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Abstract: The present paper examines the potential hybridization for a dispatchable hybrid renewable 

energy system (HRES). The plant has been examined for existence in the city of Ras Ghareb, Egypt 

and follows the load profile of Egypt. The proposed plant configuration contains a wind plant, a solar 

photovoltaic plant, vanadium redox flow batteries (VRFBs) and a hydrogen system consisting of an 

electrolyzer, hydrogen tanks and fuel cells (FCs), the latter of which are for both daily and seasonal 

storage. Professional software tools have been used to model the wind and solar resources. Simulations 

for both the battery and hydrogen generation and electrolyzer operation are also considered. The output 

of these simulations is used to configure the HRES using MATLAB. The optimization objective 

function of the HRES is based on the least levelized cost of energy (LCOE) with constraints for a zero 

loss of power supply probability (LPSP) and curtailed energy. The optimization has been achieved by 

using artificial neural networks  and a MATLAB program. The results show that the optimal system 

can handle 91.2% of the load directly from the renewable energy sources (wind and solar), while the 

rest of the demand comes from the storage system (FCs and VRFBs). The LCOE of the optimal system 

configuration is (USD) 9.3 ¢/kWh, with both the LPSP and curtailed energy at zero values. This cost 

can be reduced by 14.5% if the constraint of zero curtailed energy is relaxed by 10%. Despite the load 

being maximum in summer, the energy storage requirement is predicted to be maximum in winter due 

to the low wind profile and solar radiation in winter months. Energy storage system size is dependent 

on both seasonal and daily variations in wind and solar profiles. In addition, energy storage size is the 

main factor that determines the LCOE of the system.  
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Total cost; HRES: Hybrid renewable energy system; TPL: Total power Losses; I: Inflation rate; VRFB: 

Vanadium redox flow battery; IEA: International energy agency; WT: Wind turbine; LCC: Life cycle 

cost; LCoE: Levelized cost of energy; LLP: Loss of load probability; LPSP: Loss of power supply 

probability 

1. Introduction  

Renewable energy generation has remarkably increased worldwide, primarily due to the global 

greenhouse gas emission reduction targets and climate change slowdown goals. As the development 

of renewable energy plays a crucial role in the green economy, countries should start planning their 

energy policy to depend entirely on renewables [1–4]. According to the 2022 International Energy 

Agency (IEA) renewable energy market update, global renewable additions reached a new record of 295 

GW per year [5]. According to IEA statistics, the share of renewable energy in the world's power 

production has climbed from 1.95% to 8.3% over the past 10 years (excluding hydropower) [6]. 

Introducing high levels of intermittent renewable resources in traditional power systems could have a 

negative impact on the system [7]. This may include a requirement of a balanced reserve [8], a 

curtailment of renewable electricity [9] and compromise on the reliability of thermal units exposed to 

high cycling rates due to the high penetration of renewable energy sources (RESs) [10].  

RESs represent a significant alternative energy source; however, there is considerable concern 

regarding their dependence on unpredictable factors like wind speed and solar radiation. As a result of 

their unpredictability, individual energy sources are unable to supply a steady flow of electricity to 

meet the continuous demand. However, RESs can be integrated along with storage systems to supply 

the load with high reliability and predictability. Hybrid renewable energy systems (HRESs) can operate 

in a grid connected system or as isolated systems [11–13]. The simplest form of hybridization is the 

combination of wind and solar resources in consideration of the complementarity nature in their 

generation profiles. The literature is rich in examples of such hybrid systems with many different 

combinations of renewable sources. For instance, Al-Ghussain et al. [14] assessed the use of hybrid 

photovoltaic (PV)/wind plant to meet the demand of a cement factory. The results show that using a 

hybrid PV/wind plant met the demand of the plant with a levelized cost of energy (LCOE) that is less 

than the grid tariff. Storage technologies improve the hybrid system’s reliability, as it helps to decrease 

the loss of power supply and unmet load. Several storage technologies can be used in different hybrid 
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systems depending on the advantages and disadvantages of each technology. Table 1 lists common 

storage technologies used in hybrid plants, along with their citations in the literature. 

Table 1. List of common storage technologies used in HRESs. 

Renewables Storage technology Application Ref. 

PV Batteries (Lead-acid, Li-ion, VRFB) Grid-Connected [15] 

PV/Wind Batteries (Lead-acid, Li-ion, VRFB) Grid-Connected [16,17] 

PV/Wind Batteries Off-Grid [18] 

PV/Wind Batteries/FC Off-Grid [19–21] 

PV Batteries/FC Off-Grid [22] 

CSP/PV Thermal/Batteries Grid-Connected [23] 

PV/Wind Batteries/FC Off-Grid [24] 

PV Batteries/Supercapacitor Grid-Connected [25] 

PV Fuel cell/Supercapacitor Off-Grid [26] 

PV Hydro storage Grid-connected [27] 

PV/Biomass FC Off-Grid [28] 

PV/Diesel Batteries Off-Grid [29,30] 

From previous studies, it could be noticed that wind is less favorable than PV energy. This is due 

to the highly unpredictable nature of wind, as well as the sophisticated nature of the development of 

wind projects and the limited number of economically viable windy sites. In addition, the availability 

of dependable long-term wind speed data is another barrier. Most studies tend to assess off-grid 

systems, despite the need for HRES grid-connected systems to enhance the grid reliability.  

Sizing an HRES is more complicated than sizing a single-source renewable system because of 

the characteristics of renewable energy resources, stochastic load demand and the large number of 

variables and parameters considered during the design of HREs. An optimum sizing strategy can help 

to reduce these issues while locating the lowest investment and maximizing the use of the system 

components. In the literature, numerous optimization approaches and tools have been widely published. 

Table 2 summarizes the most common optimization techniques used in HRES modeling. 

Table 2. List of simulation techniques used in HRESs optimization. 

HRES Optimization technique Constraints Ref. 

PV/Wind/Batteries Genetic Algorithm LPSP/LCOE [31] 

PV/Batteries/Diesel Genetic Algorithm LLP/LCOE [32] 

PV/Wind/FC ABC TPL/LCOE/Emissions [21] 

PV/Wind/FC/Micro-turbines Fuzzy Logic Energy Management [33] 

PV/Wind/FC/Solar thermal collector PSO Total cost [34] 

PV/Wind/Diesel/Batteries Homer LCOE [35] 

PV/Wind/Batteries/FC Simulated Annealing  LCC [36] 

The human brain learning mechanism is used by artificial neural networks (ANNs), which can 

form an input-output connection for linear and nonlinear systems with little computational effort. 

Several studies have emphasized the application of ANNs for energy production prediction and 

weather forecasting. Brekken et al. [37] employed several methods to determine the appropriate size 

and control methodology of a zinc-bromine flow battery that would enhance the predictability of wind 

power production. Using ANN methodology resulted in the lowest energy cost among the other used 

techniques. Zhang et al. [38] introduced a hybrid optimization approach for PV/WT/hydrogen system 

sizing and employed ANNs in their weather forecasting. Their results suggest that a PV/hydrogen 
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combination is the cost-effective option. The authors of the current work presented a soft coupling 

between professional modeling software tools and ANNs to find the optimum configuration of a 

baseload HRES. Their results show that the LCOE is highly dependent on the storage system size [39]. 

A comprehensive review of the ANN utilization in HRESs is provided in [40]. From the literature, all 

usage of ANNs in HRESs is mainly for weather data prediction.  

According to the previous studies, most of the previous research aimed to provide renewable 

generation for isolated systems, despite the fact that HRESs can also be used for dispatchable grid-

connected systems. This concept has not yet been studied on a large scale. Also, utilizing two storage 

techniques to consider the daily and seasonal variation of renewable energy systems was rarely found 

in the literature. Furthermore, the coupling between professional resource assessment tools and 

artificial intelligence sizing techniques is almost absent.  

The current work is a continuation of a persistent effort by the authors to employ an HRES as a 

utility grid-connected plant. An HRES consisting of PV/wind/battery/fuel cell (FC) has been simulated 

by using a variety of professional software tools. A storage dispatch method is adopted, with redox flow 

batteries serving as a daily storage system and molten carbon FCs purposed for seasonal storage. To 

achieve precise detailed output from the plant, each component of the HRES was optimally designed 

by using specialized professional software tools. WindPRO and WAsP are used to optimize the wind 

farm, and NREL system advisor model (SAM) software is used to optimize the PV farm, as well as 

simulations for both the battery hydrogen/FC systems. The objective is to optimally size a hybrid 

system that has been designed to serve as a dispatchable load plant, supplying the grid with a consistent 

load throughout the year at the lowest possible cost of power, considering hourly load throughout the 

year. The current work utilizes an ANN to enable discrete optimization through the generation of 

millions of cases to be assessed. The objective function is purposed to minimize the LCOE and 

curtailed (residual) energy while keeping the loss of power supply probability (LPSP) at zero level. 

The hourly energy output from these plants is then fed into MATLAB to determine the objective 

parameters for each case developed by the ANN. To train the ANN model to correctly predict the 

optimized system configuration, several training sets are required to feed the ANN model. A case study 

for this strategy has been implemented in Ras Ghareb, Egypt, which has had reliable measured data 

for over 20 years, for both solar and wind.  

The remainder of the paper is organized as follows. System modeling and methodology is discussed 

in Section 2. Results and discussion of the proposed system are presented in Section 3. Finally, the 

conclusion of this work is presented in Section 4. 

2. Modeling framework 

As indicated in Figure 1, the proposed HRES comprises wind, PV cells, batteries and FCs. There 

are two power buses: a direct current (DC) bus for the battery system and hydrogen system, and an 

alternating current (AC) bus for the wind farm, PV plant and load. Energy is stored by using batteries 

and hydrogen chain devices. The Ras Ghareb site in the Gulf of Suez region was selected as a test site 

to conduct this analysis based on the following criteria: availability of wind and solar resources, and 

site constraints such as height and topography [39,41]. Figure 2 shows the whole model adopted in this 

study. It starts by preparing weather data for both wind and solar resources. This is followed by the 

modeling of renewable resources in order to get the hourly power generation profiles that will be fed 

into the load, along with the excess energy directed to the storage systems.  
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Figure 1. Proposed dispatchable HRES. 
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Figure 2. Proposed model framework. 
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2.1. Modeling and simulation of a wind system 

Wind is the most intermittent renewable resource incorporated into the HRES. As a result, 

accurate weather data should be used to deliver reliable and acceptable outcomes. The Egyptian wind 

atlas and NREA [42] are used to collect reliable long-term weather statistics. Figure 3 shows the wind 

regime in Egypt, where the Gulf of Suez region is considered to have the greatest potential for wind 

power generation [42]. 

 

Figure 3. Wind speed map for Egypt at 24.5 m above ground level [42]. 

The average wind speed in Ras Ghareb is 9.5 s at 24.5 m above ground level. Figures 4 and 5 

depict the average diurnal and seasonal wind speeds in Ras Ghareb, respectively. Ras Ghareb has a 

high wind potential all day, with high wind in summer and low wind in winter. As will be demonstrated 

later, the effect of this pattern will be visible in seasonal storage sizing and, hence, on the system 

cost (i.e., capital expenditure, CapEx). 
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Figure 4. Average diurnal wind speed in Ras Ghareb. 

 

Figure 5. Average monthly wind speed in Ras Ghareb. 

WindPRO software has been used to calculate the hourly generation from wind turbines. 

WindPRO is a professional software that can be used to conduct detailed wind energy studies such as 

hourly energy generation, wake losses, layout optimization, uncertainty analysis, environmental effect 

analysis and electrical and economic calculations [43]. On WindPRO, a modular plant with a capacity 

of 100 MW has been simulated and optimized in detail. The analysis considers the effects of land 

topography, ground coverage and wake losses. To get the highest capacity factor, optimization was 

carried out for the selection of the appropriate height and wind turbine and rotor diameters, yielding a 

performance curve that fits well with the wind pattern in the site. In addition, the optimal micro siting 

and intermediary distance between turbines have been defined to achieve minimal array losses. Table 3 

lists the technical [43] and economic [44] characteristics employed in the investigation. 
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Table 3. Technical and economical parameters for wind plant [43,44]. 

Turbine rated power 2 MW Installation cost 1100 $/kW (USD) 

Hub height 80 m O&M cost 67 $/kW/year (USD) 

Turbine rotor diameter 100 m Lifetime 25 years 

Cut-in speed 3 m/s Discount rate 9% 

Cut-out speed 25 m/s   

2.2. Modeling and simulation of PV system 

Solar PV energy is currently considered as one of the most cost-effective energy sources. PV 

energy is less intermittent and more predictable than wind; however, it has a zero capacity credit since 

Egypt’s peak load occurs at night [45]. Egypt's solar PV potential is very high, particularly in the south, 

as illustrated in Figure 6 [46]. Weather data for the PV energy calculation were obtained from a PVGIS 

database [47]. Figure 7 shows the average monthly global horizontal irradiance (GHI) in Ras Ghareb. 

 

Figure 6. Global Horizontal Irradiance (GHI) for Egypt [46]. 
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Figure 7. Average monthly GHI. 

A SAM [48] was used to estimate the hourly generation from Ras Ghareb's modular 100-MW 

solar PV test plant. Table 4 lists the plant's technical and economic data. One-axis tracking was found 

to be a cost-effective approach after some initial cost optimization procedure. The DC-AC ratio and 

tilt angle were both adjusted for optimal performance and lowest LCOE.  

Table 4. Technical and economical parameters for solar PV plant [44,48,49] 

Module rated power 330 Watts Installation cost 800 $/kW (USD) 

DC-AC ratio 1.2 O&M cost 9 $/kW/year (USD) 

Module tilt angle 29° Lifetime 25 years 

Inverter rated power DC 3.17 MW Discount rate 9% 

Tracking 1-axis (Azimuth)   

2.3. Battery system 

A vanadium redox flow battery (VRFB) was employed in the analysis because of its long service 

life and timescale (charging and discharging in hours or days) [50]. VRFBs are distinct in that their 

power and energy ratings are independent [50]. VRFB energy is solely proportional to tank size; thus, 

saved energy can endure for days for any capacity. Curtailed wind and PV energy is used to charge the 

battery first, as shown in Eq (1). 

        𝐸𝑏(𝑡) = 𝐸𝑏(𝑡 − 1) + (𝑃𝐺(𝑡) − 𝑃𝐿𝑜𝑎𝑑(𝑡))𝜂𝑏       (1) 

where Eb is the battery energy, t is the time step over the year, PG is the generated energy from 

renewables, PLoad is the required load energy provided to the grid and ηb is the battery efficiency.  
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When the demand is higher than the available power from wind and PV cells, the VRFB 

discharges the energy to satisfy the load as expressed in Eq (2).  

        𝐸𝑏(𝑡) = 𝐸𝑏(𝑡 − 1) +
𝑃𝐺(𝑡)−𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝑏
         (2) 

The technical and economical parameters for the VRFB are listed in Table 5. The storage capacity 

of the battery electrolyte tanks is limited by its state of charge: SOCmin ≤ SOCbat(t) ≤ SOCmax. 

Table 5. Technical and economical parameters for the VRFB [16,50–52]. 

Efficiency 85% Installation cost 1152 $/kW (USD) 

Max SOC 100% O&M cost 50 $/kW (USD) 

Min SOC 20% Electrolyte cost 50 $/kWh (USD) 

Number of cycles 12000 cycles Life span 15 years 

2.4. Green hydrogen system 

Hydrogen as an energy vector has the potential to provide significant benefits in power networks 

with a high renewable penetration. It is a long-term (seasonal) energy storage system with a high 

energy density (lower heating value of 120 MJ/kg) [53–56]. The hydrogen system is made up of FCs, 

electrolyzers and hydrogen tanks, as well as other plant balance components such as a water 

desalination plant. Curtailed renewable energy from wind and PV cells is used to generate hydrogen, 

and gaseous hydrogen is then stored in hydrogen tanks. FCs convert hydrogen energy content into 

electricity and are utilized to supplement (stabilize) the HRES output delivered to the grid. 

2.4.1. Electrolyzer 

Water electrolyzers are classified based on their electrolyte, which might be alkaline, a proton 

exchange membrane (PEM) or a solid oxide electrolyzer. Because of their low dynamic responsiveness, 

alkaline electrolyzers are not appropriate for intermittent renewable resources. PEMs have a lot of 

potential because of its strong dynamic response and load ranges [57]. According to data from 

electrolysis manufacturers [58], the power usage for producing 1 kg of hydrogen is 51.8 kWh/kg of 

hydrogen. Hydrogen tanks will be utilized to store the hydrogen produced for later use in FCs. 

2.4.2. FC 

In this study, the battery system and the FC are operated sequentially or simultaneously. Priority 

is given to batteries because they have a better efficiency than the hydrogen system, and, hence, a 

lower energy cost. Equation (3) describes the modeling of the FC in the system. 

        𝑃𝐹𝐶(𝑡) = 𝐻2𝑢𝑠𝑒𝑑 × 33.3
𝐾𝑊ℎ

𝐾𝑔
× 𝜂𝐹𝐶           (3) 

where PFc is the FC energy produced in this hour. Both the FC and electrolyzer technical and 

economical parameters are listed in Table 6.  
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Table 6. Hydrogen production and use specifications [59]. 

Electrolyzer efficiency 70% FC efficiency 60% 

Electrolyzer plant capital cost (including plant balance) 1000 $/kW (USD) FC capital cost 1800 $/kW 

Electrolyzer O&M cost 2% of CapEx FC O&M cost 0.01 $/ Op.h 

Electrolyzer lifetime 15 years FC lifetime 50000 Op.h 

Electrolyzer stack replacement cost 500 $/kW (USD) FC replacement cost 1800 $/kW 

Hydrogen storage cost 50 $/kg (USD)   

2.5. HRES sizing and optimization 

2.5.1. Constraints 

HRESs are always oversized to account for their intermittent production. Size optimization is 

usually required to compute the appropriate mix of technologies included in the hybrid system due to 

variance in the generating cost from individual system components. The goal is to minimize the LCOE 

while keeping the LPSP and curtailed energy at their minimum. These limits ensure that the system's 

reliability and cost objectives are met. 

Consider that the objective function LCOE should be minimized. The LCOE is defined as the 

price at which electricity should be sold to break even at the end of the project lifetime, and it is 

calculated according to Eq (4).  

       𝐿𝐶𝑂𝐸 =
𝑇𝐶×𝐶𝑅𝐹+𝐹𝑂𝑀

𝐴𝐸𝑃
              (4) 

where CRF is the capital recovery factor, which is calculated as Eq (5). 

       𝐶𝑅𝐹 =
𝐷×(1+𝐷)𝑁

(1+𝐷)𝑁−1
               (5) 

where D is the discount rate, N is the lifetime of the project and i is the inflation rate. 

The average annual discounted and inflated O&M (FOM) is calculated as Eq (6). 

      𝐹𝑂𝑀 =
1

𝑁
∑

𝑎𝑛𝑛𝑢𝑎𝑙𝑂∧𝑀∗𝐷(1+𝑖)𝑡

(1+𝐷)𝑡
𝑡=𝑁
𝑡=1             (6) 

The concept of LPSP and curtailed energy are used in this paper to evaluate the reliability of the 

hybrid system. The LPSP is the probability of power shortage when the HRES is not able to satisfy the 

load. Curtailed energy is defined as the excess energy from the HRES when more power is generated 

than the load. Equations (7) and (8) show the methodology for calculating both constraints. Shortages 

and curtailed energy are calculated by summing the curtailed energy and energy shortage throughout 

the year. 

       𝐿𝑃𝑆𝑃 =
𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑀𝑊ℎ)

𝐻𝑦𝑏𝑟𝑖𝑑𝑃𝑙𝑎𝑛𝑡𝑀𝑊
× 8760           (7) 

      𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 =
𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦(𝑀𝑊ℎ)

𝐻𝑦𝑏𝑟𝑖𝑑𝑃𝑙𝑎𝑛𝑡𝑀𝑊
× 8760        (8) 
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2.5.2. Load profile 

A variable load similar to the load pattern of Egypt was used in the analysis with a peak of 200 

MW. Figure 8 shows the average diurnal load profile, and Figure 9 shows the yearly load profile. 

 

Figure 8. Average diurnal load during yearly analysis. 

 

Figure 9. Annual load profile. 

2.5.3. Modeling and optimization of HRES 

Figure 2 depicts the steps of the sizing methodology, which was programmed in MATLAB. First, 

a set of system design parameters (seven design parameters) are chosen at random. These seven design 

parameters are as follows: wind plant capacity, PV plant capacity, VRFB capacity, VRFB energy, FC 

plant capacity, hydrogen electrolyzer capacity and hydrogen tank size. Wind plant capacity is used to 
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determine the hourly generation from wind energy by using WindPRO software, and PV plant capacity 

is used to determine the hourly generation from PV energy by using SAM software. Then, the code 

combines the hourly generation from solar and wind energies and compares them to the required 

dispatchable load. The code first tries to satisfy the required load with renewable energy, if the 

renewable energy generation is higher than the load, then the curtailed energy is stored in batteries and 

hydrogen tanks. If there is still renewable energy generation, it is considered as curtailed energy and 

should be curtailed. However, if the renewable energy generation is lower than the load, the VRFB 

operates first to fulfill the load, and then the FC operates if it is required. The LPSP increases if the 

load requirement is not fulfilled. The three outputs of this code are the LPSP, curtailed energy and 

LCOE. This process is repeated 3250 times by using different HRES configurations to form the 

training samples of the ANN model. 

2.5.4. ANN 

A feed-forward backpropagation learning algorithm was developed in MATLAB 2014 by using 

the neural network toolbox, and it is the neural network utilized in the investigation. The two layers of 

the ANN employed in the analysis are depicted in Figure 10. The hidden layer’s number of neurons 

was tested and the least average mean square error was determined to be 15 neurons. So, the hidden 

layer has 15 neurons with the TANSIG transfer function, and the second layer is the output layer with 

the PURELIN transfer function. As previously mentioned, the analysis uses seven parameters as ANN 

inputs. The three outputs are curtailed energy, LPSP and LCOE. The training function used in the 

analysis is the Levenberg-Marquardt algorithm. A summary of the ANN model parameters is listed in 

Table 7. 

Table 7. ANN parameters. 

Network type Feed-forward backpropagation Neurons in the hidden layer 15 

Input parameters 7 Transfer function TANSIG 

Output parameters 3 Training function TRAINLM 

No. of layers 2   
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Figure 10. ANN structure. 

Several HRES configurations (3250) are obtained via the method described in Figure 9 above. 

These data were divided into three categories, as follows: 70% of the samples were randomly chosen for 

training the ANN; 15% of the samples were randomly chosen to measure network generalization; 15% 

of the samples were randomly chosen to provide an independent measure of network performance 

during and after training. 

The next stage involves constructing a huge dataset of HRES configurations after testing the ANN. 

The ANN model predicts the output of these systems; then, it limits the solution to target curtailed 

energy and LPSP values of 1% and 1%, respectively (see Figure 11 below). Limiting the solution to 

only 1% for the LPSP and curtailed energy serves to minimize the computational time. Figure 11 shows 

the complete algorithm; 9854220 HRES configurations were randomly created and fed into the ANN 

to predict its output.  

3. Results 

A grid-connected hybrid renewable energy plant was designed and optimized to supply the grid 

with a dispatchable generation regime according to the provided load profile, which is consistent with 

the load profile of Egypt. In order to ensure complementarity between solar and wind resources, the 

location was chosen based on the combined capacity factor for these two resources. The output 

parameters for several cases, which serve as a training dataset for the ANN, were determined by using 

a MATLAB code. A huge dataset that represents the space from which the best system is chosen based 

on the lowest LCOE within a range of established criteria for the LPSP and curtailed energy values is 

predicted by using an ANN. 
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3.1. Renewable energy results 

The main output from the simulation of a modular wind plant is the hourly energy production, 

capacity factor and wake loss. Table 8 contains the main outputs for the 100-MW test wind plant. 

Table 8. Main output for wind plant simulation. 

Capacity factor 72% 

Wake loss 4.3% 

Total energy production for 100-MW plant 631.32 GWh/year 

For the PV modular plant, the simulation's key outputs are the capacity factor and the hourly 

energy production. Table 9 shows the primary output of the PV system. 

Table 9. Main outputs from solar PV plant. 

Capacity factor 30.2% 

AEP for 100-MW solar PV plant 264.9 GWh/year 

3.2. ANN output 

The regression curves in Figure 11 show the results of the network outputs of the target training, 

validation and testing, as obtained after training the network.  
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Figure 11. Regression analysis for sample data. 

3.3. Base model results 

The ANN sets a space of 9854220 HRES system configurations with three output parameters: 

LCOE, LPSP and curtailed energy. The lowest LCOE systems are most desired, but it comes with 

increases in the LPSP and curtailed energy. For the case presented here, we are focusing on zero LPSP 

and zero curtailed energy. Table 10 shows the optimum solution for the dispatchable generation plant.  

Table 10. Optimum parameters for a dispatchable load HRES. 

Parameter Size 

Wind energy 190-MW wind farm 

Solar PV energy 90-MW solar PV farm 

VRFB energy  2000 MWh 

VRFB power 30 MW 

Electrolyzer  150 MW 

Hydrogen storage tanks 2300-ton H2 

FC 140 MW 

The optimum solution should have zero LPSP and zero curtailed energy. Hence, the LCOE is 

only presented here because the two other constraints are zero. The LCOE for the above-mentioned 

plant is (USD) 9.3 cents/kWh. 



188 

 

AIMS Energy  Volume 11, Issue 1, 171–196. 

Figures 12 and 13 show the energy share for each component of the HRES on a monthly and 

annual basis, respectively. As shown in the figures, renewable energy generation provides 91.3% of 

the total energy share, while 3.5% of the total energy share is from the VRFB and the remaining 5.2% 

is from hydrogen FCs. Wind energy share has the highest energy share due to the high-capacity factor 

of wind at that site. 

 

Figure 12. Annual energy share for each component. 

 

Figure 13. Monthly energy share for each component. 

Figure 14 shows the variation in renewable energy production rates, the VRFB and hydrogen 

systems along on week in one sample week for the optimum HRES. The figure shows that wind and 

solar almost cover the required load in the daytime while it relies on storage systems in the night.  
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Figure 14. Hourly generation sample in one week. 

Figure 15 shows the hourly generation for both the VRFB and FCs. The FCs will operate more 

during winter months, especially in February and November. However, due to the nature of the VRFB 

and its role as a diurnal storage system, it will operate more than FCs throughout the year.  

 

Figure 15. Energy generation for the VRFB and FCs. 

Figure 16 presents the average monthly capacity factor. The monthly capacity factor for the 

VRFB will reach a maximum of 31.8% in November. For the FCs, the maximum monthly capacity 

factor of 16.2% will occur in February. The average yearly capacity factor for FCs is 6.8%, which is 

very low, because FCs operate as a seasonal storage system. On the other hand, the VRFB average 

yearly capacity factor is 21.25%. 
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Figure 16. Average monthly capacity factor. 

Batteries are more suitable for short-term storage. On the other hand, hydrogen storage is more 

suitable for seasonal storage. Figure 17 shows the annual variation in hydrogen storage level and the 

SOC of the VRFB. In the summer, the hydrogen level ramps up and accumulates for winter usage. 

This trend is consistent with the site’s seasonal wind and solar patterns, where both wind and solar PV 

generation are higher in summer than in winter, as shown in Figures 5 and 6, respectively. The battery 

SOC shows the same trend as the hydrogen tank level. Despite the fact that the load profile is maximal 

during summer months, the storage requirement is maximal in winter months. This is directly related 

to the nature of the wind speed at the studied site, because the wind speed is low in winter months. It 

is obvious that the system depends on storage more than the renewable generation to provide a steady 

output for the winter period. However, the VRFB will cycle more than hydrogen due to its shorter 

storage period (less than a week). Therefore, the system depends on the seasonal storage of hydrogen 

more than on battery storage. 

 

Figure 17. Hydrogen storage level and VRFB SOC. 
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Introducing energy storage systems to a hybrid plant increases the system reliability and reduces 

the intermittency, enabling a steady output. However, it substantially increases the cost of the system 

and, hence, the LCOE, due to its higher CapEx. Figure 18 shows the breakdown of the total CapEx of 

the HRES and its percentage of total plant cost. The total system CapEx is projected to be USD 0.947 

billion, which means that the cost per kilowatt is USD 4735.  

 

Figure 18. Breakdown of HRES CapEx. 

Hydrogen itself is responsible for 57% of the total plant cost, despite the low-capacity factor of 

the FCs. But it is important to improve the system reliability and flexibility. 

The installation cost of wind and solar PV plants represent 30% of the total system cost. And, 

they are responsible for 91.2% of the total energy share. On the other hand, the energy storage system 

cost represents 70% of the total system cost and produces only 8.8% of the total energy share. A 

substantial initial cost is one of the obstacles preventing the wide adoption of such systems. However, 

as technology advances and economies of scale take hold, storage costs will continue to decline, 

gradually closing the gap. 

3.4. Relaxing constraints 

The base case model considers LPSP and curtailed energy to be zero. However, relaxing the 

curtailed energy parameter could reduce the LCOE while keeping the LPSP at zero. This is because an 

oversized renewable generation plant will reduce the required storage and, hence, increase the curtailed 

energy. Figure 19 shows the case of relaxing the curtailed energy constraint from 0% to 10%. It shows 

a reduction of 14.5% of the LCOE when the curtailed energy is 10%.  
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Figure 19. Effects of relaxing curtailed energy constraint on the system cost and LCOE. 

4. Conclusions 

Although the plant consists of several renewable and storage systems, including wind turbines, 

PV cells, a VRFB and hydrogen systems, it is possible to optimally consolidate them into one plant, 

which can be operated on a dispatchable mode. The plant enjoys a fast response time due to the 

presence of batteries. The optimum LCOE is a function of the site characteristics and load profile. 

Testing the model, considering Egypt’s load profile at the site of Ras Ghareb in the Gulf of Suez in 

Egypt, the LCOE is projected to be (USD) 9.3 ¢/kWh at zero LPSP. Although this cost may not achieve 

grid parity, it can be economical if the international gas prices and greenhouse gas emission abatement 

costs are considered. Furthermore, this cost is less than an equivalent concentrated solar power plant 

with thermal storage. Relaxing the constraint of curtailed energy while keep the LPSP at zero can have 

an obvious impact on the cost of the generated electricity. The storage system is responsible for 70% 

of the cost of electricity. This can be reduced substantially for sites that have better coupling (i.e., 

negative cross-correlation between the generation of both solar and wind) and good coupling with the 

annual load profile (i.e., positive cross-correlation, especially for wind energy generation and the load 

profile). 
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