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Abstract: This research explores the spillover effects in the directional movement of returns and the 

persistence of shocks among three prominent energy spot markets: title transfer facility for natural gas, 

Brent crude oil and electricity markets from monthly price data spanning January 2010 to September 2022. 

Methodologically, we initially employ bivariate vector autoregressive models to detect potential 

lagged return effects from one spot market on another. Then, we examine the impact on the conditional 

mean returns and volatility across these spot markets using the standard dynamic conditional 

correlation (DCC) model, as well as the respective asymmetric (ADCC) and flexible (FDCC) 

extensions. In addition, we accommodate innovative insights that include recent datasets on the 

COVID-19 crisis and the Ukrainian war, which constitute a new addition to the existent literature. The 

empirical findings confirm the significant impact of these two unprecedented moments of 

contemporaneous history, given that both events are substantiated by an exponential increase in prices 

and by a rise in volatility. However, the effect on returns was not uniform across the time series. 

Specifically, there was a consistent increase in volatility for natural gas and electricity from the start 

of 2020 until the end of 2022, while Brent oil exhibited a substantial peak only in the first half of 2020. 

This study also reveals that previous lagged returns within each market, particularly for Brent oil and 

electricity, had statistically significant effects on current returns. There was also a robust unidirectional 

positive spillover effect from the Brent oil market to the returns of electricity and the natural gas 

markets. The study also reveals the presence of a weak positive autocorrelation between natural gas 

and electricity returns, and positive shocks to returns had a more pronounced impact on volatility 

compared to negative shocks across all the time series. 
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1. Introduction  

In recent years, energy markets have experienced important upheaval, exerting a substantial 

impact on the European economy and contributing to increased living costs and inflation [1]. These 

markets are marked by intricate geopolitical factors, amplifying the instability in various sectors and 

industries due to pronounced price volatility [2–5]. Notably, oil and natural gas (NG) stand out as the 

most pivotal commodities among the energy sources, with biofuels also meriting attention [6–7]. 

Despite their importance, existing literature has predominantly focused on the adverse effects of rising 

oil and natural gas prices on economic growth [8]. For oil, two primary reasons are typically cited to 

rationalize these effects: their critical roles as inputs in the production process and the perception of 

crude oil as a lucrative investment asset [9–10]. Indeed, Brent oil continues to hold a crucial position 

in the transportation industry and as a raw material for the chemical industry. Consequently, forecasting 

oil prices remains a relevant action to ensure energy supply security and to inform policymakers [11]. 

However, the influence of NG has also been expanding in global energy markets [12]. This was 

particularly noticed with the war in Ukraine and the European Union (EU) sanctions against Russia, 

which led to a reduced importance of oil compared to NG and electricity in driving inflation and 

economic growth in Europe [13]. According to the International Energy Agency (IEA), NG 

consumption witnessed a robust 4.6% growth in 2018, contributing significantly to the overall increase 

in global energy demand [14]. NG also plays a pivotal role in achieving a fully decarbonized economy, 

aligning with the EU's decision to reduce greenhouse gas emissions by at least 55% by 2030 compared 

to 1990 levels [15]. It is worth highlighting that NG can be utilized across various sectors, including 

residential, commercial, industrial, power generation and transportation. 

There is extensive literature addressing the impact of energy markets on economy and financial 

crises. Among them, [16] argues that oil price shocks can affect a country’s performance due to their 

capacity to disrupt the purchase of goods and investment realization. Some studies [17–19] extend the 

vision on energy resources by investigating the relationship among various energy prices, power 

markets and clean energy stocks. Others, such as [20,21], analyze volatility spillovers between oil and 

stock markets in Europe, the United States of America (USA) and Gulf Cooperation Council (GCC) 

countries. [22,23] explore volatility spillovers between oil and natural gas and between energy markets 

and European energy stock prices. Additionally, [24] investigated the impact of European Union 

Allowance (EUA) price fluctuations on the stock performance of electricity firms, while [25] examined 

correlations between United States equity indices, European equity indices and the Chinese stock market. 

The COVID-19 pandemic triggered a severe economic shock, resulting in an unprecedented adverse 

impact on world economies. Accordingly, [26] compares this recent crisis to the great economic 

recession of the subprime mortgage crisis (2007–2008). The global economy contracted by 3.3% in 2020 

compared to the growth of 2.8% achieved in 2019. In particular, lockdowns had a profound impact on 

citizens’ lifestyle and financial markets, as reported by [27–30]. The global economy also took a huge 

toll after the invasion of Ukraine by Russia. All countries were hit by higher commodity prices, 

especially in the energy and food industries. This geopolitical instability naturally hampered the 

recovery of the global economy in the post-pandemic phase [31]. For instance, the crude oil market 
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suffered another shock in 2022, with prices skyrocketing from around 76 USD per barrel in January 2022 

to over 110 USD in March 2022 [32]. Moreover, NG spot market prices exhibited exponential growth 

since the first half of 2021. For example, the IEA projected in its 2022 Q4 gas market report that global 

NG consumption is expected to increase at an annual average rate of 0.8% from 2022 to 2025 [33]. 

Several studies describe that these geopolitical factors had a significant impact on energy trade [34–35], 

energy prices [36–37] and counter-cyclically [38–39]. 

In recent decades, there has been an increased interest in modeling and forecasting the volatility 

of time series, as well as examining the relationships among them [40]. This heightened focus is a 

consequence of time series typically exhibiting time-varying conditional variance, commonly referred 

to as volatility, and correlations. Higher volatilities increase the risk of assets, while higher conditional 

correlations lead to an increased risk in portfolios. In this context, our interest lies not in examining 

the variance of such time series throughout the sample period but specifically in the varying or 

conditional variance. Another crucial phenomenon related to the relationships among time series is the 

spillover effect, which occurs when one event (e.g., oil price return) triggers another event (i.e., NG 

returns) in a similar manner [41]. These spillover effects and volatility have undergone detailed analysis. 

For instance, [42] investigated the volatility spillover between crude oil, natural gas and the S&P500 

markets during the COVID-19 pandemic. Additionally, [43] implemented a time-varying Granger 

causality test to confirm the bilateral contagion effect between the World Trade Institute (WTI) and 

gold during this period. [44] adopted the Multifractal Detrended Fluctuation Analysis (MF-DFA) 

approach to analyze the asymmetric multifractality between Brent crude oil and gold prices, and [45–46] 

examined the dynamic spillover effects between bitcoin and crude oil during the pandemic crisis. 

To thoroughly analyze these events, generalized autoregressive conditional heteroskedastic (GARCH) 

models have been widely employed in various types of portfolios for modeling time series volatility [47]. 

These models generalize ARCH models [48], as the conditional variance does not depend solely on 

previous squared error values but also on previous values of the same variance [47]. Therefore, as their 

main advantages, they allow for accommodating both effects: conditional standard deviations of the returns 

on stocks in the portfolio will co-evolve, and correlations between the returns will also vary [49]. There are 

several types of GARCH models, such as the exponentially weighted moving average (EWMA) model, 

the diagonal vector error correction (VEC) model, the dynamic conditional correlations (DCC) model, 

orthogonal GARCH or the dynamical orthogonal components model, whose usefulness has been 

confirmed in various studies involving energy markets. For example, [50] investigated the portfolio and 

hedging implications based on DCC and corrected DCC-GARCH models, reporting that oil-

importing nations are significantly affected by lagged oil price shocks, although there is less 

evidence of interdependence between stock markets for both oil-importing and oil-exporting 

countries. Furthermore, [51] utilized DCC-GARCH models to assess the time-varying dynamics of value-

at-risk (VaR) on daily stock returns of emerging markets. Results confirmed that this approach captures the 

volatility of stock returns better than traditional VaR models. Regarding the main limitations of GARCH 

models, [52] asserts that stock market returns are negatively correlated with changes in volatility returns, 

implying that volatility tends to rise in response to bad news and fall in response to good news. Another 

constraint is the non-negativity of parameters to ensure the positivity of the conditional variance [47]. 

Specifically, for multivariate GARCH models (MGARCH) in situations with a high number of 

parameters (d > 10), the estimation of the volatility matrix may become infeasible [49]. Thus, despite 

being a popular choice, one limitation of the method is the requirement of a large sample size [32]. 

Furthermore, conditional correlation models have emerged as a more practical alternative for 
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predicting and interpreting parameters [53]. In this context, the DCC-GARCH model [54] is more 

realistic than the constant conditional correlation CCC-GARCH model [55] as it allows for conditional 

correlations to change over time. The asymmetric ADCC [56] model is an extension of the DCC, 

enabling the presence of asymmetric dynamic correlations. Finally, the FDCC [57] introduces a more 

flexible parameterization of correlation dynamics by relaxing the equality for all correlations. 

Numerous examples in the literature confirm the relevance of these models for capturing the dynamic 

dependence of time-varying correlation coefficients. For instance, [58] concludes that DCC models 

provide a better estimation of the dynamic correlation structure, enabling more efficient capture of 

volatilities and forecasting of returns than other models. 

Motivated by the insights mentioned above, this paper aims to examine the spillover effects on 

returns and volatility among three prominent energy spot markets: title transfer facility (TTF) for 

natural gas (NG), Brent crude oil, and the electricity market (EPEX). To achieve this, we employ a 

two-step approach. First, we use vector autoregressive (VAR) models to identify lagged return effects 

from one spot market to another. Second, we utilize a set of models belonging to the family of DCC, 

which has proven to be suitable in previous studies. With these models, we assess the impact on the 

conditional mean returns and volatility across the spot markets. Despite several papers addressing 

different types of energy resources, none have comprehensively analyzed the joint impacts on the 

persistence shocks of NG, oil and electricity spot markets, as presented in this research. We also 

introduce innovative insights by incorporating recent datasets covering the role of the COVID-19 

pandemic crisis and the war in Ukraine on returns and volatilities. In terms of methodology, given the 

prominence of the family of DCC methods in the literature, we introduce a comparative analysis of 

results for estimating dynamical conditional correlations, utilizing DCC models and their subsequent 

extensions: asymmetric (ADCC) and flexible (FDCC). This constitutes an innovation in the literature, 

especially when considering these three spot markets, which has not been done in the past. 

Given the significance of the COVID-19 pandemic and the war in Ukraine, both of which led to 

unprecedented instability in economies, our study proposes to test the following research hypotheses 

concerning this topic: 

A1: The pandemic crisis had a substantial impact on the returns of the TTF NG, Brent crude oil 

and electricity EPEX spot markets, but the impact was not uniform across these markets. 

A2: The Ukraine conflict extended the influence of the pandemic crisis on the returns and 

volatilities of these spot markets, albeit with varying degrees of intensity. 

The impacts of NG, oil and electricity on other activity sectors are frequently discussed in the 

literature. This paper also aims to offer new and recent insights by combining these three energy 

sources. The goal is to provide information for stakeholders in the energy markets regarding the 

following research hypothesis: 

B1: Lagged returns significantly influenced the returns of TTF NG, Brent crude oil and electricity 

over time. 

B2: There was a notable spillover effect on returns and volatility among these spot markets. 

C: The persistence of shocks affected the dynamic conditional correlations differently among the 

spot markets. 

As the main empirical findings, this paper reveals the considerable effect of the pandemic crisis 

and the Ukrainian war on the increase in volatility, but with different impacts on returns among energy 

sources. This study also highlights the significant effect of previous lagged returns within each market, 

particularly for Brent oil and electricity. Additionally, it identifies a robust unidirectional positive 
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spillover effect from the Brent oil market to the returns of electricity and NG markets. Finally, the 

time-varying correlation coefficient of the DCC-GARCH model reveals weak positive autocorrelation 

between NG and electricity returns. Furthermore, positive shocks to returns had a more pronounced 

impact on volatility compared to negative shocks across all the time series. 

The study is structured as follows: section 2 provides a description of the datasets and the 

mathematical foundation underlying the empirical models employed. section 3 presents the results, 

and section 4 summarizes the main conclusions, limitations and potential avenues for future research. 

2. Materials and methods 

2.1. Data 

We have curated three distinct datasets, each comprising 153 monthly price records, representing 

natural gas, oil and electricity from the following sources: TTF NG in the Netherlands, Brent crude oil 

and electricity from the Germany-Luxembourg (DE/LU) spot market. These datasets cover the period 

from January 2010 to September 2022, selected to provide an overview of these markets since the 

beginning of the 2010 decade, shortly after the subprime mortgage crisis [59], until the last available 

data at the time of data collection for our study. The choice of monthly data was based on the periodicity 

retrieved from Nasdaq Data Link [60] and the USA Energy Information Administration (EIA) [61], for 

TTF NG and Brent crude oil, respectively. For consistency of results, we also selected monthly data for 

electricity from the Energy-Charts [62] website. TTF NG, renowned for its high liquidity, is a key player 

in the European NG market and is primarily traded on the European Energy Exchange (EEX) [63]. It 

distinguishes itself as a prominent NG trading hub in Europe. Brent crude oil, on the other hand, holds 

substantial global significance and serves as a crucial benchmark for global oil pricing. It is closely 

monitored by central banks and international institutions [64]. Lastly, EPEX SPOT operates day-ahead 

power markets for various European countries. In our analysis, we specifically focus on electricity 

prices from the Germany-Luxembourg spot market [62], representing this facet of the energy market. 

2.2. Diagnostic tests 

Before delving into the empirical models, we conducted a preliminary analysis involving a six-

step procedure as follows: 

• Return calculation 

• Normal distribution check 

• Serial data correlation verification 

• Correlation analysis over time 

• Unit root analysis 

• Autoregressive conditional heteroscedasticity (ARCH) effects examination 

Initially, we computed price returns from the NG, Brent oil and electricity spot markets. These 

returns (denoted as 'r') signify the proportion gained or lost (p) since the previous time period. This 

calculation can be approximated as follows: 

 𝑟𝑡 =
𝑝𝑡 − 𝑝𝑡−1

𝑝𝑡−1
≈ log(𝑝𝑡) − log(𝑝𝑡−1) (1) 
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This approximation is effective when 𝑟𝑡 is close to zero. Obviously, a possible asset may be 

risky if its returns exhibit significant fluctuations over time. Market volatility tends to surge when 

major news or events occur, and it may require several periods for the market to fully assimilate 

and respond to such developments. In the second step, we examined the normal distribution of 

each series using the Jarque-Bera (JB) test [65]. Rejecting the null hypothesis in this context 

indicates that a given time series deviates from a normal distribution at a specified critical 

significance level, typically 0.05. Another crucial aspect to consider is the presence of serial 

correlation, which can impact the unbiased and consistent estimation of regression model 

coefficients. In the third step, we employed the Ljung-Box Q test to assess autocorrelation within 

the series [66]. Rejection of the null hypothesis at the 0.05 significance level signifies the presence 

of serial correlation. Moving on to the fourth step, we employed Pearson's correlation coefficient 

to evaluate the association between two variables [67]. As a fifth step, we conducted tests to check 

the stationarity of the time series. This is essential to avoid spurious correlations in autoregressive 

models. We utilized the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests for this 

purpose. The presence of unit roots in a time series can manifest when there are changes in the 

mean, variance or autocovariance of its distribution over time [68]. The ADF test extends the 

Dickey-Fuller test by incorporating additional lagged terms of dependent variables to eliminate 

autocorrelation [69]. Rejection of the null hypothesis in both tests indicates that the time series is 

stationary. Lastly, we investigated the presence of serial dependence (i.e., ARCH effects). To 

accomplish this, we employed Engle's ARCH test, which is a Lagrange multiplier (LM) test 

designed to assess the significance of these effects [48]. Alternatively, the Ljung-Box Q test can 

be used with Engle's ARCH test to examine ARCH effects in the first m lags of the squared residual 

series. 

2.3. Empirical models 

ARCH models are frequently used in macroeconomics. For instance, [48,70] found evidence that 

large and small forecast errors may occur in some clusters. The GARCH model introduced by [49] is 

a more robust model by enabling the conditional variance to be dependent on previous lags [71]. We 

implemented a multivariate GARCH model, which has the power to examine returns and volatility 

linkages [72–74]. To infer the variance of residuals of VAR (1) and to estimate the dynamic conditional 

correlation between prices and returns of TTF NG, Brent oil and electricity EPEX spot markets, we 

use DCC, ADCC and FDCC models. Several studies reveal the ability of this approach to capture 

spillover effects on returns and volatility [51,53,72–74]. 

2.3.1. VAR 

Consider the model with p-order in terms of lags as follows: 

 𝑟𝑡 = 𝛿 + Φ1𝑟𝑡−1 + Φ2𝑟𝑡−2 + ⋯ Φ𝑝𝑟𝑡−𝑝 +  ℎ𝑡 (2) 

where 𝛿 = (𝛿1, 𝛿2, ⋯ , 𝛿𝑛)′ is a vector of the constant terms, Φ a matrix of the previous own lag 

time (t−1) returns and ℎ𝑡 = (ℎ1𝑡, ⋯ , ℎ𝑛𝑡)′  a vector of the serial uncorrelated error terms that 

follows 𝐸(ℎ𝑡) = 0, 𝐸(ℎ𝑡ℎ𝑡
′) = Σ, and 𝐸(ℎ𝑡ℎ𝑠

′) = 0 for 𝑡 ≠ 𝑠.  
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We implemented bivariate VAR (1) models that, for the specific case of NG (𝑟1) and oil (𝑟2)returns, 

can be represented by the following expressions: 

 𝑟1𝑡 = 𝛿1 + Φ11𝑟1,𝑡−1 + Φ12𝑟2,𝑡−1 +  ℎ1𝑡 (3) 

 
𝑟2𝑡 = 𝛿2 + Φ21𝑟2,𝑡−1 + Φ22𝑟2,𝑡−1 + ℎ2𝑡 (4) 

where ϕ is a 2 × 2 matrix with the terms that indicate the effect of previous time lag returns on the 

current bivariate returns of the model. To ascertain the presence of serial correlation in the residuals 

for each of the three bivariate VAR (1) models, we conducted both the Portmanteau test (asymptotic) 

and Engle's test to detect ARCH effects. To determine the optimal lag order of the VAR model, we use 

the Hannan-Quinn information criterion (HQIC) and the Schwarz information criterion (SBIC). 

Additionally, we employed Granger causality tests to determine whether one time series can effectively 

forecast another. The definition of Granger causality, as proposed by [75], holds paramount 

significance in examining dynamic relationships between time series. It leverages the concept of 

temporal precedence, distinguishing it from causal notions grounded in controlled variation [76]. The 

null hypothesis of no Granger causality remains unaltered unless and until lagged values of an 

explanatory variable are included in the regression. 

2.3.2. GARCH 

Let 𝑟𝑡 be a 3 × 1 series of returns of TTF NG, Brent oil and EPEX electricity returns. We specify 

the mean equation with autoregressive model VAR (1) term of 𝑟𝑡, which can be specified as follows: 

 𝑟𝑖,𝑡 = 𝜂 + 𝜈𝑟𝑖,𝑡−1 + ℎ𝑖,𝑡, ℎ𝑖,𝑡 ∼ 𝑁(0, 𝜎𝑖𝑡) (5) 

The univariate GARCH model is used to derive the expression of residual variances. 

Following [77], we consider that a first order of the GARCH (1, 1) model is sufficient to assess 

the conditional variance (𝜎𝑡
2), which is specified by: 

 𝜎𝑖,𝑡
2 = ϖ + 𝛼i,1ℎ𝑡−1

2 + 𝛽i,1𝜎𝑖,𝑡−1
2  (6) 

where 𝛼 and 𝛽 are 3 × 1 vectors that respectively measure the conditional variance in the ARCH’s 

terms (i.e., the short-term persistence effect) and the conditional volatility in the GARCH’s terms (i.e., 

the long-term persistence effect) [73].   

2.3.2.1. DCC-GARCH  

The DCC model was introduced by [54]. Let Σ𝑡 represent a 3 × 3 conditional covariance matrix 

formally given by Σ𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡, where 𝐷𝑡 is the 3 × 3 diagonal conditional matrix that includes time-

varying standard deviations on the diagonal and 𝑅𝑡 is the time-varying correlation matrix such that: 

 𝐷𝑡 = 𝑑𝑖𝑎𝑔 (𝜎11,𝑡

1
2 ⋯ 𝜎33,𝑡

1
2) (7) 
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𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑞11,𝑡
−1/2 ⋯ 𝑞33,𝑡

−1/2 ) 𝑄𝑡 𝑑𝑖𝑎𝑔(𝑞11,𝑡
−1/2 ⋯ 𝑞33,𝑡

−1/2 ) (8) 

where 𝑄𝑡 is a symmetric positive matrix specified as follows: 

 
𝑄𝑡 = (1 − 𝜃1 − 𝜃2) �̅� + 𝜃1 ℎ𝑡−1 ℎ𝑡−1

′ + 𝜃2 𝑄𝑡−1 (9) 

with �̅�  materializing a 3 × 3  unconditional correlation matrix of the standardized residuals ℎ𝑖𝑡 . 

Parameters 𝜃1  and 𝜃2  are non-negative with a sum less than unity. Under a DCC specification, the 

typical element of the time-varying correlations will be of the form: 

 𝜌𝑖𝑗,𝑡 =
𝑞𝑖𝑗,𝑡

√𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡

 (10) 

Therefore, 𝑅𝑡 is a matrix of time-varying correlations in which 𝜌𝑖𝑗,𝑡 take values of one on its main 

diagonal: 

 
[

1 𝜌12,𝑡 𝜌13,𝑡

𝜌21,𝑡 1 𝜌23,𝑡

𝜌31,𝑡 𝜌32,𝑡 1
] (11) 

2.3.2.2. ADCC-GARCH 

The asymmetric dynamic conditional correlation generalized autoregressive conditional 

heteroskedasticity (ADCC-GARCH) model was proposed by [56] to generalize the DCC model by 

permitting the presence of asymmetric dynamic correlations. This extension is adequate to examine 

dynamic correlation among different asset classes and investigate the presence of asymmetric 

responses in conditional variances and correlations to negative returns. Intuitively, it is useful to 

explain the increase in the conditional correlation during market downturn periods [63]. In this new 

approach, the 𝑄𝑡 matrix is given as follows: 

 𝑄𝑡 = (1 − 𝜃1 − 𝜃2) �̅� − 𝜃3�̅� + 𝜃1 ℎ𝑡−1 ℎ𝑡−1
′ + 𝜃2 𝑄𝑡−1 + 𝜃3𝑍  (13) 

where the coefficient 𝜃3 explains the presence of asymmetric effects. Moreover, 𝑍 = 𝜉𝑡−1𝜉𝑡−1
′  is the 

covariance matrix of [𝐸(𝜉𝑡−1𝜉𝑡−1
′ )] , with 𝜉𝑡−1 = 𝐼[ℎ𝑡 < 0]⨂ℎ𝑡 . Note that ⨂  is the Hamadard 

product, whereas 𝐼[. ] is a function that takes value 1 when the residuals are negative and 0 otherwise.  

2.3.2.3. FDCC-GARCH 

The flexible dynamic conditional correlation generalized autoregressive conditional 

heteroskedasticity (FDCC-GARCH) model proposed by [57] relaxes the assumption of equal 

dynamics for all the correlations by introducing a block-diagonal structure, thereby allowing to extend 

the original DCC model. Hence, it provides a more flexible parameterization of correlation dynamics, 

while maintaining the number of parameters at a feasible level. In the FDCC-GARCH model, the 𝑄𝑡 

matrix is given as follows: 

                  𝑄𝑡 = 𝑐𝑐′ + 𝑎𝑎′ ℎ𝑡−1 ℎ𝑡−1
′ + 𝑏𝑏′ 𝑄𝑡−1   (14) 
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where c, a and b are partitioned 3-dimensional vectors with the following structure: 

              𝑎 = [𝑎1 × 𝑖𝑚1
′   𝑎2 × 𝑖𝑚2

′   ⋯  𝑎𝑤 × 𝑖𝑚𝑤
′ ]  (15) 

where 𝑖ℎ is an h-dimensional vector of ones and w is the number of blocks (similarly applied to b and c). 

The coefficient vectors contain w different coefficients, each of them possibly repeated 𝑚𝑗 times, 

with j = 1, 2, ⋯, w. As a result of the block structure of coefficient matrices, the dynamics are equal 

only for groups of variables and not for the whole correlation matrix. Finally, Engle’s DCC model, 

whose main innovation is the relaxation of the common correlation dynamics hypothesis among all 

the assets, can be obtained by considering the following setting: 

  𝑎 = √𝛼 × 𝑖𝑘, 𝛽 = √𝛽 × 𝑖𝑘, 𝑐𝑐′ = (1 − 𝑎𝑎′ − 𝑏𝑏′)�̅� (16) 

3. Results 

In this section, we present and analyze the results obtained in our study. In section 3.1, we aim to 

assess the impacts of the pandemic crisis and the subsequent war in Ukraine on the TTF NG, Brent 

crude oil and electricity EPEX spot markets, as hypothesized in A1 and A2. We base this assessment 

on our preliminary analysis of the datasets. Moving onto section 3.2, we utilize the empirical models 

to investigate the presence of spillover effects on the returns and volatility among the three spot 

markets, in line with hypotheses B1 and B2. Furthermore, we observe whether the persistence of 

shocks has led to varying degrees of influence on the dynamic conditional correlations among the spot 

markets, as posited in hypothesis C. 

3.1. Exploratory data analysis and preliminary statistical tests 

Figure 1 depicts the price trends of TTF NG, Brent oil and the electricity EPEX spot market in 

Germany-Luxembourg (DE/LU) from January 2010 to September 2022. 

These prices followed distinct patterns over time. Initially, there was a gradual price increase until 

early 2012, followed by relatively stable fluctuations until the first half of 2020. However, a significant 

shift occurred thereafter, with prices skyrocketing in response to the pandemic crisis and the Ukraine-

Russia war. Notably, Brent oil prices exhibit three distinct phases: from 2010 to 2014, prices remained 

consistently high, mostly above €100. From 2015 to 2020, there was a notable price reduction, with 

the lowest point reached in the first half of 2020, primarily due to various governmental measures, 

including lockdowns, which directly impacted lifestyles and reduced crude oil consumption. EPEX 

SPOT electricity prices remained relatively stable until the first half of 2020, after which they exhibited 

an exponential growth trend, reaching a peak in the middle of 2022 at €455.38. 
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(a) (b) 

 

(c) 

Figure 1. Time-series plots of (a) NG TTF, (b) Brent oil and (c) electricity EPEX SPOT prices. 

Figure 2 presents the monthly returns of TTF NG, Brent oil and the electricity EPEX spot market. 

While all three series exhibit a mean close to zero, the highest volatility is observed in the returns of 

NG and electricity, particularly noticeable around late 2019 and reaching its peak negativity in the first 

half of 2020 during the onset of the pandemic crisis. Electricity returns show relatively consistent 

variations over time but become more pronounced since the pandemic's outset. Brent oil returns exhibit 

more uniform variability, ranging between –0.2 and 0.2, with two prominent peaks coinciding with the 

early stages of the pandemic crisis in the first half of 2020. These observations are further corroborated 

by the monthly squared returns, as shown in Figure S1 in the supplementary. Notably, both the pandemic 

crisis and Russia's invasion of Ukraine significantly impacted the increase in return volatility, especially 

evident for TTF NG (since early 2020), Brent oil (with a substantial peak in the first half of 2020) and 

electricity, which became even more pronounced since early 2022. 

 



1262 

 

AIMS Energy  Volume 11, Issue 6, 1252–1277. 

  

(a) (b) 

 
(c) 

Figure 2. Time-series plots of TTF NG, Brent crude oil and electricity EPEX SPOT (DE/LU) returns. 

Table 1 provides a summary of descriptive statistics for NG, Brent crude oil and electricity prices, 

as well as their corresponding returns. The results highlight that the standard deviation was highest for 

electricity prices, exceeding the mean price. The standard deviation for NG was also relatively close 

to the average, aligning with the exponential variations observed since 2020. Minimum and maximum 

price points for all three series occurred in the pre-pandemic and post-pandemic crisis periods. 

Regarding returns, the data confirm the higher volatility of electricity compared to the other energy 

sources, with a standard deviation of 0.177, followed by NG and oil, with values of 0.137 and 0.113, 

respectively. Except for oil, all series exhibit positive skewness tails, with higher skewness values for 

NG and electricity due to extreme price movements since 2020. Moreover, except for oil prices, all other 

series display kurtosis values exceeding the reference range for normally distributed data (between –2 

and 2). Figure S2 presents the distributions of all series. NG, Brent oil and electricity returns exhibit 

more symmetric distributions when compared to the price series. The results of the Jarque-Bera test, 

conducted with a significance level of 0.05, indicate that none of the price and return series follow a 

normal distribution. Among the series, electricity returns (JB = 7.611, p-value = 0.222) and Brent crude 

oil prices (JB = 7.666, p-value = 0.008) display relatively minor deviations from normality.  
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Table 1. Descriptive statistics for prices and returns of TTF NG, Brent crude oil and electricity. 

 Prices  Returns 

 NG Oil Elect. NG Oil Elect. 

Mean 10.330 77.390 54.580 0.0131 0.001 0.014 

Std. Dev. 9.524 26.655 58.308 0.137 0.113 0.177 

Min. 1.460 18.308 17.050 –0.354 –0.555 –0.468 

Max. 69.980 125.450 455.38 0.465 0.469 0.688 

Median 8.480 74.170 38 –0.001 0.015 0.022 

Q1 5.540 55.890 32 –0.031 –0.047 –0.088 

Q3 11.110 107.480 49 0.052 0.063 0.105 

Kurtosis 17.749 1.783 23.220 4.908 11.032 3.963 

Skew. 3.512 0.094 4.221 0.740 –1.132 0.262 

JB 1701.2 9.665 3060 36.912 441.010 7.611 

P-value <0.001*** 0.008*** <0.001*** <0.001*** <0.001*** 0.022** 

Q (10) 467.200 1008.5 399.770 32.212 26.512 16.275 

P-value <0.001*** <0.001*** <0.001*** <0.001*** 0.003*** 0.092 

Obs. 153 153 153 153 153 153 

Unconditional correlation matrix (Pearson’s coefficients) 

NG 1      

Oil 0.457*** 1     

Elect. 0.958*** 0.278*** 1    

NG    1   

Oil    0.109 1  

Elect.    0.516*** 0.211*** 1 

Notes: *: p < 0.1, **: p < 0.05, ***: p < 0.01. JB denotes the Jarque-Bera statistic. Q shows the Ljung-Box statistic for 

serial correlation for 10 lags. 

The assessment of serial correlation holds utmost significance in preventing the occurrence 

of spurious regressions within the empirical models proposed in this study. Table 1 additionally 

presents findings indicating that electricity returns stand as the sole series lacking significant serial 

correlation (Q = 16.275, p = 0.092). Figure S3 furnishes supplementary insights via autocorrelation 

function (ACF) plots. These plots serve as valuable tools in identifying discernible patterns and 

deviations from randomness within price series. It is worth noting that NG returns exhibit values 

exceeding predefined bounds at multiple lags, thereby contributing to the rejection of the white noise 

assumption and, consequently, indicating the presence of autocorrelation. Furthermore, the outcomes 

of unconditional cross correlations provide substantial insights. Notably, a strong positive correlation is 

evident between NG and electricity price series (r = 0.958, p-value < 0.001). This is followed by a 

moderate correlation between NG and oil returns (r = 0.457, p-value < 0.001), and a weak correlation 

between oil and electricity prices (r = 0.278, p-value < 0.001). Additionally, based on the results of 

Pearson's coefficient with a significance level of 0.05, we can assert the absence of a significant association 

between NG and Brent oil returns. While the correlation between NG and electricity returns exhibits the 

highest values, it still represents a moderate correlation (r = 0.516, p-value < 0.001), whereas the correlation 

between oil and electricity returns indicates a weak relationship (r = 0.211, p-value = 0.007). 
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Subsequently, we proceeded with unit root tests to assess the stationary condition, a prerequisite 

for applying an autoregressive process in our empirical return models. The results of ADF and PP tests 

are presented in Table 2. Both tests consistently indicate that NG, crude oil and electricity prices exhibit 

nonstationary behavior. This observation aligns with the price trends depicted in Figure 1, emphasizing 

that the data undergoes clear changes over time. To address this nonstationary behavior and achieve 

stationary processes, we computed the first difference values, representing changes from one period to 

the next (Figures S4a, b and c). The evolving trends confirm that the first differences I (1) of all price 

series now exhibit variations around a mean of zero. Specifically, the first differences in crude oil 

prices reveal relatively consistent variance over time, while NG and electricity I (1) prices display 

higher variation, particularly in recent years since the onset of the pandemic crisis and the Ukrainian 

war. 

Table 2. Results of unit root tests for prices and returns series. 

 

 

ADF tests PP tests  

  Level 1st difference level 1st difference 

Prices NG 0.706++ –11.906*** 1.537++ –11.739*** 

Oil –2.256 (0.470) –8.373*** –1.785 (0.666) –8.772*** 

Electricity 1.766++ –10.883*** 0.786++ –14.463*** 

Returns NG  –7.806*** –7.483*** –9.588*** –20.907*** 

Oil –9.471*** –9.211*** –8.789*** –18.875*** 

Electricity –10.297*** –7.576*** –15.412*** –36.895*** 

Notes: *: p < 0.1, **: p < 0.05, ***: p < 0.01. ++: p > 0.99. 

As for returns, the outcomes of the ADF and PP tests affirm that both the return levels and first 

difference series for NG, crude oil, and electricity are stationary, with p-values < 0.010. This alignment is 

consistent with the trends observed for each series in Figure 2, where variations center around zero. Notably, 

variability over time appears to be less stable for NG and electricity returns, particularly since the third 

quarter of 2021. Nevertheless, the first differences for return processes remain stationary. Figures S4d, e 

and f further illustrate the relatively consistent variance in crude oil returns, whereas NG and electricity 

exhibit more pronounced variation, particularly with elevated values since 2022. Figure S4e additionally 

highlights a peak in crude oil returns at the onset of the COVID-19 pandemic in the first half of 2020. 

Hereinafter, the focus of the analysis is restricted to NG, crude oil and electricity returns, which 

will be used in the empirical models outlined in section 2.3. To this end, we initiated an examination 

of the existence of ARCH effects to determine whether variances in these series exhibit temporal 

variation. Table S1 presents the outcomes of Engle's ARCH and the Ljung-Box tests, which assess the 

time-varying conditional variance of squared residual errors (h2) within the dynamic models for return 

series. Both tests consistently indicate highly significant ARCH effects in all series. These findings 

align with the observed variations in squared residual errors generated by the dynamic models, as 

depicted in Figure 3. Notably, there is clear serial correlation in h2 for all series. 
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Figure 3. Time-varying conditional variance of residual errors for dynamic models of (a) 

TTF NG, (b) crude oil and (c) electricity EPEX SPOT (DE/LU) returns. 

For NG, distinct clusters of conditional volatility can be identified. First, there is a period until 2015 

characterized by relatively small variation. From 2015 until the pre-pandemic phase, volatility began to 

increase. Finally, starting from that moment, there is a substantial change in variability. During this 

period, a reduction in residuals to values similar to the second cluster can be observed around the 

beginning of 2021 (Figure 3a). 

In the case of Brent oil, volatility remains relatively consistent over time but exhibits clear 

autocorrelation in squared residuals. Once again, a peak in volatility is evident in the first half of 2020.  

In relative terms, volatility in electricity EPEX returns surpasses that of NG and Brent oil, 

with h2 fluctuating between 0 and 0.1 until the onset of the pandemic in 2020, at which point the 

first peak above 0.2 emerges. Subsequently, volatility decreased but started rising again following 

Russia's invasion of Ukraine in 2022.  

Lastly, Pearson's coefficients reveal the extent of correlation among the series. Notably, NG and 

electricity exhibit a higher correlation (r = 0.479, p-value < 0.001), representing a moderate association. 

  

(a) (b) 

 

(c) 
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This is followed by the correlation between NG and oil (r = 0.229, p-value = 0.004), which is very 

weak. The correlation between oil and electricity is not significant (r = 0.07, p-value = 0.372). 

3.2. Parametric analysis: links between returns and volatility among TTF NG, Brent oil and EPEX 

electricity (spillover effects) 

In this section, we unveil the outcomes of the empirical models we employed. Initially, we 

conducted separate bivariate VAR models to examine potential effects of lagged returns from one market 

on another (hypothesis B1). Subsequently, we employed a series of DCC-GARCH models to delve into 

the repercussions on the conditional mean returns and volatility across the markets (hypothesis B2). 

Furthermore, we explored the dynamic conditional correlations between these markets, characterized by 

varying intensities (hypothesis C). 

3.2.1. VAR models applied to returns  

Table 3 displays the parameters of the bivariate VAR (1) model employed to estimate mean returns. 

For each model, we have constant terms represented by δ1 and δ2 for spot markets 1 and 2, corresponding 

to TTF NG and Brent crude oil returns in the first model, TTF NG and electricity EPEX (DE/LU) returns 

in the second model and Brent oil and electricity EPEX returns in the third model. The terms Φ11 and Φ22 

signify the autocorrelation in returns based on the previous lag (t−1) for the considered spot markets 

within each of the three VAR (1) models. We explored various lag orders, but since many terms were 

not statistically significant, we did not include them in our study. Finally, Φ12 and Φ21 represent the 

return spillovers between the spot markets. 

The results of the first model reveal a significant impact of NG and Brent oil's own lagged returns on 

their current returns (Φ11 = 0.219, p-value = 0.006; Φ22 = 0.286, p-value < 0.001). Regarding the spillovers 

between these two markets, only the current NG returns were positively influenced by the previous lagged 

returns (t−1) of oil (Φ12 = 0.322, p-value < 0.001). Granger causality tests also confirm the positive impact 

of the Brent oil market on TTF NG returns (G = 11.793, p-value < 0.001). Figure S5a visually illustrates 

this impact, with confidence interval bounds above the horizontal line 𝑦 = 0. A diagnostic analysis of the 

VAR (1) residuals suggests that they can be considered white noise (P = 56.283, p-value = 0.102) but it 

also indicates the presence of ARCH effects, which will be investigated in section 3.2.2. 

The second model reveals the existence of autocorrelation between the previous own lagged 

returns for NG and electricity (Φ11 = 0.195, p-value = 0.037; Φ22 = –0.297, p-value = 0.002). There 

was a weak positive autocorrelation between the lagged TTF NG returns and current EPEX electricity 

returns (Φ21 = 0.213, p-value = 0.078). Granger causality tests also suggest a weak positive effect of 

NG on electricity returns (G = 3.144, p-value = 0.077). Although the diagnostic analysis of residuals 

reveals the presence of serial correlation in this bivariate VAR (1) model (P = 65.648, p-value = 0.019), 

the results of the HQIC (–2.131) and SBIC (–2.059) information criteria confirm one period as the 

optimal lag order for this bivariate model (Table S2). The limited impact of NG on electricity is 

depicted in Figure S5b. 
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Table 3. Results of bivariate VAR (1) models for TTF NG, Brent oil and EPEX electricity markets. 

TTF NG/Brent crude oil returns  

Statistic Estimate Std. Error T p-value 

𝛿1 0.009 0.011 0.880 0.380 

𝛿2 0.002 0.009 0.220 0.826 

Φ11 0.219 0.078 2.812 0.006** 

Φ12 0.322 0.094 3.434 0.001*** 

Φ21 –0.081 0.066 –1.235 0.218 

Φ22 0.286 0.079 3.613 <0.001*** 

P 56.283   0.102 

LM 277.980   <0.001*** 

G (NG→Oil) 1.525   0.218 

G (Oil→NG) 11.793   <0.001*** 

TTF NG/electricity EPEX (DE/LU) returns 

Statistic Estimate Std. Error T p-value 

𝛿1 0.009 0.011 0.824 0.411 

𝛿2 0.016 0.014 1.116 0.266 

Φ11 0.195 0.093 2.096 0.037** 

Φ12 0.077 0.072 1.062 0.290 

Φ21 0.213 0.120 1.773 0.078* 

Φ22 –0.297 0.093 –3.191 0.002** 

P 65.648   0.019** 

LM 212.370   <0.001*** 

G (NG→Electricity) 37.187   0.077* 

G (Electricity→NG) 1.129   0.289 

Brent crude oil/electricity EPEX (DE/LU) returns 

Statistic Estimate Std. Error T p-value 

𝛿1 0.002 0.009 0.209 0.835 

𝛿2 0.018 0.014 1.283 0.202 

Φ11 0.300 0.081 3.717 <0.001*** 

Φ12 0.070 0.052 –1.344 0.181 

Φ21 0.389 0.125 3.122 0.002*** 

Φ22 –0.266 0.080 –3.314 0.001*** 

P 40.894   0.606 

LM 207.430   <0.001*** 

G (Oil→Electricity) 9.748   0.002*** 

G (Electricity→Oil) 1.807   0.180 

Notes: *: p < 0.1, **: p < 0.05, ***: p < 0.01. P denotes the Portmanteau test (asymptotic) for autocorrelation for residuals 

of the models. LM shows the Engle’s ARCH statistic for ARCH effects for residuals. G represents the Granger causality 

statistic. 

Table 3 also confirms the significant effect of lagged returns on current returns for Brent oil 

and electricity EPEX spot markets (Φ11 = 0.300, p-value < 0.001; Φ22 = –0.266, p-value = 0.001). 

There was also a unidirectional return spillover from the Brent oil market to the electricity EPEX 
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market (Φ21 = 0.389, p-value = 0.002). The bivariate residuals suggest serial correlation (P = 40.894, p-

value = 0.606) and the presence of ARCH effects (LM = 207.430, p-value < 0.001). The Granger causality 

test also indicates a positive effect of the oil market on electricity returns (G = 9.748, p-value = 0.002), as 

shown by Figure S5c). These results suggest the possibility of a simultaneous impact of the Brent oil 

spot market on TTF NG and EPEX electricity markets. This assumption is substantiated by the results 

of Table S3 after applying a trivariate VAR (1). In this model, current returns (t) for each spot market 

are determined by the immediate lags (t−1) of three variables (NG, Oil, and Electricity). The results 

confirm a positive autocorrelation between oil and NG (Φ12 = 0.313, p-value = 0.001) and oil and 

electricity (Φ32 = 0.391, p-value = 0.002). There is also a significant effect of own lagged returns on 

returns for NG, oil and electricity. Furthermore, the results demonstrate that the model residuals do 

not exhibit serial correlation (P = 119.51, p-value = 0.079), and they indicate the presence of ARCH 

effects (LM = 651.28, p-value < 0.001). Both HQIC (–3.723) and SBIC (–3.578) information criteria 

also suggest a lag of one period as the optical order (Table S4). Finally, Granger causality test results 

reveal a significant unidirectional effect of the Brent oil market simultaneously on TTF NG and EPEX 

electricity markets (G = 6.743, p-value = 0.001). 

3.2.2. GARCH models applied to conditional returns and volatility 

Table 4 presents the results for all DCC-GARCH models, which produced similar outcomes. 

Consequently, we decided to use the DCC model estimates for the remaining analysis, as they 

correspond to the simplest model and yielded the lowest AIC value (–4.550). We also considered that 

the asymmetric term for DCC is not significant (𝜃3  <  0.001 , p-value ≈  1 ), and FDCC did not 

provide better results than the DCC method. The results indicate that the conditional mean returns (η) 

were not statistically significant for any of the markets, with values close to zero. The δ terms represent 

the short-term persistence of returns in the VAR (1) models. Except for TTF NG, Brent oil and 

electricity EPEX, the previous own lagged returns were statistically significant for the current 

returns (t) (𝛿𝑜𝑖𝑙 = 0.192, p-value = 0.018; 𝛿𝑒𝑙𝑒𝑐𝑡 = –0.259, p-value = 0.001). The parameter 𝛼 

reflects the effect of unexpected news or shocks, while the parameter β captures the effect of lagged 

conditional variance in NG, oil and electricity markets, corresponding to the long-term persistence of 

volatility. Strong evidence exists for the positive impact of the short-term persistence effect of the 

previous own conditional variance on the current returns for TTF NG (𝛼𝑁𝐺 = 0.195, p-value < 0.001) 

and Brent oil (𝛼𝑜𝑖𝑙 = 0.732, p-value = 0.006) spot markets. Additionally, there is a significant positive 

long-term volatility persistence for NG (𝛽𝑁𝐺 = 0.804, p-value < 0.001), oil (𝛽𝑜𝑖𝑙 = 0.251, p-value = 0.012) 

and the electricity EPEX market (𝛽𝑒𝑙𝑒𝑐𝑡 = 0.915, p-value < 0.001). In this context, long-term volatility 

persistence corresponds to the effect of the previous own conditional variance on the current one, 

meaning that positive shocks (or news) on returns have a greater impact on volatility than negative 

shocks for all the time series. Furthermore, the sum of the ARCH (α) and GARCH (β) coefficients 

for all return series is less than unity, indicating volatility clustering in all variables, which aligns 

with the conclusions drawn from Figure 3. As we can observe, 𝛽𝑜𝑖𝑙 shows low values associated 

with a higher 𝛼𝑜𝑖𝑙, which can occur in some circumstances. According to [78], this leads to GARCH 

volatilities that are spikier than those with relatively low alpha and relatively high beta. This may be 

attributed to GARCH volatilities with high volatility-of-volatility (vol-of-vol). Further research should 

be conducted for a better understanding of long-term volatility persistence compared to other types of 

models. 
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Table 4. Results of multivariate VAR (1)-GARCH (1, 1) models. 

Models DCC  ADCC  FDCC  

Statistic Estimate (SE) T (p-value) Estimate (SE) T (p-value) Estimate (SE) T (p-value) 

𝜂𝑁𝐺 –0.003  

(0.003) 

–1.027  

(0.304) 

–0.003 

(0.002) 

–1.027 

(0.305) 

–0.003 

(0.003) 

–1.022 

(0.307) 

𝜈𝑁𝐺 0.114  

(0.096) 

1.187  

(0.235) 

0.113 

(0.096) 

1.186 

(0.238) 

0.114 

(0.097) 

1.178 

(0.239) 

𝜛𝑁𝐺 <0.001  

(<0.001) 

0.495  

(0.621) 

<0.001  

(<0.001) 

0.495 

(0.621) 

<0.001 

(<0.001) 

0.502 

(0.616) 

𝛼𝑁𝐺 0.195 

(0.045) 

4.306  

(<0.001***) 

0.195 

(0.045) 

4.311 

(<0.001***) 

0.195 

(0.045) 

4.351 

(<0.001***) 

𝛽𝑁𝐺 0.804  

(0.070) 

11.443 

(<0.001***) 

0.804 

(0.703) 

11.429 

(<0.001***) 

0.804 

(0.067) 

11.520 

(<0.001***) 

𝜆𝑁𝐺 4.189  

(0.796) 

5.263  

(<0.001***) 

4.189 

(0.803) 

5.218 

(< 0.001***) 

4.189 

(0.786) 

5.328 

(<0.001***) 

𝜂𝑜𝑖𝑙 0.005  

(0.007) 

0.798  

(0.425) 

0.005 

(0.007) 

0.788 

(0.430) 

0.005 

(0.007) 

0.796 

(0.426) 

𝜈𝑜𝑖𝑙 0.192  

(0.081) 

2.364  

(0.018**) 

0.192 

(0.082) 

2.351 

(0.019**) 

0.192 

(0.081) 

2.371 

(0.018**) 

𝜛𝑜𝑖𝑙  0.002  

(0.001) 

1.835  

(0.066*) 

0.002 

(0.001) 

1.827 

(0.068*) 

0.002 

(0.001) 

1.852 

(0.064*) 

𝛼𝑜𝑖𝑙 0.732  

(0.264) 

2.773 

(0.006***) 

0.732 

(0.265) 

2.768 

(0.006***) 

0.732 

(0.268) 

2.736 

(0.006**) 

𝛽𝑜𝑖𝑙 0.251 

(0.100) 

2.502  

(0.012**) 

0.251 

(0.101) 

2.475 

(0.013**) 

0.250 

(0.010) 

2.519 

(0.012**) 

𝜆𝑜𝑖𝑙 8.456  

(5.050) 

1.675 

(0.094*) 

8.456 

(5.055) 

1.673 

(0.094*) 

8.456 

(5.063) 

1.670 

(0.095*) 

𝜂𝑒𝑙𝑒𝑐𝑡 0.004  

(0.009) 

0.464 

(0.643) 

0.004 

(0.009) 

0.464 

(0.642) 

0.004 

(0.009) 

0.465 

(0.642) 

𝜈𝑒𝑙𝑒𝑐𝑡 –0.259  

(0.078) 

–3.310  

(<0.001***) 

–0.259 

(0.078) 

–3.303 

(0.001***) 

–0.259 

(0.079) 

–3.292 

(<0.001***) 

𝜛𝑒𝑙𝑒𝑐𝑡 <0.001  

(0.003) 

0.138  

(0.890) 

<0.001  

(0.003) 

0.139 

(0.890) 

<0.001 

(0.003) 

0.138 

(0.890) 

𝛼𝑒𝑙𝑒𝑐𝑡 0.084  

(0.094) 

0.890  

(0.374) 

0.084  

(0.094) 

0.896 

(0.370) 

0.084 

(0.094) 

0.892 

(0.373) 

𝛽𝑒𝑙𝑒𝑐𝑡 0.915  

(0.198) 

4.620 

(<0.001***) 

0.915  

(0.197) 

4.641 

(<0.001***) 

0.915 

(0.198) 

4.630 

(<0.001***) 

𝜆𝑒𝑙𝑒𝑐𝑡 99.959  

(171.186) 

0.584 

(0.559) 

99.959 

(170.495) 

0.586 

(0.558) 

99.960 

(170.055) 

0.588 

(0.557) 

𝜃1 0.043  

(0.013) 

3.427  

(<0.001***) 

0.043 

(0.014) 

3.169 

(0.002***) 

0.180 

(0.066) 

2.733 

(0.006***) 

𝜃2 0.938 (0.018) 50.792  

(<0.001***) 

0.938 

(0.019) 

49.045 

(<0.001***) 

0.820 

(0.052) 

15.784 

(<0.001***) 

Continued on next page 
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Models DCC  ADCC  FDCC  

Statistic Estimate (SE) T (p-value) Estimate (SE) T (p-value) Estimate (SE) T (p-value) 

𝜃3   <0.001 

(0.015) 

<0.001 

(1.000) 

  

AIC –4.550  –4.537  –4.469  

Notes: *: p < 0.1, **: p < 0.05, ***: p < 0.01. P denotes the Portmanteau test (asymptotic) for autocorrelation for residuals 

of the models. LM shows the Engle’s ARCH statistic for ARCH effects for residuals. G represents Granger causality test 

statistic. 

The shape's term (𝜆 ) represents the degrees of freedom in the t distribution and is statistically 

significant only for NG (𝜆 = 4.189, p-value < 0.001). Finally, 𝜃1 and 𝜃2 denote the dynamic correlations 

of the series. 𝜃1 represents the short-term shock persistence among the conditional correlations of the 

markets, while 𝜃2 gives the long-term persistent shock effect on the conditional correlation of the markets. 

Both terms are statistically significant and positive (𝜃1 = 0.043, p-value = 0.001; 𝜃2 = 0.936, p-

value < 0.001), indicating significant short and long-term correlations among the markets. The sum of 

coefficients is less than one, suggesting dynamic conditional correlation as mean-converging. Table S5 

reports the bivariate DCC-GARCH models, providing pairwise comparisons between the three series. The 

results closely resemble those obtained using the trivariate setting presented in Table 4. However, new 

terms for dynamic correlation between TTF NG, Brent oil and electricity EPEX markets are now obtained. 

The results reveal significant short-term persistence of shock in the dynamic conditional correlation 

between the TTF NG and EPEX electricity spot markets (𝜃1 = 0.102, p-value = 0.001). Regarding long-

term persistent shock effects, there was high significance in the dynamic conditional correlation between 

NG and Brent oil (𝜃2 = 0.930, p-value < 0.001), NG and electricity EPEX (𝜃2 = 0.889, p-value < 0.001) 

and Brent oil and electricity EPEX (𝜃2 = 0.919, p-value = 0.029) spot markets. 

Finally, Figure 4 displays the dynamical conditional correlations between pairs of spot markets. 

The lines represent the linear dynamic correlation averaged over time. The DCC between NG and oil 

fluctuates between –0.10 (very weak correlation) and a weak correlation of 0.25, resulting in a global 

dynamic correlation of approximately 0.086 with a null slope (Figure 4a). The DCC between TTF NG 

and electricity EPEX (DE/LU) spot markets exhibits the highest variations, ranging from a negative 

very weak correlation (ρ = –0.176) to a strong correlation (ρ = 0.624). Essentially, the DCC slightly 

decreased until 2015 and began increasing from that point, reaching its highest correlation in 

September 2022 (Figure 4b). Lastly, the DCC between Brent oil and electricity EPEX shows more 

significant fluctuations, varying from a minimum negative correlation (ρ = –0.029) to a weak 

correlation of 0.332, with a negative average trend (slope = –0.001) (Figure 4c). In terms of evolution, 

we can identify three main clusters: the first with a weak correlation (between 0.120 and 0.332) until 

early 2014, followed by a period of decreased correlations until 2019, and finally, since the first quarter 

of 2020, DCC has become more similar to the first period. 
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(a) 

 

(b) 

 

(c) 

Figure 4. Dynamic conditional correlations between (a) NG and oil, (b) NG 

and electricity and (c) oil and electricity. 
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4. Conclusions 

This study aimed to analyze the evolution of three spot markets: TTF natural gas, Brent crude oil 

and electricity EPEX of Germany-Luxembourg (DE/LU). It focused on three main aspects outlined in 

hypotheses A, B and C. As major contributions to the energy literature, we highlight the joint analysis 

of these energy markets in terms of spillover effects on returns and the implementation of a set of 

dynamical conditional correlation methods (DCC, ADCC and FDCC) for modeling the repercussions 

on the conditional mean returns and volatility across these markets. Our study also includes recent 

datasets that allowed us to analyze the impacts of COVID-19 and the subsequent war, representing a 

new advance in knowledge about these spot markets. 

Firstly, the study investigated the impact of COVID-19 on return volatility and how the Russian 

invasion of Ukraine might have extended this impact (hypothesis A1). The analysis revealed that the 

COVID-19 pandemic crisis had a strong effect on the exponential growth of prices and an increase in 

volatility. However, this effect was not uniform across the return series. While prices for all spot 

markets increased since the first quarter of 2020, Brent oil prices returned to pre-pandemic crisis levels, 

whereas TTF NG and electricity EPEX prices continued to increase exponentially, reaching their 

highest values by the beginning of the third quarter of 2022. From this point, prices began to gradually 

decrease. However, when examining returns, it was evident that volatility increased from the beginning 

of 2020 until the end of the study for NG and electricity EPEX, while for Brent oil, there was only a 

significant peak in the first quarter of 2020. Therefore, the war in Ukraine did not have the same impact 

on each series (hypothesis A2). Intuitively, this means that both hypotheses were validated. 

The study also revealed that lagged returns from previous periods for Brent oil and EPEX 

electricity had significant impacts on current returns (𝛿𝑜𝑖𝑙 = 0.192, p-value = 0.018; 𝛿𝑒𝑙𝑒𝑐𝑡 = –0.259, 

p-value = 0.001). Moreover, the results of the VAR (1) models indicated that lagged returns for TTF 

NG also had an impact on current returns (hypothesis B1). Regarding possible spillover effects on 

returns and volatility among markets, as raised in hypothesis B2, the results showed a strong short-term 

persistence effect of the previous own conditional variance for TTF NG (α𝑁𝐺  = 0.195, p-value < 0.001) 

and Brent oil (α𝑜𝑖𝑙= 0.732, p-value = 0.006) spot markets. Additionally, positive shocks on returns 

were found for NG (𝛽𝑁𝐺 = 0.804, p-value < 0.001), oil (𝛽𝑜𝑖𝑙= 0.251, p-value = 0.012) and electricity 

EPEX markets (𝛽𝑒𝑙𝑒𝑐𝑡 = 0.915, p-value < 0.001). 

Finally, this study confirms that shock persistence affected the dynamical conditional correlations 

between spot markets in different ways (hypothesis C). Results showed that long-term persistent shock 

effects highly affect the dynamic conditional correlation between NG and Brent oil (𝜃2 = 0.930, p-

value < 0.001), NG and electricity EPEX (𝜃2 = 0.889, p-value < 0.001) and Brent oil and electricity 

EPEX (𝜃2 = 0.919, p-value = 0.029) spot markets. However, there was only a significant short-term 

persistence of shock in the dynamical conditional correlation between the NG TTF and EPEX 

electricity spot markets (𝜃1  = 0.102, p-value = 0.001). By analyzing DCC coefficients, it was 

concluded that the highest DDC occurred between TTF and electricity EPEX (DE/LU), ranging from 

a very negative, very weak correlation to a strong correlation over time. During the pandemic crisis 

and the war in Ukraine, this correlation remained strong, reaching a peak in this period. 

While this study contributes to the energy literature, future research should consider extending 

the series to include other NG, oil and electricity spot markets to investigate potential differences 

among them and validate the results presented here. Additionally, expanding the dataset to include 

periods before 2010 would allow for a comparison of return evolutions and volatility during different 
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shock periods. Finally, it is important to address the limitations of this research, including difficulties 

in accessing open data and the inability to relate NG, oil and electricity prices to other indicators that 

may directly impact returns and volatility. 
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