
 

 

AIMS Energy, 13(5): 1241–1272. 

DOI: 10.3934/energy.2025046 

Received: 26 June 2025 

Revised: 06 September 2025 

Accepted: 25 September 2025 

Published: 10 October 2025 

http://www.aimspress.com/journal/energy 

 

Research article 

An integrated multivariate analysis—GIS framework for accurate 

microspatial energy demand forecasting 

Adri Senen1,2,* and Jasrul Jamani Jamian1 

1 Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia 
2 Faculty of Electricity and Renewable Energy, Institut Teknologi PLN, Jakarta 1, Indonesia 

* Correspondence: Emial: adri@graduate.utm.my; Tel: +6287871794354. 

Abstract: Current energy demand forecasting often cannot capture the complexity and diversity of 

electricity demand growth in smaller areas (microspatial). This challenge is exacerbated by variables 

affecting load growth that differ by location. Therefore, we proposed an integrated framework that 

blends multivariate analysis and geographic information systems (GIS) to generate more accurate and 

contextually relevant energy demand forecasts at the microspatial scale, employing a grid resolution 

of approximately 1.51 km × 1.51 km. Multivariate analysis was used to identify and select significant 

variables that represent the unique conditions of each area. The variables analyzed included 

demographic, geographic, economic, and sectoral electricity loads. The significant variables selected 

through this analysis were then used to form a predictive model of future energy demand growth. The 

results showed that four significant variables were identified from the initial ten variables for each 

cluster, with the model showing a high degree of accuracy (R²) of 0.9796, and a mean absolute 

percentage error (MAPE) was 3.36%. Moreover, GIS integration provided visualization and spatial 

analysis that strengthened the understanding of load distribution in various areas, thus supporting more 

effective network planning and decision-making. This approach showed significant potential in 

improving accuracy and spatial resolution in energy forecasting to support adaptive and sustainable 

electricity system management. 

Keywords: energy demand forecasting; microspatial; cluster; multivariate; geographic information 

systems (GIS) 
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1. Introduction 

The demand for electrical energy continues to increase in line with economic growth and 

technological advancements [1]. Electricity energy forecasting is a crucial stage in power system 

planning, enabling the anticipation of shortages or surpluses in supply while maintaining operational 

reliability [2]. Conventional approaches only consider the temporal dimension and ignore spatial 

variations at the micro area. The application of spatial-temporal-based methods improves prediction 

accuracy by capturing different consumption patterns between regions [3]. In addition, a multivariate 

approach that integrates social, economic, and spatial variables effectively represents the distribution 

of energy consumption more comprehensively [4]. Analysis of electricity load characteristics 

emphasizes spatial patterns as a critical aspect, as electricity consumption can vary significantly 

between locations [3]. This spatial analysis can be strengthened by integrating artificial intelligence 

models to capture spatial-temporal dynamics [5]. The Load forecasting also requires methods capable 

of representing the complexity of interactions between variables in the long term [6]. The development 

of multivariate methodologies has proven effective for micro-spatial areas [7]. The integration of 

multivariate analysis with a GIS framework offers significant potential for improving the accuracy of 

microspatial energy forecasting. This approach also supports optimizing power system planning while 

enabling spatial and temporal visualization of load distribution. 

Recent research in energy forecasting has focused mainly on univariate time series analysis, 

which provides essential insights into relatively stable conditions [8]. However, this approach is often 

limited in areas with insufficient historical data or experiencing rapid land use changes due to 

economic growth and other dynamic factors [9]. To overcome these limitations, multivariate analysis 

has emerged as a more reliable methodology, enabling the identification of key factors that influence 

electricity load patterns on a microspatial scale [10]. This method provides a comprehensive 

framework for understanding the interrelationships between variables that affect electricity 

consumption, including demographic characteristics [11], economic conditions [12], geographical 

features [13], and energy consumption per sector [9]. By considering these variables, the multivariate 

approach can reveal complex consumption patterns previously undetectable by univariate analysis [14]. 

Furthermore, GIS data strengthens spatial modelling, making microspatial energy load forecasting 

more accurate and supporting more effective power system planning [15]. 

The proposed framework in this study was designed with statistical and machine learning 

approaches that have been extensively employed in the literature. The analysis of spatial energy 

demand forecasting began with classical methods such as the Principal Component Analysis (PCA) 

method [16], which efficiently reduces data dimensions [17], followed by Stepwise Regression, 

systematically selects variables to construct a parsimonious model [18]. Multiple Regression is a 

fundamental approach to understanding the linear relationships between independent and dependent 

variables [19], while Geographically Weighted Regression (GWR) extends the regression framework 

to include spatial heterogeneity [20]. Moreover, recent advances in machine learning offer adaptive 

alternatives, including Long Short-Term Memory (LSTM), which is used to handle time series data [21], 

and Support Vector Machine (SVM) effectively classifies high-dimensional data [22]. Integrating these 

methods within the framework provides a comprehensive analysis and enhances forecasting accuracy. 

The stepwise method is one of the multivariate analysis methods that enables the gradual selection 
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of the most significant independent variables, resulting in a simpler and more easily interpretable 

model [23]. This method is also an alternative method that enables the gradual selection of the most 

significant independent variables [24]. In the context of regression, partial correlation is calculated 

from the residual results of regressing one independent variable against the other, thereby reinforcing 

the selectivity in variable selection [25]. General criteria in model selection involve evaluating the 

R-squared value, which tends to be stable, and the residual standard error (s) value, which 

approximates the data variance [26]. In spatial studies, the stepwise method has proven effective in 

filtering out insignificant variables, resulting in models that are more suited to regional characteristics 

and easier to interpret [27]. 

Although each method has significant advantages, the literature also highlights certain limitations 

in their application, particularly in micro-scale spatial energy forecasting. Table 1 summarizes a 

comparison of the strengths and weaknesses of the primary benchmark methods of this study in 

comparison to previous studies. 

The summary, Table 1 illustrates that although each benchmark method has specific advantages, 

none can comprehensively address the complexity of spatial energy demand forecasting challenges. 

The proposed methodology, which integrates classical statistical techniques, modern machine learning 

algorithms, and GIS-based spatial analysis, is designed to bridge this gap. By leveraging the strengths 

of various approaches while minimizing their limitations, this framework offers a more comprehensive 

and innovative solution than a single strategy. This integration enhances the accuracy and robustness 

of the forecasting results and underscores the novelty of this research compared to previous literature. 

This research is expected to contribute to developing more accurate electricity consumption prediction 

models and support better decision-making in power system planning and management by identifying 

the most influential variables on electricity consumption. 

In this research, the study area was discretized into regular square grids with a resolution  

of 1.51 km × 1.51 km to capture micro-level spatial variations in energy demand. It is essential to help 

manage and analyze spatial data in electricity system planning. GIS provides the ability to visualize 

and analyze spatial data in a geographic context, which allows for identifying patterns that are not 

visible through traditional analysis [28]. The integration of GIS in electricity energy demand 

forecasting provides more accurate mapping of load distribution based on geographic location and 

identifies spatial factors that influence electricity demand [29]. GIS can combine spatial data such as 

population, land use, and load per sector with historical electricity consumption data to create more 

comprehensive forecasting models [30]. To generate predictive models, the framework employs GWR, 

a statistical technique designed to capture local relationships between predictor and response variables 

across geographic locations [31]. GWR extends traditional global regression by incorporating spatial 

weighting functions that reflect the Influence of nearby observations [32], thereby improving model 

sensitivity to local conditions [33]. This spatially adaptive approach has demonstrated effectiveness in 

various domains, including environmental modeling and infrastructure planning, and is particularly 

suitable for forecasting electricity demand in microspatial contexts [34]. The use of GWR in electricity 

energy demand forecasting also allows the integration of multivariate data, such as demographic, economic, 

and environmental data [35]. By incorporating these variables, the forecasting model can capture the 

complex relationships between factors affecting energy consumption [29]. This improves forecasting 

accuracy and provides deeper insights into the dynamics of energy consumption in different regions. 
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By integrating GIS into spatial energy demand forecasting based on multivariate analysis, unique 

and complex spatial load patterns are expected to be identified. The results of this research can 

significantly contribute to the development of more accurate electricity consumption prediction models 

and provide more appropriate policy recommendations to improve energy efficiency and power system 

sustainability in a region. 

Table 1. Benchmark publication and assessment of methods in GIS-integrated 

micro-spatial energy forecasting. 

Method Original 

Inventors/Authors 

Advantages Limitation 

Principal 

Component 

Analysis [16]. 

Karl Pearson Efficient in reducing dimensionality; 

Eliminates the issue of 

multicollinearity; Computation for big 

datasets is accelerated. 

Direct interpretation is 

challenging; The original variable 

information may be lost. 

Stepwise 

Regression [18]. 

M. A. Efroymson Selecting variables automatically; 

Simpler models are produced, making 

identifying important factors easier. 

Overfitting is more likely to 

occur when the data is unstable; 

significant variables could be 

excluded because of statistical 

criteria. 

Multiple 

Regression [19]. 

D. Draper and 

H. Smith 

Fundamental information about the 

linear relationships between 

independent and dependent variables is 

provided; Implementation and 

interpretation are simple. 

This method cannot capture 

nonlinear relationships; 

Multicollinearity can affect it; 

Outlier sensitivity. 

Geographically 

Weighted 

Regression [20]. 

Brunsdon, 

Fotheringham, 

Charlton 

Spatial heterogeneity is captured; Local 

parameter estimate is provided; Works 

well with nonstationary Phenomena. 

Choosing a bandwidth is 

difficult; Estimates with limited 

data could be erratic; it is 

intensely computational. 

Long Short-Term 

Memory [21]. 

Hochreiter & 

Schmidhuber 

Long-term dependencies are captured; 

Effective with time-series and 

sequential data; Often used in 

contemporary forecasting. 

Large datasets are needed; 

Training is challenging and time-

consuming; Tuning parameters is 

complex. 

Support Vector 

Machine [22]. 

Vladimir Vapnik Effectively handles nonlinear data; 

Works well for datasets with many 

dimensions; has a robust theoretical 

basis. 

The kernel selection significantly 

impacts the adjustment of 

complex parameters; it is less 

effective with massive datasets. 

Geographic 

Information 

Systems [28]. 

J. Rogers, M. J. 

Dawood, and A. 

A. Elkamel, 

Enables space display in depth; 

Combines statistical and machine 

learning analysis with geographic data; 

Geographical variation in energy 

forecasting is captured. 

Accurate and detailed spatial data 

is needed. There are limitations in 

handling complex load patterns. 

Results are highly reliant on grid 

resolution and map quality. 
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2. Methods 

2.1. Microspatial energy demand forecasting 

Microspatial energy demand forecasting is a method for predicting electricity demand at a 

particular level, where the area is divided into grids based on its characteristics (as shown in Figure 1). 

This method often uses GIS to analyze the spatial distribution of electricity demand and visualize the 

forecasting results. Microspatial analysis also integrates variables that affect energy consumption, such 

as economic factors, demographics, geographical location, and type of loads (residential, industrial, 

business, and social load) [7]. 

The area mapping process was used to help visualize the large and complex geographic data 

available, consisting of many related themes. The process begins with clusters of evaluated grids, 

which connect different data in a specific location, combine them, assess them, and finally map the results. 

 

Figure 1. Microspatial based on grid division. 

Spatial plotting is done as shown in Figure 1, where the land use and topography on the maps will 

have data attributes that contain information that can be adjusted to the electrical load profile. The 

spatial data can also be combined with other spatial data so that it becomes layers that contain 

complementary data [36], which will increase its accuracy and help facilitate the planning and 

development of distribution networks [37]. 

2.2. Adaptive clustering 

Clustering methods aim to group data into clusters based on similar characteristics. The aim is to 

ensure that data in one cluster are highly similar, while data from different clusters have significant 

differences [38]. This step aims to minimize the complexity of energy demand forecasting models, 

with the final model determined in subsequent stages. Accordingly, this study employs the adaptive 

clustering method, which can autonomously determine the number of clusters with optimal 
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performance by analyzing attribute data and the membership degree of each data grid [39]. This is very 

different from the traditional clustering approach, which groups the smallest number of clusters 

randomly or sequentially, where the number of clusters is predetermined, making it less adaptive to 

complex variations in the data, especially in cases of spatial inhomogeneity. The clustering process is 

presented in Figure 2. 

Start

 Data Input : electrical 

and non electrical 

variables 

Is the matrix 

converging ?

 Number of cluster ( min and max), fuzziness 

parameter, error tolerance, max itteration

Initialisation of membership matrix

Compute cluster centroids

Update membership matrixUpdate membership matrix

Clusters validation with best silhoutte coefficient

Yes

Clusters validation with best silhoutte 

coefficient

Optimal numbers of clusters

Out put : Final Clusters

End

No

 

Figure 2. Flowchart of adaptive clustering. 

The adaptive clustering method enables ambiguity in the boundaries between areas, making it 

suitable for capturing the complexity and variation that occurs in the field, which works by minimizing 

the fuzzy weighted objective function [40]. The objective function is formulated as follows: 

 𝑃𝑚 = ∑ ∑ (𝜇𝑖𝑗)
𝑚
‖𝑥𝑖 − 𝑐𝑗‖

2
𝑐
𝑗=1

𝑛
𝑖=1  (1) 

Where n is the number of data points, c represents clusters, xi denotes the i-th data point, cj is the 

center of the j-th cluster, 𝜇𝑖𝑗 indicates the membership degree of the i-th data point to the j-th cluster, 

and m is the fuzzifier parameter with a value greater than 1 that controls the degree of fuzziness in the 

clustering process. 

The clustering process commenced with data normalization to ensure that all variables 

contributed equally to distance or similarity calculations, eliminating redundancy and data repetition. 

Subsequently, the number of optimal clusters is validated using the Silhouette algorithm [41], which 

evaluates cluster quality by comparing the proximity of a data point to its own cluster and its distance 
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to the closest other cluster. The Silhouette coefficient is calculated using the equation: 

 𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥(𝑎(𝑖),𝑏(𝑖)
 (2) 

Where s(i) denotes the silhouette coefficient value for the i-th data point, a(i) denotes the average 

distance between the i-th data point and all members in its cluster, and b(i) denotes the average distance 

between the i-th data point and members in the nearest cluster. 

2.3. Multivariate analysis using multiple regression (preliminary model) 

Multiple regression is one of the most commonly used multivariate analysis techniques [42]. It 

enables one to model the linear relationship between one continuous dependent variable (in this case, 

load density) and several independent variables (e.g., load per sector, GDP and area) [43]. 

Mathematically, the relationship between these variables is shown in Eq (3) below. 

 𝑌 = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑘𝑋𝑘 + 𝑒𝑖 (3) 

Where Y as the dependent variable of size, X as the independent variable of size, and e as the 

random error after removing m independent variables. In vector and matrix notation, Eq (3) can be 

simplified into 

 Y=X𝛽+e (4) 

Where 

 𝑌 = (

𝑦1
𝑦2
⋮
𝑦𝑛

)           𝑋 = (

1 𝑥11 𝑥12 … 𝑥1𝑘
1 𝑥21 𝑥22 ⋯ 𝑥2𝑘
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘

) 

 𝛽 =

(

 
 

𝛽0
𝛽1
𝛽2
⋮
𝛽𝑛)

 
 
           𝑒 = (

𝑒1
𝑒2
⋮
𝑒𝑛

) 

2.4. Multicollinearity test 

Multicollinearity can lead to unstable regression coefficient estimates and problems in the 

interpretation of the regression model because it is difficult to determine the effect of each independent 

variable separately. Therefore, it is necessary to conduct a multicollinearity test to identify the presence 

of a high correlation between two or more independent variables in the regression model. The method 

used for this test is the Variance Inflation Factor (VIF). The greater the VIF value, the higher the 

correlation between these and other variables. The standard acceptable VIF value is 1 < VIF < 10. The 

formula can calculate VIF for a variable [33]. 
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 𝑉𝐼𝐹(𝑋𝑖) =
1

(1−𝑅𝑖
2)

 (5) 

Ri is the coefficient of determination, and Xi is a function of all other independent variables. 

2.5. Variable selection 

Variable selection is essential in determining the most relevant independent variables to predict 

the dependent variable. One method often used for variable selection is stepwise selection [27]. This 

method helps simplify the model by selecting significant variables and discarding insignificant 

ones [42]. This method gradually adds or removes variables from the model based on specific 

statistical criteria, resulting in the simplest yet most effective model to explain the variability in the 

dependent variable [44]. 

The stepwise method combines the forward (entering one by one the independent variables with 

the highest correlation) and backward (removing one by one the insignificant variables) methods. The 

steps of analysis with the stepwise method [26]: 

• Calculating the correlation between each independent variable and the dependent variable. 

• Entering the independent variable with the highest correlation into the regression model. 

• Excluding insignificant independent variables based on specific criteria. 

• Repeating steps 2–3 until there are no more variables that meet the criteria for inclusion or 

exclusion. 

This process is done iteratively by adding or removing variables from the model based on the 

Akaike Information Criterion (AIC). AIC helps select the best model among several candidate models 

by balancing model complexity and model fit to the data [45]. Furthermore, its application extends 

across reliability and performance assessment domains, demonstrating its versatility in balancing 

parsimony and accuracy in predictive modeling [46]. In general, the mathematical equation is:  

 AIC = −2 log (L (𝜃|𝑥) + 2 k (6) 

Where θ is the parameter estimate that maximizes the likelihood, k is the number of parameters 

in the model Likelihood, and L(θ∣x) is the probability of the observed data x, with unknown parameter θ. 

In this context, L is a function that relates the model parameters to the observed data. In this case, 

the likelihood is the residual sum of squares (RSS), which is the sum of squares of the difference 

between the observed value and the value predicted by the regression model formulated as follows [47]. 

 RSS = ∑ (𝑌𝑖 − 𝑌̅)
2 − 𝑌′𝑋𝑌̂𝑛

𝑖=1  (7) 

AIC considers not only the fit of the model (through RSS) but also the complexity of the  

model (through the number of parameters k). Models with lower AIC are considered better as they 

offer a balance between fit and simplicity. 

2.6. Model determination 

The method used to determine this model is GWR [48]. This method can create more accurate 

load forecasting results by considering spatial effects and local factors affecting load [49]. The GWR 
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model function can be written as: 

 𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘𝑘 + 𝜀𝑖 (6) 

Where 𝑦𝑖  is the observation value of the response variable at the i-th location, 𝑥𝑖𝑘  is the 

observation value of the predictor variable k at location i, 𝛽0(𝑢𝑖 , 𝑣𝑖)  is the intercept value of the 

regression model, 𝛽𝑘(𝑢𝑖 , 𝑣𝑖)  is the regression parameter for the i-th location, (𝑢𝑖 , 𝑣𝑖)  is the 

coordinate point (latitude, longitude) at the i-th location, and 𝜀𝑖 is the GWR model residual at the 

i-th location. 

2.7. Selection of the best model 

This stage selects the most appropriate model to explain the relationship between the dependent 

and independent variables, provides accurate estimates, and allows valid interpretation. The method 

used in this study is the coefficient of determination R-squared (R²), which indicates how good the 

model is. A higher R² value indicates a better model. Model selection is also based on the smallest 

MAPE value, so the selected model can be considered feasible to represent the cluster model. 

2.8. Mapping area with GIS 

Mapping helps spatially analyze location-based area characteristics such as overlays and 

coordinates. These are then integrated with external data sources such as GIS to make mapping more 

informative and attractive to users. ArcGIS is one of the spatial data-based software used in applying 

GIS. It allows users to integrate geographic data sources, including satellite images, GPS data, survey 

data, and others [28]. 

 

Figure 3. Geographic information systems flowchart. 
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In this study, ArcGIS is combined with the data extracted from variable selection in the form of 

data on the dominant parameters of the load profile characteristics. By linking the variable selection 

results with ArcGIS, it is possible to combine multivariate statistical analysis with geographic mapping, 

providing a deeper and more contextual insight into the electricity load data and the factors influencing 

its geographic characteristics. This enables better decision-making in power system planning, 

management, and understanding of a geographical context. The flowchart in Figure 3 illustrates the 

procedures for charting this region. 

2.9. Load forecasting 

Load forecasting is obtained by calculating the total power of each grid by summing the power 

in each sector (residential, business, industrial, and social) in the area based on the load density model 

obtained previously. The results of the load density model obtained are projected into the form of load 

for each coming year based on the land use in each grid concerned. The results of the load density 

forecasting per year obtained in this cluster are then used to calculate the load density of each sector 

in the same cluster. The density of each sector obtained and the amount of power per sector per village 

can be determined by multiplying the load density per sector by the sector area of the cluster. Moreover, 

the change in sector area per year is adjusted to the spatial plan and its layout. 

3. Results 

3.1. Study area and data 

This study was conducted in the Kebayoran network area, which covers parts of Jakarta, 

Tangerang, and Depok, to validate the developed micro spatial forecasting model. The study area 

consists of 109 districts with ten independent variables. The geographical coverage of the Kebayoran 

network area used in this study is shown in Figure 4. 

 

Figure 4. Mapping of the Kebayoran network area. 

Selected Area 
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The data consists of 10 independent variables representing electricity, economy, geography, and 

demography characteristics collected from the Kebayoran network area, symbolized by X1 to X10 as 

presented in Table 2. These independent variables are expected to affect load density as the dependent 

variable that Y symbolizes. The dataset is categorized into two major categories: Electrical and 

non-electrical variables. Electrical variables, which include household load (X7), industrial load (X8), 

commercial load (X9), and social load (X10), are obtained from the official annual average monthly 

records of the national electricity utility. Non-electrical variables, namely the number of 

households (X1) and Regional Gross Domestic Product (X6), are collected annually from the local 

government’s Central Statistics Agency (BPS). Moreover, land use variables, which include residential 

area (X2), industrial area (X3), and commercial area (X4), are obtained from regional spatial planning 

documents and local government data. 

Table 2. Independent variables. 

Variable Description Variable Representation  

X1 Total households Demography 

X2 Residential area Geography 

X3 Industrial area Geography 

X4 Commercial area Geography 

X5 Social area Geography 

X6 Gross Domestic Product (GDP) Economy 

X7 Residential load Electricity 

X8 Industrial load Electricity 

X9 Commercial load Electricity 

X10 Social load Electricity 

3.2. Adaptive clustering 

The clustering process yields four distinct clusters, as presented in Table 3. Each cluster contains 

varying members (grids), reflecting the grouping based on the similarity of variable characteristics. 

The clustering result is also depicted in Figure 3. The area involved in this study is illustrated in Figure 4. 

Table 3. Total members for each cluster. 

cluster 1 cluster 2 cluster 3 cluster 4 

24 14 6 65 

The results of the area clustering analysis using the adaptive clustering algorithm successfully 

group the data into four distinct clusters, as illustrated in Figure 2. Each cluster exhibits unique 

characteristics that represent the degree of membership of each region to a particular cluster. The 

assignment of data points to clusters is determined by calculating the membership degree, based on 

the distance between each data point and the cluster centers. A shorter distance corresponds to a higher 

membership degree, with values ranging from 0 to 1. A membership degree value approaching 1 
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indicates a strong association between the data point and the corresponding cluster. As an illustration, 

Table 4 provides an example of the formation of each cluster, along with the membership degree values 

of each data point. 

Table 4. Membership degree of cluster 3. 

Grid Membership Degree 

cluster 1 cluster 2 cluster 3 cluster 4 

Tegal Parang 0.914 0.021 0.012 0.052 

Cikoko 0.885 0.038 0.022 0.054 

Pengadegan 0.913 0.024 0.013 0.050 

Tanah Baru 0.174 0.658 0.054 0.114 

Cinangka 0.203 0.446 0.137 0.214 

Gandul 0.255 0.399 0.113 0.233 

Rawa Barat 0.039 0.066 0.809 0.086 

Paninggilan 0.040 0.062 0.827 0.072 

Cipadu 0.0360 0.0591 0.8381 0.0668 

Kebayoran Lama Selatan 0.204 0.132 0.106 0.557 

Grogol Selatan 0.233 0.094 0.054 0.619 

Pela Mampang 0.306 0.122 0.076 0.496 

Furthermore, the clustering results are reconstructed and mapped using GIS. It is used in area 

plotting to display geographic boundaries and spatial data on a digital map. Plotting an area using GIS 

starts with preparing geospatial data of the region, such as shapefiles (.shp) that can be downloaded 

from official sources or created through manual digitisation. The data is then imported into GIS 

software (QGIS, ArcGIS) to ensure a proper coordinate system for accurate geographic positioning. 

After merging the data, users can begin visualizing information by labeling area names according to 

data properties and creating custom colour gradations by establishing boundary lines and colours. 

Consequently, as illustrated in Figure 5, the map displays a different color for each cluster. 

 

Figure 5. Study area based on clustering result. 
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As illustrated in Figure 5, the clustering results produces four clusters. To further narrow and 

focus on the study area, we select districts under clusters 1 and 4, comprising 24 and 64 grids out 

of 109 areas. These clusters are selected as they collectively represent 68% of the total area, making 

them the primary focus for load forecasting analysis. We focus on clusters 1 and 4 of 24 and 64 grids 

out of 109 areas, respectively. These clusters are selected as they collectively represent 68% of the 

total area, making them the primary focus for load forecasting analysis, as shown in Figure 6. 

 

Figure 6. Study area that only involves clusteres 1 and 4. 

3.3. Preliminary model 

Table 5. Preliminary model results of cluster 1 and cluster 4. 

Variables cluster 1 cluster 4 

Estimate t value Pr (>ItI) Estimate t value Pr (>ItI) 

Intercept 18.57884 2.232 0.0438 19.13 5.733 4.5e−07 

X1 0.000557 0.299 0.7697 −7.65e−05 −0.146 0.88456 

X2 0.007173 0.223 0.8274 0.00087 0.248 0.80480 

X3 −0.16749 −0.506 0.6214 0.04591 −1.687 0.09734 

X4 0.15162 0.292 0.7746 0.04634 1.156 0.25297 

X5 −0.09041 0.433 0.6720 0.03902 −2.620 0.01140 

X6 −0.08704 0.419 0.6822 0.06797 1.510 0.13925 

X7 −0.00253 −0.356 0.7275 0.001553 −1.296 0.20048 

X8 0.01449 1.301 0.2158 0.0013 0.575 0.56790 

X9 0.01077 1.409 0.1823 0.002448 2.959 0.00457 

X10 0.00762 0.747 0.4681 0,005902 2.945 0.00476 
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Table 6. Result of the multicollinearity test on the variables. 

Variable 
VIF 

cluster 1 cluster 4 

Household (X1) 1.663 9.489 

Land use: Residential (X2) 4.756 92.983 

Land use: Industry (X3) 253.876 7650.073 

Land use: Business(X4) 242.887 9223.056 

Land use: Social (X5) 13.774 1139.455 

GDP: (X6) 11.743 67.424 

Load: Residential (X7) 9.896 93.794 

Load: Industry (X8) 13.651 62.223 

Load: Business (X9) 2.609 21.966 

Load: Social (X10) 1.585 9.431 

The preliminary model uses a multiple linear regression model to see the relationship between 

load density in each sub-district and the factors that influence it. All the independent variables 

involved (X1–X10) are used for the initial stage, as shown in Table 5. 

Based on the calculation results in Table 5, cluster 1 shows that all independent variables do not 

significantly impact Load Density. This can be observed from the Pr(>|t|) values, as none of them are 

less than 0.05 (the 5% significance level) . The variables X3, X5, X6, and X7 have a negative effect on 

Load Density. Moreover, the variables X1, X2, X4, X8, X9, and X10 positively affect load density. This 

differs from cluster 4, which has two significant variables, namely X9 and X10, with X1, X3, X5, and 

X7 having a negative effect on Load Density, and other variables positively impacting load density. 

This is likely to detect multicollinearity among the variables, which may cause problems interpreting 

the regression results. Therefore, it is necessary to carry out a multicollinearity test as shown in Table 6. 

Based on the multicollinearity test results, as shown in Table 6, five variables have values above 10 

and 200 in cluster 1, and only two variables have VIF values above 10. Therefore, the regression model 

obtained cannot be used as a load forecasting model representing each cluster. That way, multivariate 

analysis must be conducted to determine and reduce significant variables from each cluster. 

3.4. Multivariate analysis 

Multivariate analysis is a crucial stage in deciding the best model. We use the step-wise method 

to identify and determine, which independent variables are most influential on the growth of load 

density using AIC as an information criterion. The following is the process of selecting variables to be 

used as a model, as shown in Tables 7 to 12. The variable selection process started with eliminating 

one of the variables from each cluster from X1 to X10, as seen in Tables 7 and 8. After that, reducing 

one variable will continue with the reduction of two variables after obtaining the smallest AIC 

value (AIC value 113.01 for cluster 1 and 296.7). The process of reducing two variables is shown in 

Tables 8 and 9, and stops when the smallest AIC value obtained for cluster 1 is 111.07, and the 

funds for cluster 4 are 294.81. This process of variable reduction continues until the smallest AIC 

value is obtained. Furthermore, new variables can be created by eliminating and adding variables at 
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each step, enabling flexibility in finding the best model with the most relevant set of variables. This 

can be seen in Tables 10 and 11. 

Table 7. The process of eliminating one of the variables of cluster 1. 

Test X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 AIC 

1           113.08 

2           113.01 

3           113.38 

4           113.07 

5           113.26 

6           113.24 

7     


    113.15 

8           115.85 

9           116.33 

10           113.92 

Table 8. The process of eliminating one of the variables of cluster 4. 

Test X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 AIC 

1           296.7 

2           296.8 

3           300.0 

4           298.3 

5           304.5 

6           299.4 

7     


    298.7 

8           297.1 

9           306.7 

10           305.3 

Table 9. The process of eliminating two of the variables of cluster 1. 

Test X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 AIC 

1           113.01 

2           111.08 

3           111.60 

4           111.07 

5           111.41 

6           112.34 

7           111.19 

8           113.87 

9           120.41 

10           113.86 
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Table 10. The process of eliminating two of the variables of cluster 4. 

Test X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 AIC 

1           296.73 

2           294.81 

3           298.04 

4           296.31 

5           302.48 

6           297.57 

7           297.18 

8           295.11 

9           304.61 

10           304.44 

Table 11. A combination of reducing and adding variables of cluster 1. 

Test X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 AIC 

1           120.1 

2           113.8 

3           125.7 

4           112.0 

5           108.9 

6           109.0 

7           110.2 

8           110.5 

9           110.7 

10           110.1 

Table 12. The process of eliminating one of the variables of cluster 4. 

Test X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 AIC 

1           292.52 

2           293.33 

3           294.32 

4           294.46 

5           294.52 

6           297.45 

7           321.44 

8           299.46 

9           309.49 

10           309.93 

Based on the variable selection process in Tables 11 and 12, four variables have a significant 

influence on load density in cluster 1, namely land use: industry (X3), land use: social (X5), GDP (X6), 
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and business load (X9), with the smallest AIC value of 108.9. Cluster four has six significant variables, 

namely land use: industry (X3), land use: social (X5), GDP (X6), residential load (X7), business 

load (X9), and social load (X10), with an AIC value of 292.52. At this value, the variable selection 

iteration has stopped; therefore, these variables are what we consider variables that represent each 

cluster. The overall results of variable selection experiments by reducing and adding variables based 

on their AIC values can be seen in the following chart in Figure 7. 

  

(a) (b) 

Figure 7. Result of AIC testing: (a) cluster 1 and (b) cluster 4. 

Figure 7 shows that 56 trials are conducted to determine the variables significantly influencing 

the load density by combining the reduction and addition of variables until the smallest AIC value is 

obtained. The maximum AIC value is 125.7 with five significant variables, while the smallest AIC 

value is 108.86 with four significant variables in the experiment to reduce the number of variables. As 

for cluster 4, the maximum AIC value is 321.44 with the number of significant variables 5, while the 

smallest AIC value is 292.52 with 40 experiments carried out so that six significant variables are 

obtained, as shown in Figure 5b. 

After obtaining significant variables, the multicollinearity test is carried out with the VIF indicator 

to ensure that the variables are suitable for use in the formation of further load forecasting modeling. 

Table 13 shows the complete result. 

Table 13. Result of the multicollinearity test on variables. 

cluster 1 cluster 4 

Variable VIF Variable VIF 

Land use: Industry (X3) 3.5469 Land use: Industry (X3) 1.7333 

Land use: Social (X5) 1.3459 Land use: Social (X5) 1.621 

GDP (X6) 5.5653 GDP (X6) 4.234 

Load: Business (X9) 4.5604 Load: Residential (X7) 2.825   

Load: Business (X9) 1.789 
  

Load: Social (X10) 1.446 
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Based on the multicollinearity test in Table 13 above, all obtained significant variables from each 

cluster have VIF values below 10. Cluster 4 has VIF values below 5. 

3.5. Determination and selection of the best model 

The resulting R2 value indicates a model’s goodness. An R2 value greater than other models 

demonstrates that the model is better. Table 14 shows the measure of model goodness produced by 

linear regression and GWR models. 

Table 14. Determination model. 

Model R2 

cluster 1 cluster 4 

Linear Regression  0.785 0.799 

GWR 0.998 0.979 

Table 14 shows that the overall R2 value generated by the GWR model is greater than that of the 

linear regression model. This indicates that the GWR model is better suited for modeling load density. 

Furthermore, GWR is applied to each location in each cluster based on the previously significant 

variables obtained by determining each region’s coordinates. After that, each model is tested for each 

area until the best model that can represent each cluster’s model based on the smallest MAPE value is 

obtained. Tables 15 and 16 below show each cluster’s five sampling areas with the smallest MAPE value. 

Table 15. Selection of the best GWR model of cluster 1. 

Subdistrict GWR Model Equation MAPE 

Menteng Dalam y = 36.99 − 0.03X3 − 0.04X5 − 0.14X6 + 0.01X9 6.09% 

Pengadegan y = 38.24 − 0.03X3 − 0.04X5 − 0.14X6 + 0.01X9 3.36% 

Tegal Parang y = 35.81 − 0.03X3 − 0.04X5 − 0.134X6 + 0.01X9 6.03% 

Ulujami y = 32.68 − 0.03X3 − 0.04X5 − 0.08X6 + 0.01X9 7.61% 

Cikoko y = 38.39 − 0.03X3 − 0.04X5 − 0.14X6 + 0.01X9 5.38% 

Table 16. Selection of the best GWR model of cluster 4. 

Subdistrict GWR Model Equation MAPE 

Gandaria Utara y = 34.666 − 0.023X3 − 0.031X5 + 0.050X6 − 0.003X7 + 0.003X9 + 0.002X10 8.50% 

Melawai y = 34.881 − 0.024X3 − 0.031X5 + 0.055X6 − 0.003X7 + 0.003X9 + 0.002X10 8.34% 

Kebayoran Lama y = 33.648 − 0.022X3 − 0.030X5 + 0.068X6 − 0.003X7 + 0.002X9 + 0.003X10 7.43% 

Grogol Selatan y = 30.939 − 0.021X3 − 0.029X5 + 0.088X6 − 0.003X7 + 0.002X9 + 0.003X10 4.52% 

Pela Mampang y = 34.171 − 0.022X3 − 0.031X5 + 0.045X6 − 0.003X7 + 0.003X9 + 0.002X10 9.37% 

Based on Tables 15 and 16 above, the model used for cluster 1 is Pengadegan, and the model in 

cluster 4 is the Grogol Selatan. The model is subsumed by all areas in the cluster with the smallest 

MAPE value, which are 3.36% and 4.52%. An MAPE value below 5% is an excellent level of accuracy. 
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3.6. Mapping area with GIS 

Based on the selection of variables, it is possible to map the significance distribution variables in 

each cluster with GIS, which can be seen in Figures 8 and 9. Using GIS, mapping areas based on 

significant variables can visualize, analyze, and understand how certain variables affect the load 

density in each cluster. In cluster 1, shown in Figure 8, the GDP variable significantly affects all regions 

in the cluster. Furthermore, industrial land use in the three areas does not have a significant effect on 

the cluster. 

Figure 9 shows that the business sector load is a variable that significantly influences almost all 

areas in cluster 4; only six areas have a minor influence on the cluster. In Figure 8, the social sector 

load also shows the same situation; only nine regions have no significant effect. Additionally, where 

the previous area was not too significant, the influence of residential and social loads became an area 

where social loads influenced the electricity load. Besides that, the mapping conducted for the 

residential sector electricity load variable, as shown in Figure 9, shows that the distribution of 

residential load significantly influences 50% of the area in cluster 4. 

   

(a) (b) (c) 

Figure 8. Significance variables distribution of cluster 1: (a) Land use industry; (b) GDP 

and (c) Commercial load. 

For the grid profile of the Pengadegan area as the modeled area in cluster 1, all variables 

significantly influence the load density, as shown in Figure 8. Pengadegan is geographically in the 

lowlands, with an average altitude of 15–20 meters above sea level. It is a large social area, with most 

of its electricity load influenced by commercial loads. In addition, the area has a high density consistent 

with the load density data, indicating a high value for this cluster. 



1260 

AIMS Energy Volume 13, Issue 5, 1241–1272. 

   

(a) (b) (c) 

Figure 9. Significance variables distribution of cluster 4: (a) Residential load; (b) 

Commercial load and (c) Social load. 

On the other hand, the profile of the South Grogol area as a model area in cluster 4 shows that all 

significant variables influence load density, as shown in Figure 9. This scene is geographically in the 

lowlands, which have an average height of 5–15 meters above sea level. It is also a relatively large 

social area with an electrical load influenced by residential, commercial, and social loads. In addition, 

the area has a high density; this aligns with the load density data, including high values for areas in 

cluster 4. 

3.7. Load forecasting 

The load growth projection is based on the previously obtained GWR model, namely 

 y
c-1
 = 38.236 – 0.033 X3 – 0.042 X5 – 0.135 X6 + 0.007 X9 

 yc-4 = 30.939 – 0.021 X3 – 0.029 X5 + 0.088 X6 – 0.003 X7 + 0.002 X9 + 0.003 X10 

Where yc-1: Load density model equation cluster 1 and yc-4: Load density model equation cluster 4. 

To obtain the growth of load density each year based on the load density model obtained 

previously, it is first necessary to calculate the trend of each variable (except the land use variable) to 

get a growth model for each year of each variable. Based on the trend of each variable obtained, the 

variable growth trend model is used to forecast the load density using the load density model obtained 

previously (yc-1 and yc-2 equations), as shown in Figures 10 and 11. 
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Figure 10. Grid load forecasting of cluster 1. 

 

Figure 11. Load density growth of each cluster 4. 

The results of this load density growth are further elaborated and broken down to obtain energy 

demand growth for each area in each cluster. Figure 12 shows a sampling of the energy demand growth 

results for each year for each grid according to the model representing the cluster, namely the 

Pengadegan area for cluster 1 and Grogol Selatan for cluster 4. Overall energy demand forecasting 

results for each area in each cluster can be seen in Appendix A. 
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Figure 12. Energy demand growth in cluster 1 and cluster 4. 

The overall load density growth for each cluster 1 and cluster 4 is shown in Figure 13 below:  

 

Figure 13. Load density growth in cluster 1 and cluster 4. 

Based on the results of load growth forecasts through the micro spatial method, the average load 

density growth for cluster 1 in the next ten years is 3.65% and 3.37% for cluster 4. This growth 
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percentage is not much different compared to the Electricity Supply Business Plan by the State 

Electricity Company (RUPTL) for the Greater Jakarta area for 2021–2030, which is 3.724%. The load 

density results are then converted into load per area as shown in Figure 13. 

The average growth of the regions is lower than the RUPTL because some of the areas in clusters 1 

and 4 are in a different region, Tangerang, which has a load growth of 3.5%. Therefore, for cluster 4, 

the growth is lower because there are more Tangerang areas in cluster 4 than in cluster 1. However, if 

we calculate the MAPE value of the forecasting results with the existing RUPTL, the average error 

value is less than 2%. Besides that, the load forecast results show that areas in the same cluster will 

have the same distribution of energy demand growth patterns over the next 10 years, as shown in Table 17. 

Table 17. Energy demand growth forecast for each cluster. 

Year Total of Cluster Energy Demand (GWh) 

cluster 1 cluster 4 

1 966522 2783902 

2 990177 2830844 

3 1017199 2890226 

4 1046941 2963539 

5 1080161 3052435 

6 1119004 3158761 

7 1162655 3284577 

8 1212225 3432179 

9 1268009 3604128 

10 1331745 3803277 

The energy demand growth of each cluster is obtained from the sum of energy from each region 

of each cluster. Figure 9 shows the distribution of load growth for each area in each cluster, which can 

be seen in Appendix A. According to the study, using GWR and GIS offers essential insights into 

electrical load’s properties and regional distribution. This method makes it possible to estimate the 

number of load centers in each area precisely, reflecting the geographic structure, and to project load 

growth in smaller areas more accurately. 

4. Conclusions 

This micro-spatial energy demand forecasting method, based on multivariate analysis and GIS 

integration, is a development of the macro- and sectoral spatial load forecasting method. Spatial 

analysis identifies load distribution patterns by region. Multivariate analysis uncovers factors affecting 

load patterns. By identifying significant variables, accurate electricity consumption prediction models 

can be developed. Integrating GIS in load forecasting helps manage spatial data and identify spatial 

factors influencing electricity demand. 

Based on the multivariate analysis, six of the ten variables significantly influence the load density. 

Those variables are land use: industry (X3), land use: social (X5), GDP (X6), residential load (X7), 

business load (X9), and social load (X10). The smallest AIC value is 292.52, and the feasibility of the 
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R-squared model reaches 0.9796. 

Furthermore, GWR produces a suitable forecasting model by considering significant variables. 

GWR models are used to determine models that can represent clusters based on the selected model, 

namely the model in the South Grogol area, with the smallest MAPE value of 4.52%. Then, the model 

obtained is used to forecast energy demand, resulting in an average load density growth for the 64 

Kebayoran network area in the next ten years of 3.54%. The proposed method is proven to show 

patterns that are not visible through traditional methods, can identify them, produce more accurate load 

distribution mapping, improve accuracy, and provide policy recommendations. 

As a continuation of this research, further model development is directed at integrating a hybrid 

approach that combines GWR with machine learning algorithms such as Long Short-Term Memory (LSTM) 

and Random Forest to capture spatial-temporal dynamics simultaneously and more accurately. In 

spatial expansion, SVM-based clustering techniques are applied to adaptively classify new areas into 

existing clusters, along with settlement growth and changes in electricity system infrastructure. The 

model can be designed to be responsive to energy transition scenarios such as decarbonisation and 

electric vehicle adoption, and can be scaled through cloud computing to support electricity system 

planning and renewable energy integration in Java Island with precision and sustainability. 
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Appendix A. 

Grid load growth of each cluster. 

Continued on next page. 

 

Cluster Grid Energi Growth (GWh) 

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 Year-10 

1 Duri Kepa 72734 74356 76259 78473 81030 83969 87331 91161 95509 100432 

Meruya Selatan 49739 50848 52149 53663 55412 57422 59721 62340 65313 68680 

Palmerah 37934 38781 39773 40927 42261 43794 45547 47545 49813 52380 

Cipete Utara 34887 35665 36578 37640 38867 40276 41889 43726 45811 48173 

Petogogan 15390 15734 16136 16605 17146 17768 18479 19289 20210 21251 

Bintaro 91423 93463 95854 98637 101851 105546 109771 114585 120051 126239 

Ulujami 37635 38475 39460 40605 41928 43449 45189 47170 49420 51968 

Gandaria Seltan 37141 37969 38941 40071 41377 42878 44595 46550 48771 51285 

Bangka 67516 69022 70789 72843 75218 77946 81066 84621 88658 93228 

Tegal Parang 22886 23396 23995 24692 25496 26421 27479 28684 30052 31601 

Kuningan Barat 27118 27723 28432 29258 30211 31307 32560 33988 35610 37445 

Pengadegan 23478 24002 24616 25331 26156 27105 28190 29426 30830 32419 

Cikoko 17380 17767 18222 18751 19362 20064 20868 21783 22822 23998 

Menteng Dalam 53284 54473 55867 57489 59362 61515 63978 66784 69970 73576 

Pinang 1934 1977 2028 2087 2155 2233 2322 2424 2540 2671 

Pondok Pucung 58506 59811 61342 63122 65179 67543 70248 73328 76826 80786 

Pondok Aren 35111 35895 36813 37882 39116 40535 42158 44007 46106 48482 

Lengkong Wtan 36010 36814 37756 38852 40118 41573 43238 45134 47287 49724 

Pondok Jagung 2933 2998 3075 3164 3267 3386 3522 3676 3851 4050 

Sarua 46488 47525 48741 50156 51791 53669 55818 58266 61045 64192 
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Continued on next page. 

Cluster Grid Energi Growth (GWh) 

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 Year-10 

1 Cireundeu 39208 40083 41109 42302 43681 45265 47077 49142 51486 54140 

Cempaka Putih 29374 30030 30798 31692 32725 33912 35270 36816 38573 40561 

Rempoa 27459 28071 28790 29625 30591 31700 32969 34415 36057 37915 

Pondok Petir 39324 40201 41230 42427 43809 45398 47216 49287 51638 54299 

2 Sukabumi Utara 28727 29212 29825 30581 31498 32596 33894 35417 37191 39246 

Kelapa Dua 24691 25107 25634 26284 27073 28016 29132 30441 31966 33732 

Kebon Jeruk 58726 59716 60969 62516 64391 66634 69288 72402 76029 80230 

Srengseng 84349 85772 87571 89792 92486 95707 99519 103991 109201 115235 

Meruya Utara 109706 111556 113896 116785 120288 124478 129436 135253 142029 149877 

Kembngan Sltan 96479 98106 100164 102705 105786 109470 113831 118946 124905 131807 

Kemanggisan 42458 43174 44079 45198 46553 48175 50094 52345 54967 58005 

Gandaria Utara 27704 28172 28763 29492 30377 31435 32687 34156 35867 37849 

Pulo 42353 43067 43970 45086 46438 48056 49970 52215 54831 57861 

Melawai 37947 38587 39396 40395 41607 43057 44771 46783 49127 51842 

Gunung 31622 32155 32830 33662 34672 35880 37309 38986 40939 43201 

Selong 25918 26355 26908 27591 28419 29408 30580 31954 33555 35409 

Senayan 48787 49610 50650 51935 53493 55356 57561 60148 63161 66651 

Pesanggrahan 45022 45781 46742 47927 49365 51085 53119 55506 58287 61508 

Petukangan Utra 57832 58807 60040 61563 63410 65619 68232 71299 74871 79008 

Lebak Bulus 73610 74851 76421 78360 80710 83522 86848 90751 95298 100564 

Pondok Labu 82522 83914 85674 87847 90482 93634 97363 101739 106836 112739 

Cipete Selatan 41871 42577 43470 44572 45910 47509 49401 51621 54207 57202 

Pela Mampang 33347 33909 34621 35499 36564 37837 39344 41112 43172 45558 

Mampng Praptn 14285 14526 14830 15206 15663 16208 16854 17611 18493 19515 

Kalibata 38093 38735 39548 40551 41767 43222 44944 46963 49316 52041 
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Continued on next page. 

 

Cluster Grid Energi Growth (GWh) 

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 Year-10 

2 Rawajali 42654 43373 44283 45406 46768 48397 50325 52587 55221 58272 

Pancoran 30327 30839 31486 32284 33253 34411 35782 37389 39263 41432 

Pondok Pinang 160646 163354 166781 171012 176141 182277 189537 198054 207977 219469 

Kebyoran Seltan 74685 75944 77537 79504 81889 84741 88117 92076 96689 102032 

Kebayora Utara 52500 53385 54505 55887 57564 59569 61942 64725 67968 71723 

Cipulir 33649 34216 34934 35820 36894 38180 39700 41484 43563 45970 

Grogol Selatan 50579 51432 52511 53843 55458 57390 59676 62358 65482 69100 

Grogol Utara 66029 67142 68550 70289 72398 74919 77904 81404 85483 90206 

Kuningan Timur 61393 62428 63738 65355 67315 69660 72435 75690 79482 83873 

Gedong 45145 45906 46869 48058 49500 51224 53264 55658 58446 61676 

Parung Serab 1237 1258 1284 1316 1356 1403 1459 1525 1601 1690 

Sudimara Timur 1164 1184 1209 1240 1277 1321 1374 1436 1508 1591 

Pedurenan 1061 1079 1101 1129 1163 1203 1251 1308 1373 1449 

Kereo 1804 1835 1873 1921 1978 2047 2129 2225 2336 2465 

Babakan 826 840 858 880 906 938 975 1019 1070 1129 

Parigi Baru 50865 51723 52808 54148 55772 57715 60013 62710 65852 69491 

Pndk Kacng Brt 41304 42000 42881 43969 45288 46866 48732 50922 53473 56428 

Pndk Kcg tmr 40175 40852 41709 42767 44050 45584 47400 49530 52012 54886 

Perigi Lama 63559 64631 65987 67660 69690 72118 74990 78360 82286 86832 

Jurang Barat 40216 40894 41752 42811 44095 45631 47448 49580 52064 54941 

Jurang Timur 34755 35341 36082 36997 38107 39434 41005 42848 44994 47481 

Pondok Karya 43604 44339 45269 46417 47810 49475 51446 53758 56451 59570 

Pondok Betung 29764 30266 30901 31685 32635 33772 35117 36695 38533 40663 

Pamulang Timur 42147 42858 43757 44867 46213 47823 49727 51962 54565 57580 
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Cluster Grid Energi Growth (GWh) 

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 Year-10 

2 Pondok cabe  78975 80307 81992 84071 86593 89610 93179 97366 102244 107894 

Pondok Cabe Ilir 63700 64774 66133 67811 69845 72278 75156 78534 82468 87025 

Kedaung 40723 41410 42279 43351 44652 46207 48047 50207 52722 55635 

Bambu Apus 36366 36979 37755 38712 39873 41262 42906 44834 47080 49682 

Jombang 43678 44415 45347 46497 47892 49560 51534 53850 56547 59672 

Sawah Baru 36526 37142 37921 38883 40050 41445 43096 45032 47288 49901 

Sarua indah 25032 25454 25988 26647 27447 28403 29534 30861 32407 34198 

Sawah   31929 32467 33148 33989 35008 36228 37671 39364 41336 43620 

Ciputat 22478 22857 23336 23928 24646 25504 26520 27712 29100 30708 

Cipayung 30524 31038 31690 32493 33468 34634 36013 37632 39517 41701 

Pisangan 49553 50389 51446 52751 54333 56226 58465 61093 64153 67698 

Pondok Ranji 41635 42337 43225 44322 45651 47241 49123 51330 53902 56880 

Rengas 22350 22727 23204 23792 24506 25360 26370 27555 28935 30534 

Grogol 5966 6067 6194 6351 6542 6770 7039 7356 7724 8151 

Krukut 35507 36106 36863 37798 38932 40288 41893 43776 45969 48509 

Limo 61261 62294 63601 65214 67170 69510 72279 75527 79310 83693 

Pangkalanjati  1478 1502 1534 1573 1620 1676 1743 1822 1913 2019 

Mampang 24853 25272 25802 26457 27251 28200 29323 30641 32176 33954 

Serua 39291 39953 40791 41826 43081 44581 46357 48440 50867 53678 

Kedaung 35939 36545 37311 38258 39405 40778 42402 44308 46527 49098 
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