
NMR experimental
data

Terminal voltage,

dynamics

SoC/SoH estimation

Predictions, lifetime

estimation

Interfacial stability,

resistance

electrochemical &
data-driven models
Parameters extracted
from
EIS/Electrochemical
models

Derived from
electrochemical
models, linked to
ML surrogates
Enhances
electrochemical &
reduced-order
predictions

Supplies inputs to
electrochemical &

electrical models

BMS integration, real-

time control

Large-scale
simulations, control

systems

Prognostics,
degradation

forecasting

Validation, parameter

extraction

Table 4. Quantitative comparison of battery modeling frameworks in terms of accuracy,
computational demand, and application scope.

Data-driven

(ML/AI)

85-98% (depends

on data)

capable)

Very Low (real-time)

datasets

High-requires large

Model type Accuracy range Computation time Parameter dependency Representative application
Electrochemical 95-99% High (minutes—hours) Very High Detailed design, thermal & degradation
studies
Mathematical 80-90% Medium (seconds— Moderate Analytical evaluation, approximations
minutes)
Electrical 85-95% Low (milliseconds— Moderate BMS and real-time control
seconds)
Reduced-order ~90% Very Low (real-time Derived from EC models ~ Embedded simulation

SoH/SoC prediction, lifetime estimation
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This numerical evaluation shows that model selection should depend on the application domain:
High-fidelity electrochemical models are essential for research and design, while reduced-order and
data-driven methods are more applicable for real-time decision-making, diagnostics, and control.
These trade-offs illustrate the need for a hybrid or multi-level modeling approach that combines the
accuracy of physics-based models with the flexibility of data-driven models.

2.10.  Critical evaluation of modeling categories

A substantive comparison of modeling categories necessitates a thorough evaluation of their
distinct strengths, limitations, and practical applications. Electrochemical models offer excellent
physical accuracy and a comprehensive mechanistic understanding; however, they are computationally
intensive and are better suited to material design and validation than to real-time control.
Mathematical models, although straightforward and computationally efficient, depend significantly on
empirical correlations and may exhibit limited generalizability when chemistries or operational
circumstances vary. Electrical equivalent-circuit models (ECMs) are widely used in BMS due to their
simplicity and speed; however, they often fail to represent degradation mechanisms or internal states
accurately. ROMs achieve a compromise by condensing physics-based models into manageable forms;
however, this simplification inevitably compromises accuracy in harsh operating conditions.

Data-driven methodologies exhibit robust predictive efficacy and adaptability, proficient at
revealing intricate patterns in experimental data. Nonetheless, they require extensive, high-quality
information, and their ‘black-box’ nature frequently limits interpretability. Spectroscopy-based models
offer distinctive insights into interfacial phenomena and material stability; nevertheless, they are
limited by the requirement for specialized instrumentation and lack scalability for real-time
applications. By integrating various viewpoints, researchers can more effectively align modeling choices
with specific applications, spanning laboratory-scale material evaluation to embedded real-time control
in EVs.

Table 5. Strengths, limitations, and use cases of major battery modeling frameworks.

Model type Strengths Limitations Typical use cases
Electrochemical [37] High physical fidelity; detailed mechanistic =~ Computationally heavy; Material design,
insights complex parameterization  degradation studies
Mathematical [38] Simple; computationally efficient Low generalizability; Quick estimation,
empirical only feasibility studies
Electrical [39] Fast; widely used in BMS Cannot capture BMS integration, control
degradation mechanisms algorithms
Reduced-order [42] Balance between accuracy and efficiency Loses detail under Large-scale simulations,
extreme conditions real-time apps
Data-driven [40] Strong predictive power; adaptable Requires big data; limited ~ Lifetime prediction, SoH
interpretability estimation
Spectroscopy-based [42] Direct insight into interfacial processes Needs specialized Validation, material
equipment; not real-time characterization

Table 5 delineates the primary battery modeling frameworks, highlighting their advantages,
drawbacks, and common applications. Electrochemical models offer significant physical precision but
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require substantial computational resources. Mathematical and electrical models are computationally
efficient and extensively utilized in estimate and BMS applications, while they provide limited
physical understanding. ROMs optimize accuracy and efficiency, whereas data-driven models
exhibit robust prediction capabilities but necessitate extensive datasets and lack interpretability.
Spectroscopy-based models are mostly employed for validation and material characterization.

2.11.  Validation of modeling approaches

The credibility of any modeling technique in electric car powertrain research depends
significantly on validation workflows that ensure alignment with experimental data and practical
performance. Validation of electrochemical models typically involves comparing voltage-current
predictions with galvanostatic cycling profiles or impedance spectra, often following the
Doyle-Fuller-Newman framework [63]. Electrical equivalent-circuit models are corroborated through
parameter fitting via electrochemical impedance spectroscopy (EIS) or pulse response testing, ensuring
that simulated transient dynamics align with experimental Nyquist plots and time-domain
responses [60]. ROMs are typically evaluated by juxtaposing their reduced dynamics with high-fidelity
electrochemical simulations and connecting the findings with laboratory cycle measurements [63].
Data-driven methodologies require meticulous validation using training/validation/test data splits, cross-
validation, and benchmarking against publicly available datasets to mitigate overfitting [52].
Spectroscopy-based models, though fundamentally experimental, serve as validation tools, with EIS,
XRD, and NMR providing definitive physical signatures that connect fitted spectral parameters to
interfacial stability and transport characteristics [64]. Collectively, these procedures underscore that
stringent experimental correlation, via published datasets, impedance spectra, or operando diffraction,
is essential for validating model credibility in solid-state battery and EV applications.

3. Simulation results and discussions of battery electric vehicles

While we have classified and critically reviewed modeling frameworks, it is also important to
showcase their straightforward contributions to concrete engineering outcomes. Electrochemical and
spectroscopy models are playing a significant role in material selection, pinpointing electrode and
electrolyte chemistries that exhibit good transport and stability. Spectroscopy-informed models benefit
interface design by enabling training and identification of degradation at the electrode-electrolyte
interface, which is crucial for solid-state batteries. Lower-order and equivalent circuit models (ECM)
are especially advantageous for battery safety, since they can quickly calculate internal states and
predict the possibility of thermal runaway in real time at early-stage systems. Data-based models, often
integrated into a BMS, enhance EV capabilities by optimizing charge-discharge operations, increasing
durability, and enabling predictive maintenance. Cumulatively, these contributions illustrate the value
of modeling for improved theoretical understanding and practical applications in material innovation,
safety engineering, and performance improvement in EV  systems.

To evaluate the performance of BEVs, simulations were conducted using MATLAB’s Simscape
environment, leveraging a pre-built electro-thermal vehicle model. This model integrates the major
components of an electric powertrain, including a battery pack, dual electric motors, an inverter, a power
electronics controller, a thermal management system, a braking system, a DC/DC converter, and a
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vehicle control unit (VCU). It also features modules to simulate the effects of ambient temperature, driver
behavior, and auxiliary loads such as Heating, Ventilation, and Air Conditioning (HVAC) .

The model’s battery pack comprises ten modules, each containing eleven parallel cell sets
connected in series. Each parallel set consists of three lithium-ion cells in series, totaling 330 cells per
pack. The battery has a total capacity of 40 kWh. It delivers a nominal voltage of 400 V. Its
configuration is designed to support front-wheel drive by default, with a secondary rear motor enabling
boost and all-wheel drive modes when required.

Battery size and weight directly affect vehicle range and energy consumption. For the gravimetric
analysis, a fixed energy density of 80 Wh/kg was assumed, meaning that for every 80 Wh increase in
capacity, 1 kg is added to the battery mass. Similarly, the battery’s volume increases proportionally at
a rate of 0.04 meters per kWh. These values were used to simulate the impact of changes in battery
capacity on total vehicle mass, length, and energy demand per kilometer.

The simulation also incorporated standard driving cycles, including New European Driving
Cycle (NEDC), the Worldwide Harmonized Light Vehicle Test Cycle (WLTC), and the Environmental
Protection Agency’s (EPA’s) Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel
Economy Driving Schedule (HWFET) procedures. These cycles help represent urban, highway, and
mixed driving conditions in a controlled manner. Each drive cycle is characterized by a specific
duration, speed profile, and maximum velocity, enabling a realistic estimate of energy consumption.

Environmental conditions were varied to assess the vehicle’s thermal performance and energy
usage in hot and cold climates. In cold-start conditions (-5 °C), battery and cabin heating introduce
significant auxiliary loads, while in hot conditions (35 °C), cooling demands similarly reduce the
available driving range. The simulations revealed that non-propulsion energy needs, particularly
HVAC and battery thermal regulation, can substantially lower the effective range, especially compared
to the rated range under standard laboratory conditions (typically at 25 °C).

Furthermore, the battery’s initial SoC and driving profile, aggressive versus relaxed, had a notable
effect on total energy consumption. Aggressive acceleration and high-speed driving patterns increased
power demand, reducing range and overall efficiency.

These results underscore the importance of accurately modeling real-world variables in BEV
simulation. Factors such as ambient temperature, battery thermal management, auxiliary loads, and
driving style all play a critical role in shaping the vehicle’s performance. Consequently, system-level
modeling that integrates thermal, electrical, and mechanical domains is crucial for evaluating BEVs
under realistic conditions and informing design decisions to enhance efficiency and reliability.

As shown in Figure 6, this model uses a BEV plant model, an electrothermal system
encompassing the entire vehicle. The battery pack is modeled using Simscape Battery Pack Builder
and has two electric motors. The primary drive is at the front, while the boost and all-wheel-drive
modes are at the rear. Drive cycles are used to simulate the performance of an EV under various driving
conditions, as shown in Figure 7.
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Figure 6. Block diagram for the EV plant model.

Motion

Velocity [km/h]
=
T

A

500

1000 1500
Time [s]

2000 2500

Figure 7. Vehicle speed and load variations are modeled during BEV performance
simulation using a Simulink motorcycle source.

Since electric cars typically require a 400 V battery, the battery pack is designed to operate at this
voltage. Both parallel and series connections are made between several cells. Each of the ten modules
in the battery pack has eleven parallel sets (p-sets) linked in series. Three cells are arranged in sequence
in each p-set. A pack of 330 cells is created by connecting all the modules in series. As shown in
Figure 8, the battery pack has a capacity of 40 kWh and a charge of 100 Ah.
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Battery Temperature Profile
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Figure 8. The simulated battery-electric vehicle’s primary performance attributes under
typical driving conditions are range, efficiency, and energy consumption.
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The increase in battery capacity affects the energy consumed per kilometer and the vehicle’s
overall range. The NEDC is used for range calculations, and the number of series and parallel cells are
kept constant while varying the battery cell capacity, which changes the battery pack size and weight.

The key challenges in adopting BEVs lie in addressing vehicle range anxiety, safety, and the total
ownership cost for consumers. Thus, a wide BEV range is desired, but this typically requires a larger
energy storage device (batteries) on the vehicle. Batteries are the most expensive component of modern
BEVs, so sizing is essential to determining the car’s cost. The gravimetric energy density of a battery is
the capacity-to-weight ratio, a key metric for battery design. The weight of the battery is the sum of the
weights of all the battery cells, the battery casing, connectors, and auxiliaries attached to the battery
pack. In this analysis, the gravimetric energy density of the pack is 80 Wh/kg; i.e., for every 80 Wh
increase in battery pack capacity, 1 kg is added to the battery pack’s mass. The sizing is based on
a 25 °C scenario because typical HVAC and auxiliary energy requirements are lower, and a significant
portion of the energy the battery consumes is used to satisfy propulsion demand.

The car’s weight is the sum of its body weight and the battery’s weight. For a 40 kWh battery
with 80 Wh/kg gravimetric energy density, the mass is 500 kg. The vehicle body mass is taken
as 1100 kg. The base length of the car is 3 meters, and the vehicle’s mass per unit length is 367 kg/m.
The battery volume increases by 90 Wh/l, roughly corresponding to a 0.04 m increase in length
per kWh for a compact sedan battery.

e Increase in battery mass = Increase in battery capacity (Wh)/(80 Wh/kg)

e Increase in vehicle length = Extra battery capacity (kWh) * (0.04 m/kWh)

e Increase in vehicle body mass = Increase in vehicle length (m) * (367 kg/m)

e Increase in total Weight = Increase in vehicle body weight + Increase in battery weight

Based on these values, the mass of a battery with a 5 kWh capacity increases by 62.5 kg.

Actual driving circumstances influence the vehicle’s range. There is a different range while driving
in hot and cold weather. The driver profile also affects the range, with driving behavior ranging from
relaxing (steady speeds and moderate acceleration) to aggressive (demanding sudden power).

Using typical worst-case driving profile scenarios, we evaluate the range provided by a 400 V
battery pack in this paper. Automakers use standardized drive cycles to determine BEV range ratings.
The NEDC, as shown in Figure 9, the WLTC, and the EPA cycle are the driving cycles most commonly
used in the industry. For urban and non-urban driving, a typical NEDC cycle consists of two phases,
lasts 20 minutes, and has a top speed of 120 km/h. The vehicle speed setpoint is input to the driver
control system using a Drive Cycle Source block. Variables establish the cabin setpoint, ambient
condition, coolant, and battery beginning temperatures to mimic various situations.

Environmental conditions and HVAC demands influence EV power consumption. The battery
must be heated to the optimal temperature when the vehicle is cold. The battery powers the HVAC
system to heat the cabin. When ambient temperatures are extremely high, the chiller must be introduced
into the loop to cool the battery rapidly. These functions significantly reduce the vehicle’s range and
require battery power. These additional demands on the battery result in a lower-than-anticipated car
range because the vehicle’s range rating is conducted under a set ambient environment of 25 °C. These
non-powertrain needs impact the vehicle’s total range. The vehicle is configured to be in an equilibrium
condition with the surrounding air at the starting temperature. With an initial SoC of 75%, the driving
cycle is executed once.
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Figure 9. Vehicle speed fluctuations over time are shown in the NEDC profile, which
serves as a standard benchmark for assessing the energy consumption and range of BEVs.

As shown in Figure 10 Worldwide Harmonized Light Vehicle Test Procedure (WLTP), the four
dynamic stages of a typical WLTP cycle are categorized into low, medium, high, and extra-high speed
segments. These stages are designed to reflect a wide range of real-world driving conditions, including
urban traffic, suburban commuting, and highway travel. The cycle lasts approximately 30 minutes and
comprises multiple phases, including acceleration, deceleration, idling, and steady cruising. The
maximum speed reached during the test is 131 kilometers per hour, providing a realistic evaluation of
vehicle performance under demanding high-speed conditions. Compared to earlier cycles, such as the
NEDC, the WLTP offers a more accurate and stringent assessment of energy consumption, emissions,
and driving range, accounting for modern driving behaviors and vehicle technologies.
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Figure 10. Variability in vehicle speed during typical driving phases is demonstrated by
the Worldwide Harmonized Light Vehicle Test Procedure (WLTP).

The car undergoes several drive cycles as part of the EPA multicycle driving procedure, which
simulates a wide range of real-world driving conditions. The two most widely used test cycles are the
Highway Fuel Economy Test (HWFET), illustrated in Figure 11, and the UDDS, shown in Figure 12.
The HWFET represents steady highway driving with minimal stops and moderate accelerations, making
it ideal for assessing fuel economy at constant high speeds. In contrast, the Dynamometer Driving
Schedule (UDDS) reflects stop-and-go urban traffic, characterized by frequent accelerations,
decelerations, and periods of idling, conditions typical of city driving. Together, these cycles provide a
balanced assessment of vehicle efficiency across different environments, enabling manufacturers and

regulators to evaluate city and highway performance more accurately and estimate combined range
ratings with greater precision.

HWFET
100 |

Velocity [kmvh]
3
T

Figure 11. The HWFET speed profile is used to assess the energy efficiency of BEVs on
highways by simulating high-speed driving circumstances.
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Figure 12. The typical city driving speed pattern used for BEV simulation under
low-speed and stop-and-go situations is displayed by the UDDS .

The EPA multicycle driving procedure estimates the vehicle’s range by discharging the battery
from 98% SoC to 0% SoC. This method calculates the effective driving range by summing the energy
consumed across multiple standardized drive cycles, thereby accounting for realistic urban and highway
conditions. It provides a comprehensive assessment by incorporating various acceleration patterns, idle
periods, and speed fluctuations, offering a more accurate reflection of real-world energy usage than
single-cycle tests. Additionally, this approach accounts for auxiliary power consumption, such as
HVAC systems, which can significantly impact actual vehicle range.

The following table describes how each modeling method contributes to the simulation outputs
and the details provided by the BEV simulation, and the correlation between the outputs and details and
the modeling methods. This shows how the modeling methods are combined to assess BEV
performance across a range of operating conditions.

Table 6. Relationship between modeling approaches and simulated BEV performance outputs.

Model type

Primary simulation output

Insight provided

Practical role

Electrochemical

Electrical (ECM)

Mathematical/Reduced-order

Data-driven (ML/AI)

Voltage-current & degradation

curves

Dynamic voltage response &

efficiency

Range estimation & efficiency

mapping

SoC/SoH prediction,

temperature & range trends

Explains reaction
kinetics, overpotential,
and concentration
gradients

Captures transient and
steady-state voltage
behavior

Simplifies system
dynamics for
computational
optimization

Learns from historical

or experimental data

Physical interpretation

& thermal coupling

Fast simulation for
BMS and control

System-level design

and validation

Real-time estimation
and predictive

management
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The quantitative and qualitative relationships demonstrated in Table 6 highlight that, whereas
electrochemical and ECM models can be accompanied by high levels of physical and electrical accuracy,
mathematical and data-driven frameworks complement them with computational speed and predictive
adaptability. This is what provides better consistency between the theoretical model discussion and the
practical simulation findings in this study.

4. Conclusions and future work

Fuel cell vehicles (FCVs) are gaining attention as a viable alternative in the transition toward
zero-emission transportation. Their ability to produce only water vapor as a byproduct makes them
highly attractive for reducing air pollution and greenhouse gas emissions. In addition to their
environmental benefits, FCVs offer shorter refueling times and longer driving ranges than traditional
BEVs, addressing two of the most significant barriers to EV adoption: Charging time and range anxiety.
These advantages position FCVs as complementary to BEVs, especially in long-distance or
heavy-duty applications. This review quantitatively demonstrates that electrochemical models achieve
the highest fidelity (error < 3%) at the cost of high computational complexity, which makes them
suitable for design optimization rather than real-time control. On the other hand, lower-order ECM
and data-driven models deliver simulations that are up to an order of magnitude faster while
maintaining an acceptable level of accuracy, making them suitable for use in BMS or vehicle control
systems. These quantifiable trade-offs illustrate the practical balance among the model’s accuracy,
execution time, and the domains in which it can be applied, serving as a bridge between theoretical
models and system-level applications.

We developed and analyzed a detailed simulation model designed to evaluate the performance of
EVs across varying operational conditions. The model, constructed within the Simscape environment,
integrates electrical, mechanical, and thermal subsystems to capture real-world behavior with high
fidelity. It enables comprehensive evaluation of energy consumption, thermal management, and
driving dynamics under various load scenarios and environmental influences. This platform
thoroughly examined the impact of ambient temperature, auxiliary loads (such as HVAC), battery
configuration, and driving profiles on vehicle range and efficiency.

One key takeaway from the simulation results is that non-propulsion energy demands, particularly
those related to cabin climate control and battery thermal regulation, can significantly reduce the
vehicle’s effective range. These findings highlight the importance of integrated energy management
strategies and holistic system design that account for real-world variability rather than relying solely
on standardized test conditions.

We emphasize the need to balance the trade-off between model accuracy and computational speed
across various methods, including electrochemical, mathematical, electrical, reduced-order,
data-driven, and spectroscopy-based techniques. We clarify the trade-offs between fidelity and
efficiency, showing how modeling choices can enable both high-fidelity research applications and
real-time use in battery management and EV control systems.

As future work, it is recommended that hybrid modeling methodologies (combining
physics-based and data-driven approaches) be developed to improve the interpretability and predictive
capability of EV powertrains. One option is to couple battery system models with renewable energy
charging infrastructure, leading to smart grid compatibility and sustainable operation. Finally, the
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development of an advanced thermal-electrical coupling model for solid-state batteries is imperative
to ensure safety, stability, and long-term durability during real-world driving.

Moreover, researchers should expand on co-simulation platforms that integrate multiple
domains (electrical, thermal, and mechanical) into unified frameworks. This cross-domain modeling
is essential for optimizing vehicle performance, safety, and reliability, especially under extreme or
rapidly changing conditions. Incorporating renewable energy sources, such as solar panels or
vehicle-to-grid (V2G) systems, into these models will also be crucial as the energy ecosystem becomes
increasingly decentralized and intelligent.

Last, advances in open-source simulation datasets and the standardization of testing protocols will
significantly enhance reproducibility, collaboration, and benchmarking across the academic and
industrial communities. Establishing unified methodologies will help ensure consistent and
comparable results across platforms and research institutions.

In conclusion, the ongoing evolution of EV modeling will be driven by interdisciplinary research,
practical validation, and the continuous refinement of flexible, modular tools that can adapt to the rapid
technological advancements in electric mobility and energy infrastructure.
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