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Abstract: Major issues with logistic functions (LFs) in modeling wind turbine power-speed
characteristics (WTPSCs) include: 1. low accuracy near cut-in and rated wind speeds due to lack
of continuity; 2. difficulties in fitting their parameters because of ill-conditioning; 3. no guaranteed
monotonicity; 4. no systematic way to determine upper and lower limits for their parameters. The
literature also reports that six parameter LFs may sometimes provide less accurate results than five,
four, and three parameter models, implying: 1. they are unsuitable for WTPSC modeling; 2. lack of
systematic method to determine upper and lower limits for optimization algorithms to search in. In
this paper, we propose a new six parameter LF then employ subspace trust-region (STIR) algorithm
to estimate its parameters. We compare the accuracy of our six parameter model to others from the
literature. With 42 on-shore and off-shore WTs database of ratings varying from 275 to 8000 kW, we
the comprehensiveness of our model. The results show an average mean absolute percent error (MAPE)
of 2.383 × 10−3. Furthermore, our model reduces average and median normalized root mean square
error (NRMSE) by 32.3% and 38.5%, respectively.

Keywords: logistic functions; wind turbine power curve; parametric models; parameters estimation;
subspace trust region

Abbreviations: DE: Differential evolution; EA: Evolutionary algorithm; EP: Evolutionary
programming; GA: Genetic algorithm; GCR: Generator control region; GWEC: Global wind energy
council; LF: Logistic function; LSE: Least-Square error; MAE: Mean absolute error; MAPE: Mean
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absolute percent error; NRMSE: Normalized root mean square error; PDF: Power distribution
function; PSO: Particle swarm optimization; RMSE: Root mean square error; STIR: Subspace
trust-region; TI: Turbulence intensity; WT: Wind turbine; WTPSC: Wind turbine power-speed
characteristics; SDS: Significant downwards shifting; SUS: Significant upwards shifting; MDS:
Minor downwards shifting; MUS: Minor upwards shifting; CBS: Curve becomes steeper; CBF: Curve
becomes flatter; NDS: Negligible downwards shifting; NUS: Negligible upwards shifting; DbS:
Decrease (in q(~θ, v)) by horizontal shifting; IoD: Increase or decrease (in q(~θ, v)) by horizontal
shifting

1. Introduction

WT installations experienced an unprecedented annual growth of 53% in 2020. GWEC reports that,
with 93 GW of new installations in 2020, the global cumulative capacity reached 743 GW [1].

Such growth is attributed to factors such as: 1. innovations in blades design and fabrication [2];
2. improvement in nacelle components reliability (e.g., gears with fatigue and wear resistance and
new softwares for system level modeling of the nacelle) [2]; 3. improved sensors and control
algorithms [2]; 4. political support (e.g., low carbon energy goals, feed-in tariffs, or guaranteed access
to the transmission grid) [3, 4].

WTPSCs play significant roles in: 1. risk assessment [5]; 2. wind energy yield and WT selection [5];
3. condition monitoring [6]; 4. sizing storage capacity for wind power integration [7]; 5. predictive
control optimization [8]; 6. WTs troubleshooting [8]; 7. detection of degradation because of aging [6];
8. optimal dispatching of wind farms [6].

Near cut-in wind speed, WTPSCs are difficult to model [9]. Although we theoretically expect WTs
power to exhibit a cubic relationship with wind (when it is below rated speed), this is incorrect. The
conversion efficiency of WTs varies with speed, which is most remarkable near cut-in and rated wind
speeds. Just slightly above cut-in speed, virtually all WTs exhibit a steep growth in efficiency. Near
rated wind speeds, WTs ‘spill’ wind energy [10], decreasing the efficiency. The result is complex and
nonlinear relationship between wind speed and the WT power output [11].

The general shape of LFs (sometimes referred to as logistic distributions or activation functions)
made them meaningfully suitable for scientific modeling of bacteria and plant growth since a growing
population ‘competes’ for resources, placing an upper limit on the number of bacteria/plants [12]. LFs
can also be useful for certain biological, chemical, linguistic, political science topics [13].

Since both of LFs and WTPSCs are ‘S’-shaped, LFs are (at least in principle) candidates for
accurate WTPSC mathematical models. LFs are parametric models (they are based on mathematical
expressions with a fixed number of parameters), bringing potential to offer some analytical
advantages. For instance, in wind energy assessment, it is possible to use them along with Weibull
distribution to obtain explicit PDFs [14]. Lydia et al. [15] are among the earliest researchers
to attempt modeling WTPSCs curves using LFs. They propose a 5-parameter LF and estimate its
parameters using GA, EP, PSO and DE. Many researchers have sought new methods to estimate the
parameters of the LF proposed by Lydia et al. [15] (e.g., [6, 16, 17]). Sohoni et al. [9] reported that
certain LFs (due to explicitly including an inflection point in their parameters) have the potential to
increase accuracy and improve online-monitoring using LFs. Pei and Li [11] confirmed this by
parameterizing various WTPSC models and comparing them using statistical metrics, such as MAE
and RMSE.
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Jing et al. [18] improved the model of Lydia et al. [15] by introducing ‘quantile dependency’ to its
parameters. Jing et al. [18] parameterized the model proposed by Lydia et al. [15] using PSO for three
wind farms and validating the accuracy of their work using MAPE and NRMSE.

Villanueva and Feijóo [19] proposed two ‘generalized’ 6-parameter LFs and estimate their
parameters using evolutionary optimization techniques. The proposed models show substantial
accuracy improvement, but Villanueva and Feijóo [19] reported difficulties in optimizing their
parameters.

Zou et al. [17] reviewed three, four, five, and six parameter LFs and their accuracy using MAE
and RMSE. Results show that six parameter LF may sometimes provide lower accuracy than four and
three parameter LF. Thus, adding new parameters to LFs does not necessarily contribute to increased
accuracy. Villanueva and Feijóo [19] reported similar results.

In Section 2, we provide a mathematical background on WTPSC and LFs and highlight their
limitations and our contributions. Section 3 proposes a new LF model, demonstrates its curve fitting
merits, and develops upper and lower limits on its parameters. We validate our model in Section 4 by
providing graphical and numerical accuracy results. To ensure a suitable comparison, we compare our
work with other 6-parameter LFs. Section 5 draws final remarks, discusses the limitations of the study
and puts forth suggestions for future investigations. A summary of the literature gap and the most
significant contributions are then mentioned in Section 6.

2. Background and contribution summary

2.1. Mathematical representation of WTPSC

For stall or pitch-controlled WT, it is possible to characterize the WTPSC curves mathematically
as [5]

Pe,WT (v) =


0 v < vci

qe(~θ, v) vci ≤v ≤ vr

Pr vr <v ≤ vco

0 v > vco

(1)

where v is the wind speed. vci, vr, and vco are the cut-in, rated, and cut-out speeds of the WT,
respectively. Pr is the rated output power of the WT. qe(~θ, v) is a mathematical expression which
should (ideally) accurately estimate the manufacturer-provided data (i.e., empirical power-speed pairs
in the GCR). Such estimation is typically done by fitting a vector of parameters ~θ using the
least-squares method [5].

2.2. Preliminary concepts

Figure 1 depicts a WTPSC curve. When estimating ~θ parameters to fit the manufacturer datasheet,
some points of interest assist us in establishing its limits.
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Figure 1. WTPSC with inflection point and upper asymptote.

1. The curve is monotonic. This means it always increases (or at least remains the same) with v.
Mathematically, this means the first derivative must remain greater than or equal to zero, as Eq 2:

d qe(~θ, v)
d v

≥ 0, ∀ v ≥ 0 (2)

2. For virtually all WTPSC curves, an inflection point exists. This is the point at which the curve
switches from concave upwards to concave downwards. Mathematically, this means the second
derivative must be zero, as Eq 3:

d2 qe(~θ, v)
d v2

∣∣∣∣∣∣
v=vinf

= 0 (3)

Where vinf is the inflection point.

3. One major attribute of LFs is that they should approach an upper asymptote when their dependent
variable approaches infinity. Mathematically, this means

lim
v→∞

qe(~θ, v) ≈ Pr,WT

Ideally, the upper asymptote of WTPSC should be close to Pr. This trend of approaching an upper
asymptote is obvious in virtually all WTPSC curves when v → vr. In practice, v is never ∞, but
this mathematical formulation benefits in establishing upper and lower limits for ~θ parameters,
which, in turn, assists the optimization algorithm by searching in a suitable region instead of
arbitrarily determining it by trial and error.

2.3. Limitation of previous methods and summary of contribution

6-parameter LFs are discussed in Villanueva and Feijóo [19] and have one of the following forms

q(~θ, v) = d +
a − d(

ε +

[v
c

]−b
)g 6PL (4)
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q(~θ, v) = d +
a − d(

ε + e−b (v − c)
)g 6PLE (5)

where a and d are the upper and lower asymptote, respectively. b is the growth rate (sometimes
called ‘hill slope’) around point c. g is called the ‘asymmetry factor’ because it tunes the degree of
asymmetry around point c [11, 15]. c is the inflection point (the point at which q(~θ, v) turns from
concave upward to concave downward). ε has no special meaning, but has a value around one [8].

Disadvantages of fits in Eqs 4 and 5:

1. With some WTs, they inaccurately fit the WTPSC, especially near vci and vr. This is reported by
as a disadvantage for piecewise models, which is the conventional way to account for the effect
of turning off the WT when v < vci and v > vco [9]. Yan et al. [20] reports such inaccuracy for
LFs even with continuous WTPSC;

2. Contain a high number of parameters compared to other fits with fewer parameters, but better
accuracy. For example, Zou et al. [17] review three, four, five, and six parameter LF and tested
their accuracy using MAE and RMSE. Results showed that 6-parameter LF may sometimes
provide lower accuracy than three, four and five parameter LFs. Pei and Li [11] report similar
results. Thus, adding new parameters does not contribute to increased accuracy. Intuitively,
adding new parameters should provide certain advantages, such as accuracy improvement;

3. Their monotonicity is not guaranteed when the parameters are estimated using EAs. We overcome
this disadvantage in Aldaoudeyeh et al. [8];

4. Sometimes LFs have the possibility of becoming ill-conditioned, making the estimation of ~θ
parameters difficult [9].

This paper contain the following contributions:
1. We propose a new 6-parameter LF model for WTPSC curves; 2. We develop constraints on the

parameters of our model to guarantee its monotonicity; 3. The model exhibits excellent fit that is at
least as accurate as 6PL and 6PLE for some WTs, but also provides significant MAPE and NRMSE
improvements. It also provides high accuracy near vci and vr; 4. The parameters of our model are easily
optimized with the STIR algorithm.

3. The proposed model

Our proposed model is

q(~θ, v) = d +
a − d(

1 +

[v
c

]ζ
e−b (v − c)

)g (6)

where a is the upper asymptote. d is a parameter to tune the lower asymptote near vci (i.e., d is not
the lower asymptote, but it drastically influences it). b is the growth rate around point c. g is called
the ‘asymmetry factor’ because it tunes the degree of asymmetry around point c. c is the inflection
point. ζ is the steepness tuning factor.

AIMS Energy Volume 11, Issue 6, 1231–1251.



1236

We call this model 6PLEZ. At a glance, 6PLEZ model resembles 6PL and 6PLE (Eqs 4 and 5),
but, as we will see in Section 4, it is more accurate. To our best knowledge, the literature does not
contain this model. Villanueva and Feijóo [21] and Zou et al. [17] review WTPSC models (including
LFs models), but the 6PLEZ model does not appear on any of them.

We estimate ~θ parameters with the same method mentioned in Aldaoudeyeh et al. [8] (LSEs
objective function minimized using STIR algorithm).

3.1. Characteristics of the 6PLEZ model

In this subsection, we illustrate the effect of ~θ parameters variation on q(~θ, v) shape. Unless
otherwise is specified, the parameters are a = 1, b = 1.25, c = 6, d = 0, g = 1, and ζ = 0. The
dependent parameter (v) is shown from 2.5 (typical vci) to 12 (typical vr).

Figure 2 shows the effect of varying a and d on the shape of q(~θ, v). Clearly, increasing a slightly
shifts the curve upwards near vci. This effect becomes more pronounced the closer we get to vr, where
the upper asymptote varies linearly with a. The final value of q(~θ, v) is a. We thus call it the upper
asymptote. We also note that increasing a steepens the curve near c.

Figure 2. Effects of a and d on the shape of q(~θ, v).

The effect of d is better illustrated with a = 10 and when we extend the curve from 0 to vr. Increasing
d shifts the upwards curve near vci and its effect diminishes at vr. We also note that increasing d flattens
the curve near c.

Thus, most of a and d effect is to scale the maximum and minimum asymptotes of the LF curve,
respectively. By contrast, b, c, g, and ζ (as we will discuss now) define the shape of the LF.

AIMS Energy Volume 11, Issue 6, 1231–1251.



1237

Figure 3. Effects of b, c, ζ, and g on the shape of q(~θ, v).

Figure 3 shows the effects of b, c, g, and ζ variation on q(~θ, v) shape. The increase in b shifts
the curve downwards near vci and upwards near vr. However, it is also obvious from the curve that
the effect is more pronounced near vci. As b increases, the curve becomes steeper near the inflection
point (vinf = c).

The variation of c only shifts the curve to the left and right. In fact, it is worth mentioning that
all curves for varying c are the same, but merely shifted horizontally. It is possible to conclude from
Figure 3 that increasing c decreases q(~θ, v) near vci, and increases or decreases q(~θ, v) near vr.

The increase in g drastically downshifts the curve near vci. It also substantially downshifts the
curve near vinf and makes it steeper, but has no effect on the power curve near c. As we increase ζ,
q(~θ, v) shifts slightly upward and becomes flatter near c, but has no effect on q(~θ, v) near vr. In a
sense, ζ adjusts the steepness around c while having a negligible effect minor increase effect vci and a
negligible decrease near vr.

Note that b and ζ seem to provide the same effect. Remarkable differences, however, are: 1. b tunes
the steepness while having significant effect near vci and a minor effect near vr; 2. ζ tunes the steepness
while having minor effect near vci and a negligible effect near vr.

Table 1. Effects of ~θ parameters near important points on WTPSC curve.

Parameter vci vinf vr Notes

a MUS SUS SUS the upper asymptote as v→ ∞

b SDS CBS MDS
c DbS IoD IoD shifts the curve horizontally while the shape remains the same
d SUS SUS NUS
g SDS CBS NDS
ζ MUS CBF NDS

AIMS Energy Volume 11, Issue 6, 1231–1251.
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Table 1 shows a summary of the previously mentioned effects. In Figure 4, we list some examples
on why our model provides higher accuracy. The dashed lines show curves with low accuracy in
some region and the high accuracy in others, while solid lines are improvements due to variations in ~θ.
Circles are manufacturer-provided data.

(a) Example of varying b to enhance
fitting near vci and vinf (Note the
minor effect near vr)

(b) Example of varying g to enhance
fitting near vci and vinf (Note the
absence of effects near vr)

(c) Example of varying ζ to enhance
fitting to the left and right of vinf

(Note the minor effects near vci and
vr)

Figure 4. Examples on 6PLEZ model flexibility.

In Figure 4a, we see low accuracy near vci and vinf. The error is positive and tends to decrease
the closer we get to vr, but turns negative at vr. In this case, increasing b substantially increases the
accuracy since it shifts the curve downward near vci, moderately downward near vinf , and slightly shifts
the curve upward near vr. In Figure 4b, we see a case where substantial errors occurring near vci but
they disappear as the speed increases and accuracy is very high near vr. A suitable solution is to
increase g, which shifts the curve downward with larger shifting occur closer to vci, but no effect at vr.
Figure 4c shows a curve providing high accuracy near vci and vr. The error, however, to the left/right
of vinf is negative/positive, with a slope greater than the slope of manufacturer-provided data. In this
case, increasing ζ improves the accuracy by flattening the curve near vinf.

The previously mentioned examples demonstrate the flexibility of the 6PLEZ model and why it
provides significant accuracy improvements. Our model adapts to improving the accuracy in some
regions (near vci, vinf or vr) without sacrificing the accuracy in the others.

3.2. Constraints on the proposed six-parameter LF (6PLEZ)

In this section, we devise some limits on the 6PLEZ model parameters (Eq 6), which help the STIR
algorithm minimize the objective function (i.e., LSEs). We define the main limits on ~θ as (the subscripts
min and max denote the minimum and maximum limits of each parameter, respectively)

amin ≤ a ≤ amax, bmin ≤ b ≤ bmax

cmin ≤ c ≤ cmax, dmin ≤ d ≤ dmax

gmin ≤ g ≤ gmax, ζmin ≤ ζ ≤ ζmax

AIMS Energy Volume 11, Issue 6, 1231–1251.
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3.2.1. Monotonicity conditions

To guarantee increasing monotonicity, the derivative of q(~θ, v) must be positive or zero. Thus,
differentiating Eq 6 we get

g
[
b
[

v
c

]ζ
e−b(v−c) −

ζ[ v
c ]

ζ−1e−b(v−c)

c

]
(a − d)(

1 +
[

v
c

]ζ
e−b(v−c)

)g+1 ≥ 0 ∀v ≥ 0 (7)

Equation 7 can be simplified as

g
[[

v
c

]ζ
e−b(v−c)(bv − ζ)

]
(a − d)

v
(
1 +

[
v
c

]ζ
e−b(v−c)

)g+1 ≥ 0 ∀v ≥ 0 (8)

The inequality of Eq 8 is satisfied when

a ≥ d Monotonicity Condition 1
b ≥ 0 Monotonicity Condition 2
c ≥ 0 Monotonicity Condition 3
g ≥ 0 Monotonicity Condition 4
ζ ≤ bvr Monotonicity Condition 5

These monotonicity conditions mean that Eqs 9–13 must be true

amin ≥ dmax (9)
bmin = 0 (10)
cmin = 0 (11)
gmin = 0 (12)
ζmax,1 = bmaxvr (13)

3.2.2. Asymptotes conditions

Taking the limit of Eq 6 as v→ ∞ yields

lim
v→∞

q(~θ, v) = a (14)

Equation 14 is the exact value of the upper asymptote of Eq 6. However, in practice, v < ∞, but
since we still want to help the STIR algorithm estimate a such that q(~θ, v) still fits the manufacturer-
provided data well, we allow the value of a to vary within ±10% of Pr, resulting in the conditions

AIMS Energy Volume 11, Issue 6, 1231–1251.
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amin = 0.9Pr (15)
amax = 1.1Pr (16)

Equation 6 must be greater than 0 for all v > 0. Thus, a − d must always be positive. This requires
that

dmax = 0 (17)

Note that the conditions in Eqs 15 and 17 embody the condition in Eq 9.

3.2.3. Other limits[v
c

]ζ
e−b (v − c) in Eq 6 must start to substantially decrease at some point between vci and vr. In

other words, as v increases,
[v
c

]ζ
e−b (v − c) should become much smaller than one at some point

between vci and vr. Otherwise, the curve would never approach the upper asymptote (which is almost
equal to Pr) when v → vr. Thus, the inflection point c must be somewhere between vci and vr. We
formulate the limits on c as follows

cmin = vci (18)
cmax = vr (19)

Note that the condition in Eq 18 embodies the condition in Eq 11. vinf (i.e., c) of an LF is the point
at which a curve switches from concave upward to concave downward (i.e., the second derivative must
be zero). Thus, taking the second derivative of Eq 6 with respect to v and equating it with zero

[ v
c ]ζe−b(v−c)(−b2v2 + 2bvζ − ζ2 + ζ)(

1 + [ v
c ]ζe−b(v−c)

)g+1 = −
[ v

c ]2ζe−2b(v−c)(ζ − bv)2(g + 1)(
1 + [ v

c ]ζe−b(v−c)
)g+2 (20)

Substituting v = c in Eq 20 and simplifying

b2c2 + 2gbcζ + ζ2 = gb2c2 + 2bcζ + gζ2 + 2ζ (21)

then solving Eq 21 for g as Eq 22

g =
ζ2 − 2bcζ + b2c2 − 2ζ
ζ2 − 2bcζ + b2c2

= 1 −
2ζ

ζ2 − 2bcζ + b2c2

(22)
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by taking the limits for various extreme values of ζ, we obtain Eq 23

lim
ζ→+∞

g = 1 lim
ζ→−∞

g = 1 lim
ζ→0+

g = 1 lim
ζ→0−

g = 1
(23)

this suggests that

gmax = 1 (24)

We solve Eq 22 for ζ

ζ =
1 + bc(1 − g) +

√
1 + 2bc(1 − g)

1 − g
(25a)

ζ =
1 + bc(1 − g) −

√
1 + 2bc(1 − g)

1 − g
(25b)

Equations 25a and 25b mean for every bc (the product of the two parameters) and g values, there

are (in general) two ζ values to satisfy the condition
d2 qe(~θ, v)

d v2

∣∣∣∣∣∣
v=vinf

= 0 (Eq 3). By plotting both

equations in 3D for g ∼ [0, 0.95] and bc ∼ [0, 100], we see that the maximum value of ζ is 180. Thus,
we say

ζmax,2 = 200 (26)

Equations 13 and 26 dictate the upper limits for ζ to satisfy the monotonicity and the inflection
point existence conditions, respectively. Since we must satisfy both conditions, it follows that

ζmax = minof(ζmax,1, ζmax,2) = minof(bmaxvr, 200) (27)

where ‘minof’ means the minimum of the two choices.

3.3. Summary of the 6PLEZ LFs constraints

Equation 10, Eqs 12, 15–19 and 24 and 27 define nine constraints necessary for the STIR algorithm
to quickly and reliably parameterize ~θ in the 6PLEZ model (Eq 6). The three limits in which we did
not derive analytically (or with reasoning) are: (1) bmax and (2) dmin, (3) ζmin.

We determined such limits by extensive simulations with the WT database of various ratings as
follows: (1) bmax = 3 and (2) dmin = −0.25 Pr, (3) ζmin = −500. Table 2 shows a summary of the limits
for the 6PLEZ logistic model.

AIMS Energy Volume 11, Issue 6, 1231–1251.
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Table 2. Constraints on the parameters of 6PLEZ logistic fit (Eq 6).

Lower limits ~θmin Upper limits ~θmax How obtained

a 0.9Pr Eq 15 1.1Pr Eq 16 LL: analytically, UL: analytically
b 0 Eq 10 3 LL: analytically, UL: observation
c vci Eq 18 vr Eq 19 LL: proper reasoning, UL: proper reasoning
d −0.25Pr 0 Eq 17 LL: observation, UL: analytically
g 0 Eq 12 1 Eq 24 LL: analytically, UL: analytically
ζ −500 min (bmaxvr, 200), Eq 27 LL: observation, UL: proper reasoning

Notice: LL: Lower Limit; UL: Upper Limit; ~θmin: a vector of minimum values for elements of ~θ; ~θmax: a vector of
maximum values for elements of ~θ

3.4. Objective function definition

The main function to be minimized is the LSE between the fits of Eqs 4–6 and empirical power-
speed data provided by the manufacturer. This is given as Eq 28:

f (~θk) =

n∑
i=1

[
qe

(~θk, vi
)
− qm (vi)

]2
(28)

where qe
(~θk, vi

)
are curves of Eqs 4–6; vi, qm (vi) are the ith wind speed and wind power output data

point as provided by the manufacturer, respectively; ~θk is the parameters of vector θ in Eqs 4–6 at the
kth iteration; and n is the number of data points in the GCR (region between vci and vr in Figure 1) as
provided by the manufacturer. Aldaoudeyeh et al. [8] discussed further details on the application of
STIR algorithm for WTPSC curve fitting.

Compared to other optimization algorithms, advantages of the STIR algorithm include: 1. an
efficiency in solving large bound-constrained minimization problems [22, 23]; 2. An appeal for
solving non-linear problems [22]; 3. An ability to handle convex, nonconvex, and ill-conditioned
objective functions with large number of variables [24].

4. Results and discussion

We fit ~θ parameters using STIR algorithm as described by Aldaoudeyeh et al. [8]. MAE, MAPE,
RMSE and NRMSE as defined in [6, 25] are the statistical metrics we use to demonstrate the accuracy
of our proposed model.

4.1. Accuracy near cut-in and rated wind speeds

To ensure as a fair comparison as possible, we compare our work to the closest one. Villanueva
and Feijóo [19] provide fits for 6PL model (Eq 4) for multiple WTs. We choose four of them for
comparison purposes: (1) Enercon E82 E2; (2) Repower MM82; (3) Siemens S82 SWT-2.3 82; (4)
Vestas V164/8000.

Figure 5 shows curve fits for the 6PL model (as estimated by Villanueva and Feijóo [19]) and
the 6PLEZ model (as estimated in this work). Although both models contain the same number of
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parameters, our model (despite being a parametric one) fits the WTPSC curve near vci and vr. Such
inaccuracy is reported for LFs (see Yan et al. [20], for example), but it does not occur in our model.

Figure 5. Comparison of fitting for 6PL and 6PLE models.

4.2. Benchmarking with WTs database

We test our model with 42 on-shore and off-shore WTs from 29 manufacturers. Ratings of the
WTs range from 275 to 8000 kW. Tables 3 and 4 list the estimated ~θ parameters, while Figures 6
and 7 show statistical metrics graphically. For convenience of presentation, we sorted WTs from with
descending order of accuracy improvement. Clearly, the 6PLEZ model is either more accurate or at
least as accurate as the 6PLE model.

Figure 6. MAE and RMSE for 6PLEZ and 6PLE WTs logistic fits (Eq 6).

AIMS Energy Volume 11, Issue 6, 1231–1251.
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Figure 7. MAPE and NRMSE for 6PLE and 6PLEZ WTs logistic fits (Eqs 5 and 6).

Table 3. Parameters estimations for WTs of different ratings for the 6PLE model.

WT model Rating (kW) Estimated parameters

a b c d g ε

Windtec WT1650df/77 1650 1576 1.615 10.24 −141.9 0.2114 0.7440
Windtec WT3000fc/91 3000 2866 1.227 11.46 −346.7 0.2175 0.6613
Windflow 45-500 500 492.3 1.313 10.42 −93.27 0.2258 0.9368
Vestas V100/1800 1800 1720 2.008 9.215 −408.7 0.1359 0.7640
Vestas V112/3000 3000 2934 0.8737 11.30 −306.0 0.3378 0.8916
Vestas V164/8000 8000 7636 1.778 10.88 −1290 0.1481 0.7417
Vergnet GEV MP R 275 264.6 0.9909 10.59 −33.34 0.3180 0.6362
Sinovel SL 3000/90 3000 2854 2.087 11.48 −426.8 0.1204 0.6230
Siemens S82 SWT-2.3 82 2300 2219 0.8866 10.94 −245.5 0.3493 0.8966
Siemens SWT-3.6-107 3600 3439 1.053 10.70 −389.9 0.2975 0.8619
Shandong Swiss Electric YZ78/1.5 1500 1426 2.783 9.826 −103.6 0.1308 0.6990
Repower MM82 2000 1928 1.413 11.17 −314.6 0.1712 0.8553
Regen Powertech Vensys V70 1500 1478 1.295 10.90 −116.4 0.2450 0.9323
Nordex S82 1500 1469 1.063 9.517 −182.0 0.3317 0.9083
Nordex N90/2500 LS offshore 2500 2420 1.126 10.77 −344.0 0.2439 0.8179
Nordex N90/2300 2300 2191 1.416 10.86 −519.4 0.1639 0.7269
Made AE-52 800 800.0 0.5824 9.994 −20.67 0.7892 0.6719
M Torres MT TWT 82/1650 1650 1630 0.7061 9.226 −127.8 0.5598 0.9359
Leitwind LTW70-1700 1700 1622 2.083 11.49 −154.5 0.1341 0.6356
JSW J82 2000 1898 1.600 11.23 −434.7 0.1321 0.6680
Inox Wind DF 100 2000 1896 1.783 8.547 −240.2 0.1932 0.6884
IMPSA IWP-70-1500 1500 1430 2.277 11.12 −189.9 0.1230 0.6919
Hyosung HS90-2MW 2000 1915 1.292 10.01 −193.7 0.2847 0.7484
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Table 3 (continued)

WT model Rating (kW) Estimated parameters

a b c d g ε

Hyosung HS50-750kW 750 715.3 3.427 11.30 −86.71 0.079 44 0.6020
Guodian United Power UP77 1500 1424 2.262 10.41 −203.4 0.1215 0.6182
Guangdong Mingyang MY1.5s 1500 1430 1.591 10.29 −140.7 0.2071 0.7068
Global Wind Power GWP82-2000 2000 1987 0.7925 10.25 −129.5 0.4587 0.9103
Gamesa G52/850 850 814.9 1.035 10.85 −123.6 0.2623 0.8458
Fuhrlander FL MD/7 1525 1490 1.079 10.27 −235.2 0.2643 0.8742
Eviag ev100 2500 2376 1.756 9.938 −227.4 0.1954 0.6965
Eviag ev2.93 2050 2003 0.9065 9.172 −134.4 0.5021 0.8590
Enercon E92/2350 2350 2345 0.9208 9.526 −76.27 0.5096 0.9880
Enercon E82 E2 2050 2016 0.9338 9.669 −66.77 0.4910 0.9254
Enercon E33/330 335 332.4 0.7343 9.298 −12.29 0.6540 0.9220
Enercon E53/800 810 788.1 1.179 9.874 −37.54 0.3385 0.9183
EWT DirectWind 52/750 750 739.1 0.9819 10.15 −44.36 0.3776 0.9304
Doosan WinDS3000/91 3000 2870 1.759 10.92 −77.35 0.2260 0.8047
Dewind D8.2 2000 1994 0.7215 7.917 −114.9 0.8369 0.8851
Clipper Liberty C93 2500 2436 1.249 10.76 −244.9 0.2505 0.9016
Clipper Liberty C100 2500 2480 1.099 10.22 −235.1 0.3076 0.9526
Clipper Liberty C89 2500 2447 1.173 10.81 −93.36 0.3307 0.9347
AVIC Huide HD2000 2050 1957 1.674 9.901 −258.7 0.1947 0.7736

Table 4. Parameters estimations for WTs of different ratings for the 6PLEZ model.

WT model Rating (kW) Estimated parameters

a b c d g ζ

Windtec WT1650df/77 1650 1686 1.750 10.42 −175.5 0.2082 1.406
Windtec WT3000fc/91 3000 3107 0.018 57 12.15 −46.62 0.1391 −19.87
Windflow 45-500 500 501.3 0.5517 10.64 −45.75 0.2094 −8.888
Vestas V100/1800 1800 1799 1.833 9.354 −343.6 0.1394 −1.672
Vestas V112/3000 3000 3005 0 13.33 30.21 0.048 14 −126.8
Vestas V164/8000 8000 8015 0.3718 11.24 −365.5 0.1215 −19.24
Vergnet GEV MP R 275 282.8 0 11.62 −6.191 0.083 86 −49.43
Sinovel SL 3000/90 3000 2999 0 12.02 −9.974 0.043 48 −92.05
Siemens S82 SWT-2.3 82 2300 2319 0 12.47 −16.08 0.1377 −36.09
Siemens SWT-3.6-107 3600 3613 0 11.62 −47.49 0.1707 −23.59
Shandong Swiss Electric YZ78/1.5 1500 1498 1.343 10.05 −19.66 0.1096 −18.46
Repower MM82 2000 1989 1.264 11.30 −242.6 0.1747 −1.768
Regen Powertech Vensys V70 1500 1503 0.091 58 11.36 −13.24 0.1722 −16.39
Nordex S82 1500 1525 0.2547 10.01 −65.12 0.2620 −9.131
Nordex N90/2500 LS offshore 2500 2526 0 11.74 −36.94 0.1087 −36.07
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Table 4 (continued)

WT model Rating (kW) Estimated parameters

a b c d g ζ

Nordex N90/2300 2300 2328 0 11.38 −128.3 0.1323 −20.00
Made AE-52 800 800.3 0 11.71 13.59 0.013 53 −374.9
M Torres MT TWT 82/1650 1650 1693 0 12.31 1.248 0.080 53 −65.60
Leitwind LTW70-1700 1700 1701 0 12.03 4.671 0.037 13 −101.4
JSW J82 2000 2019 0.2879 11.67 −98.75 0.1174 −17.89
Inox Wind DF 100 2000 2027 0 9.076 −13.55 0.1121 −28.12
IMPSA IWP-70-1500 1500 1505 1.463 11.33 −88.78 0.1188 −10.56
Hyosung HS90-2MW 2000 2000 0 11.10 2.642 0.021 19 −318.6
Hyosung HS50-750kW 750 748.3 3.388 11.45 −84.47 0.079 69 −0.4132
Guodian United Power UP77 1500 1499 0 10.95 −10.07 0.034 76 −111.0
Guangdong Mingyang MY1.5s 1500 1503 0 11.02 −9.377 0.056 91 −77.47
Global Wind Power GWP82-2000 2000 2036 0 12.10 −5.765 0.1168 −38.87
Gamesa G52/850 850 850.0 0 12.86 14.89 0.024 16 −278.7
Fuhrlander FL MD/7 1525 1547 0 11.27 −24.56 0.1325 −31.33
Eviag ev100 2500 2507 0 10.55 −14.82 0.073 18 −55.92
Eviag ev2.93 2050 2055 0 11.20 23.19 0.033 25 −227.5
Enercon E92/2350 2350 2361 0.3550 10.08 −14.94 0.3588 −6.829
Enercon E82 E2 2050 2096 0.4879 10.18 −17.17 0.3736 −5.488
Enercon E33/330 335 352.4 0.1004 10.38 −1.293 0.3939 −7.691
Enercon E53/800 810 811.2 0.4786 10.29 −6.623 0.2568 −8.688
EWT DirectWind 52/750 750 758.6 0 10.96 −5.549 0.2220 −13.92
Doosan WinDS3000/91 3000 3019 1.822 11.04 −91.61 0.2271 0.7850
Dewind D8.2 2000 2200 0 10.89 −12.30 0.1473 −44.29
Clipper Liberty C93 2500 2507 1.128 10.87 −194.4 0.2501 −1.414
Clipper Liberty C100 2500 2522 0.3279 10.61 −61.88 0.2478 −9.311
Clipper Liberty C89 2500 2505 1.173 10.87 −93.22 0.3308 0.001 366
AVIC Huide HD2000 2050 2071 1.633 10.06 −245.6 0.1954 −0.4215

Table 6 shows four statistical metrics (MAE, RMSE, MAPE, and NRMSE) with their mean,
median, maximum and minimum values for the entire database of WTs. Villanueva and Feijóo [21]
provided classifications of the accuracy of WTPSC models depending on MAPE values. Such
categories are summarized in Table 5. Tables 5 and 6 show that: (1) Both mean and median MAPE
values for the 6PLE and 6PLEZ models fall in the ‘very high’ category. However, the 6PLEZ model
has a median MAPE of 0.002383, which is less than half the ‘very high’ category threshold and (2)
both mean and median NRMSE for the 6PLEZ model are 32.3% and 38.5% less than for the 6PLE
model. This is a substantial accuracy improvement while maintaining the same number of parameters.
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Table 5. Classifications of WTPSC accuracy levels.

Accuracy level MAPE range

Very high < 0.005
High 0.005–0.025
Medium 0.025–0.1
Low 0.1–0.15

Table 6. Statistical metrics for 6PLE and 6PLEZ logistic fits (Eqs 5 and 6).

Mean Median Max Min

MAE

6PLE 8.250 7.145 31.01 489.6 × 10−3

6PLEZ 5.577 4.751 27.47 0.3737

RMSE

6PLE 10.07 8.470 37.27 613.1 × 10−3

6PLEZ 6.949 5.570 34.43 0.5241

MAPE

6PLE 4.175 × 10−3 3.866 × 10−3 8.983 × 10−3 9.791 × 10−4

6PLEZ 2.782 × 10−3 2.383 × 10−3 6.959 × 10−3 9.721 × 10−4

NRMSE

6PLE 5.103 × 10−3 4.666 × 10−3 1.153 × 10−3 1.226 × 10−3

6PLEZ 3.452 × 10−3 2.866 × 10−3 8.285 × 10−3 1.165 × 10−3

5. Final remarks, limitations and recommendations

One limitation of the study is the use of manufacturer-provided data. Because of several
factors (e.g., wind power curtailment, accumulation of dirt and snow, sensor failures, and pitch angle
control malfunctioning [26–28]), the real power-speed data points may not be exactly the same as the
ones provided by the manufacturer. In short, the data was characterized by noise and outliers.
According to the IEC 61400-12-1 standard, outliers are highly weighted by the ordinary LSE
regression method [29]. This conclusion should also pertain to most WTPSC fitting methods, as
virtually all of them employ the LSE as an objective function. Pei and Li [11] confirm that outliers
compromise the accuracy machine-learning WTPSC fitting methods.

When fitting using the manufacturer datasheet, the data points were obtained under controlled
conditions. For example, the air mass density was set to 1.225 kg m−3, the wake effect was
neglected (because only one WT was tested at a time), and the TI was assumed to be 10% [30]. The
conditions in the actual WT location are usually not the same. The implementation of test condition
control promoted fairness in comparing different WTPSC fitting models or estimation methods.

When fitting with real power-speed data, the air mass and TI may fluctuate for similar wind speed
measurements, while the wake effect was greatly affected by the distance between WTs and their yaw
angles. Additionally, several data cleaning techniques were devised in the literature (see [6, 20, 31]),
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which could be incorporated in future research. The amount of data we must remove, however, changes
depends on the WT itself, making the entire data cleaning process susceptible to subjectivity [32], and
sometimes outliers may still be present in the processed data [28].

In summary, although many papers addressed the effect of outliers on the accuracy of WTPSC
models and the sensitivity of their parameters (e.g., [32, 33]), the literature contained only few for LFs
WTPSC models and most of them were in the last five years (e.g., [11, 18, 20]). Bilendo et al. [31]
provide a recent review of WTPSC, but with no conclusive remarks on the effect of outliers on the
performance of LFs WTPSC models. Thus, we suggest the following as future work:

1. Development of new robust LFs WTPSC curve fitting techniques (or objective functions) to
guarantee model resiliency against outliers;

2. Incorporating additional parameters into the model to account for typical factors affecting outliers;

3. Examining the correlation between data filtering techniques and criteria and the accuracy of LFs
WTPSC modeling;

4. Formulating probabilistic LFs WTPSC curves to accommodate fluctuations in instantaneous
turbulence in wind speeds or enhanced LFs WTPSC to guarantee that the 10-minute averaged
power closely approximates the empirical data.

6. Conclusions

In this paper, we proposed the 6PLEZ model (Eq 6). We then derived upper and lower limits for its
parameters (Table 2) and estimated them using the STIR algorithm. The significance of this paper is:

1. Our model adapts to improving accuracy in some WTPSC regions without sacrificing the accuracy
in others (SubSection 3.1);

2. Unlike most parametric approaches, the 6PLEZ model provides accurate WTPSC modeling near
vci and vr (SubSection 4.1);

3. The limits on the parameters of the 6PLEZ model are clearly specified, which:

(a) guarantee the monotonicity of the model (Eq 8);

(b) provide robust and reliable estimation of the parameters with no difficulties in ‘guessing’
their range (Table 2);

4. It provides substantial accuracy improvement over the 6PLE model despite having the same
number of parameters as the 6PL and 6PLE models (Tables 5 and 6).
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