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Abstract: The year 2022 is characterized by a generalized energy crisis, which leads to steadily 

increasing electricity prices around the world, while the corresponding salaries remain stable. 

Therefore, examining trends in electricity prices relative to existing income levels can provide valuable 

insights into the overpricing/underpricing of energy consumption. In this article, we examine the 

tendencies of 35 European countries according to their national kWh prices and the average household 

incomes. We use a series of established clustering methods that leverage available information to 

reveal price and income patterns across Europe. We obtain important information on the balance 

between family earnings and electricity prices in each European country and are able to identify 

countries and regions that offer the most and least favorable economic conditions based on these two 

characteristics studied. Our analysis reveals the existence of four price and income patterns that reflect 

geographical differences across Europe. Countries such as Iceland, Norway, and Luxembourg exhibit 

the most favorable balance between prices and earnings. Conversely, electricity prices appear to be 

overpriced in many southern and eastern countries, with Portugal being the most prominent example 

of this phenomenon. In general, average household incomes become more satisfactory for European 

citizens as we move from east to west and south to north. In contrast, the respective national electricity 

prices do not follow this geographical pattern, leading to notable imbalances. After identifying 

significant cases of inflated prices, we investigate the respective causes of the observed situation with 

the aim of explaining this extreme behavior with exogenous factors. Finally, it becomes clear that the 

recent increase in energy prices should not be considered as a completely unexpected event, but rather 

as a phenomenon that has occurred and developed gradually over the years. 
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1. Introduction 

The first half of 2022 has been associated in many people's minds with a time of increased 

expensiveness and uncontrollably rising fuel and electricity prices. There is no doubt that energy prices 

affect all households. A household’s ability to pay its energy-related bills is determined by two main 

factors, energy prices and the salary of the average consumer. Therefore, overpriced energy bills that 

are disproportionate to consumers’ wages significantly worsen the overall standard of living. But how 

can it be said that a country’s citizens are burdened by electricity prices, while in other countries such 

burden does not exist? 

Unsupervised methodologies such as clustering algorithms, allow countries to be categorized in 

terms of household incomes and national kWh price levels. Unlike supervised learning, where each 

object (data point, image, text, etc.) should be given an appropriate label [1,2], unsupervised methods 

can operate solely based on information provided by the independent variables exclusively. Such 

categorization makes any comparison feasible. In recent decades, the problem of cluster analysis has 

been thoroughly studied and various algorithms have been proposed. Although, the way clustering is 

approached varies greatly from algorithm to algorithm [3,4]. Fraley and Raftery [5] proposed a division 

of the different clustering techniques into hierarchical and partitioning. However, there are other 

techniques based on the density of observations or the application of statistical models, leading to the 

addition of more clustering categories to the already existing ones [6]. 

Matuszewska-Janica et al. [7] performed an analysis based on K-means between European 

countries to show the differences between households in terms of sustainable energy development. 

Gostkowski et al. [8] also used the Κ-means algorithm and other agglomerative methods to assess 

energy consumption, but only for the Visegrad Group countries, using data from 1990 to 2018. 

Poyrazoglu [9] attempted to define electricity price zones, but only for the Turkish market. For the latter, 

K-means and queen/rook spatial constraint clustering were applied. In addition to the above articles, 

Martínez et al. [10] had a quite similar approach using the conventional and the fuzzy K-means. 

Furthermore, Verbič et al. [11] investigated the impact of residential electricity prices on energy 

intensity in Europe using a linear regression model, while Gil-Alana et al. [12] studied the relationship 

between energy consumption and prices in Spain and Portugal, utilizing linear time series analysis, 

namely autocorrelation indicators and autoregressive models. Takentsi et al. [13] examined the 

existence of causal relations between electricity prices and economic performance in South Africa for 

the period 1994–2019. Their findings reveal that electricity prices have a significant negative impact 

on economic growth in the long and short run. Shah et al. [14] presented a comparison of multivariate 

vector autoregressive models where their parameter estimation is based on least squares, Lasso, Ridge 

or Elastic-net regression. The forecasting efficiency of these four models is tested on electricity 

demand and price time series between 2013 and 2017. Also, Wang and Li [15] examined the impact 

of electricity prices on power-generation structures, showing that an increase of electricity prices can 

not only improve the efficiency of power plants, but also propel firms to invest more in renewable 

energy plants. Moreover, the usage of other techniques based on indicators like the Pearson or 

Spearman correlations, could provide valuable information about the investigated phenomenon [16].  



1148 

 

AIMS Energy  Volume 10, Issue 6, 1146–1164. 

Zhou and Zheng [17] used artificial neural networks to forecast building demand, since efficient 

demand forecasting and advanced demand-side controls are necessary to improve building energy 

flexibility. Zhou et al. [18] provided an overview of passive and active phase change materials, 

integrated building energy systems with advanced machine learning-based climate-adaptive designs 

and uncertainty-based optimizations. In addition, Liu et al. [19] developed an uncertainty energy 

design for net-zero energy communities. According to the authors, this design, which involves 

hydrogen and battery storage vehicles, provides important guidance for advancing net-zero energy and 

achieving carbon neutrality for integrated building and transportation sectors by 2050. All previous 

studies feature innovative elements and make valuable contributions to the field of energy studies. 

In this article, special emphasis is placed on the study of kWh prices compared to mean 

household incomes across Europe. Unlike the aforementioned studies, our work aims to include 

income data from 35 European countries in the discussion, leading to more accurate and reliable 

conclusions about the existing situation. As a result, we arrive at important observations about the 

balance between kWh prices and family earnings in each country, distinguishing cases where the given 

conditions seem to be clearly in favor or to the disadvantage of the average consumer.  

The reliability of our results is significantly increased due to the implementation of several established 

clustering techniques, such as K-means++, PAM (Partition Around Medoids), CLARA (Clustering 

Large Applications), DBSCAN (Density Based Clustering of Applications with Noise), and 

UPGMA (Unweighted Pair Group Method using arithmetic Average). Most of the aforementioned 

studies are limited to the exploration of only one method. The reason for using such a variety of 

techniques is to derive accurate results, as different clustering algorithms may yield different outcomes 

depending on how they work. In addition, our approach helps to identify notable cases of overvaluation, 

leading to an investigation of the respective causes behind the observed situation, aiming to justify this 

extreme behavior, which may be influenced by exogenous factors.      

In our analysis, we come across characteristic geographical patterns based on national electricity 

prices and household earnings, which allow us to draw valuable conclusions about the existing 

situation in Europe. Finally, according to the produced clustering results, we find the general 

tendency that more and more European countries are systematically classified into clusters 

representing higher kWh price standards during the period 2007–2018. This phenomenon suggests 

that the current energy crisis has its roots before the recent Russian-Ukrainian war, which is considered 

to be the main culprit behind the rising energy costs. 

The paper is organized as follows. In section 2, we present the main features as well as the steps 

of the algorithm for each of the considered clustering techniques. In section 3, we investigate the 

existence of patterns in Europe in terms of national electricity prices and corresponding average 

incomes using five established clustering methods. Finally, in sections 4 and 5, we summarize and 

discuss the obtained results, focusing on general upward price trends. Hence, we highlight cases of 

extreme overpricing and finally draw valuable conclusions about the current situation in Europe with 

respect to kWh prices relative to average incomes. 
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2. Materials and methods 

2.1. Hierarchical clustering 

Agglomerative methods, belonging to the class of hierarchical clustering algorithms, follow a 

bottom-up approach where the initially created clusters contain only one element [20]. During each 

step of the process, the initial clusters merge, resulting in groups containing more and more 

elements [21]. The agglomerative procedure terminates until all objects are placed in a single cluster. 

Hierarchical methods usually lead to the creation of tree diagrams that help draw useful conclusions 

about the appropriate number of clusters [22]. The decision of which clusters to join or separate is 

defined based on a similarity measure, which combines the distance of elements with a linkage 

criterion that determines the similarity of two groups. The three most common linkage criteria between 

two clusters 𝐴 and 𝐵 are [23]:  

1. Complete-linkage, defined as max{𝑑(𝑥, 𝑦): 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} and representing the maximum distance 

between the elements of 𝐴 and 𝐵. 

2. Single-linkage, defined as min{𝑑(𝑥, 𝑦): 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}  and representing the minimum distance 

between the elements of 𝐴 and 𝐵. 

3. Average-linkage, defined as 
1

|𝐴||𝐵|
∑ ∑ 𝑑(𝑥, 𝑦)𝑦∈𝐵𝑥∈𝐴  and representing the average distance 

between the elements of 𝐴 and 𝐵. 

The process stops when the number of classes becomes sufficiently small [24]. Lance and 

Williams [25], proposed an equation that with appropriate adjustments represents any hierarchical 

model. For the purposes of our analysis, we emphasize the UPGMA clustering methodology 

corresponding to the average-linkage case.  

The group average method—also called UPGMA—is defined as the average distance between all 

examined classes. Τhe distance between a merged class 𝐶𝑖 ∪ 𝐶𝑗 and a third 𝐶𝑘, results from 

𝐷(𝐶𝑖 ∪ 𝐶𝑗 , 𝐶𝑘) =
|𝐶𝑖|

|𝐶𝑖| + |𝐶𝑗|
𝐷(𝐶𝑖, 𝐶𝑘) +

|𝐶𝑗|

|𝐶𝑖| + |𝐶𝑗|
𝐷(𝐶𝑗 , 𝐶𝑘)                              (1) 

while for classes 𝐶 and 𝐶′ we have  

𝐷(𝐶, 𝐶′) =  
1

|𝐶||𝐶′|
∑ 𝑑(𝑥, 𝑦)                                                      (2)

𝑥∈𝐶,𝑦∈𝐶′

 

2.2. K-means 

Given an initial set of 𝑘 centers 𝑚1
1, 𝑚2

1, … , 𝑚𝑘
1 , the algorithm works based on the following 

steps [26]: 

Step 1. Each observation must be included in the cluster of its nearest medoid. Usually, the appropriate  

metric that defines proximity is the squared Euclidean distance,  

𝑆𝑖
𝑡 = {𝑥𝑝: |𝑥𝑝 − 𝑚𝑖

𝑡|
2

≤ |𝑥𝑝 − 𝑚𝑗
𝑡|

2
 , 1 ≤ 𝑖, 𝑗 ≤ 𝑘}                                   (3) 
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where each observation 𝑥𝑝  is inserted only in cluster 𝑆𝑡 . Other commonly used distances are the 

Chebyshev and Minkowski [27]. 

Step 2. The medoids of the new clusters are calculated as  

𝑚𝑖
𝑡+1 =

1

|𝑆𝑖
𝑡|

∑ 𝑥𝑗 ,                                                                    (4) 

where |𝑆𝑖
𝑡| denotes the number of elements that have joined the 𝑆𝑖  class during the t-th iteration. 

During the algorithm’s operation, we aim to minimize the value of the within clusters sum of squares 

function (WCSS), presented by  

𝑤𝑐𝑠𝑠 =  ∑ ∑ |𝑥𝑗 − 𝑚𝑖|
2

.                                                             (5)

𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1

 

This procedure leads to diversified results based on the preselected number of clusters [28]. 

2.3. K-means++ 

K-means++ attempts to enhance the 𝑘 initial medoids selection procedure offered by the naive 

K-means. An object is randomly selected from the dataset to be the first medoid. Each item is selected 

based on the uniform distribution. The remaining objects are selected as medoids with a probability 

proportional to the distance from the nearest, already chosen medoid [29]. This process continues until 

k centers are selected. Briefly, the algorithm consists of the following 4 steps: 

Step 1. Select a medoid 𝑐1 from dataset X according to the uniform distribution. 

Step 2. Choose a medoid 𝑐𝑖 from X, with probability 
𝐷(𝑥)2

∑ 𝐷(𝑥)2
𝑥∈𝑋

. 

Step 3. Repeat the previous step until 𝑘 centers are selected. 

Step 4. Proceed as dictated by the Κ-means algorithm. 

Applications have shown that K-means++ outperforms the conventional K-means, highlighting 

the importance of efficient medoid initialization. Selecting the initial centers requires k additional 

scans of the dataset. However, this process does not significantly increases the convergence time of 

K-means++, as a proper medoid initialization usually leads to faster convergence times.     

2.4. PAM 

The PAM algorithm identifies objects called centroids, which are important for initializing the 

iterative procedure. The centroids are placed in a set 𝑆 called the set of selected objects. If 𝑂 is the set 

of all objects, we define the set of unselected elements 𝑈 =  𝑂 −  𝑆. This method minimizes the 

ambiguity of the objects with the nearest selected element (centroid) by using the Euclidean or, in 

certain cases, the Manhattan distance. The algorithm consists of two main phases [30]. 

Phase 1. (BUILD). A collection of 𝑘 objects is selected to create the initial set 𝑆. 

Phase 2. (SWAP). In this phase, we improve the initial clustering quality by swapping selected and 

unselected elements. We define quantities 𝐷𝑝 and 𝐸𝑝, which denote the dissimilarity between an object 
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p and its 1st and 2nd nearest neighbors in the set S, respectively. The execution of the PAM is based 

on the following steps: 

Step 1. The object with the minimum total distance relative to all other objects is placed in the set 𝑆,  

representing the most central element of 𝑂.  

Step 2. An object 𝑖 ∈ 𝑈, is randomly selected as a candidate member in 𝑆. 

Step 3. For an object 𝑗 ∈  𝑈 − {𝑖}, calculate quantity 𝐷𝑗 . In case 𝑑 (𝑖, 𝑗) < 𝐷𝑗 , then 𝑗 contributes to the  

selection of object 𝑖.  
Step 4. Consider 𝐶𝑖𝑗 = 𝑚𝑎𝑥(𝐷𝑗 −  𝑑 (𝑖, 𝑗), 0) and calculate the quantity 𝑔𝑖  = ∑ 𝐶𝑖𝑗 .𝑗∈𝑈  Finally, select  

the object 𝑖 that maximizes the quantity 𝑔𝑖. 

Step 5. Sets 𝑆 and 𝑈 are updated after each iteration. 

These steps are performed until 𝑘 elements are selected for the set 𝑆. During the swapping phase, 

we aim to improve the clustering quality. The necessary steps are: 

Step 1. Calculate 𝐾𝑖𝑗ℎ considering the following two cases 

• if 𝑑(𝑗, 𝑖) >  𝐷𝑗  then 𝐾𝑖𝑗ℎ = min(𝑑𝑗ℎ − 𝐷𝑗 , 0),    (𝑖, ℎ) ∈  𝑆 × 𝑈, 𝑗 ∈ 𝑈 − {ℎ},   

• if 𝑑(𝑗, 𝑖) =  𝐷𝑗  then  𝐾𝑖𝑗ℎ = min(𝑑𝑗ℎ, 𝐸𝑗) − 𝐷𝑗,  (𝑖, ℎ) ∈  𝑆 × 𝑈, 𝑗 ∈ 𝑈 − {ℎ}. 

Step 2. Calculate 𝑇𝑖ℎ  =  ∑ 𝐾𝑗𝑖ℎ , 𝑗 ∈  𝑈. 

Step 3. Select the pair (𝑖, ℎ)  ∈  𝑆 × 𝑈 that minimizes 𝑇𝑖ℎ. 

Step 4. If 𝑇𝑖ℎ  < 0, perform the substitution of the two elements and return to step 1. The algorithm  

terminates when all 𝑇𝑖ℎ become positive. 

2.5. CLARA 

CLARA, in contrast with PAM, was designed to manage large datasets [30]. Instead of finding 

representative objects for the entire dataset, it takes a sample of it and applies PAM to find its centroids. 

To enhance the algorithm’s accuracy, the sampling process is performed several times. Finally, we 

choose the clustering that minimizes the mean difference of dataset’s elements. The steps for CLARA 

algorithm are as follows:  

Step 1. Select a sample of 40 +  2𝑘 objects using simple random sampling and then perform the PAM  

algorithm to find the 𝑘 centers of the sample. 

Step 2. For each item of the set 𝑈, determine the most similar centroid. 

Step 3. Calculate the mean difference of the dataset. If it is smaller than the already existed ones, set  

this difference as the new minimum. Then, consider the centers that have been found in step 2 

as the representative set. 

Step 4. Return to step 1 for the next iteration. 

The algorithm returns the clusters resulting from the sample with the lowest mean heterogeneity.  

2.6. DBSCAN 

DBSCAN was proposed by Ester et al. in 1996 [31] and its operation is based on the density of 

the observations. Specifically, this methodology places together observations that have many 

neighboring elements, while pointing out items (as irregularities) that their nearest neighbors are far 

away. To define the neighborhood around a reference point it is necessary to determine a positive 
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radius 𝜀, rendering any other point located inside the supersphere as an adjacent one. Also, a quantity 

𝑚𝑖𝑛𝑃𝑡𝑠  should be specified, indicating the minimum number of points for which an area is 

considered dense.  

A point 𝑝 is called a core point if in a radius 𝜀 around it, there are at least 𝑚𝑖𝑛𝑃𝑡𝑠 points including 

𝑝. A point 𝑞 is called directly reachable from a core point 𝑝 if the distance from 𝑞 to 𝑝 is less than 𝜀. 

A point 𝑞 is called a reachable point from a point 𝑝 if there exists a path 𝑝1, . . . . 𝑝𝑛, where 𝑝1 =  𝑝 and 

𝑝𝑛 = 𝑞, while every 𝑝𝑖+1 is directly reachable from 𝑝. Moreover, 𝑝 is tightly connected to 𝑞, if there 

is an element 𝑜 that is a close approximation of 𝑝 and 𝑞. Outliers or noise are the elements that do not 

fall into any of the abovementioned categories [31]. 

If 𝑝 is a core point, it forms a cluster together with the points representing its approximations.  

Namely, the algorithm selects arbitrarily a starting point 𝑝 and scans its neighborhood. When the 

neighborhood is sufficiently dense, the formation of a cluster 𝐶 initiates, including all points belonging 

in the vicinity of 𝑝. Then, we explore the neighborhood of each participating point 𝑞 . When the 

neighborhood of these points contains more than 𝑚𝑖𝑛𝑃𝑡𝑠 elements, then all neighbors of 𝑞 that are not 

already in cluster 𝐶 , are added. After the completion of this iterative process, the algorithm 

characterizes the remaining points as noise.  

Let 𝑑  be the distance of a point 𝑝 from its 𝑘-th closest neighbor. Then, the 𝑑  neighborhood 

𝑁𝑑(𝜖) of 𝑝 contains exactly 𝑘 +  1 elements. For a given value of 𝑘, we define the 𝑘 −  𝑑𝑖𝑠𝑡 function 

that maps each observation to its distance from the 𝑘-th nearest neighbor. These points are placed in 

descending 𝑘 −  𝑑𝑖𝑠𝑡 order, resulting in the creation of a declining curve.  

Consider the value 𝜀 to be equal to 𝑘 − 𝑑𝑖𝑠𝑡 (𝑝) for some arbitrary element 𝑝 and 𝑚𝑖𝑛𝑃𝑡𝑠 =  𝑘. 

Our goal is to find the part of the curve that displays a plateau. Points corresponding to the right part 

of the plateau are considered outliers, while those on the left should be added to the clusters. In practice, 

various applications have shown that the 𝑘 − 𝑑𝑖𝑠𝑡 graphs for 𝑘 > 4 become similar [31]. Therefore, 

in the results section we explore the corresponding graphs for 𝑘 =  3, 4, 5. More information on the 

operation of DBSCAN or any of the abovementioned methodologies can be found in [32–34].   

3. Results 

In this section, we examine annual Eurostat’s recordings of electricity prices and household 

incomes based on the abovementioned clustering methodologies. The dataset studied, contains 

electricity prices (€/kWh) taking into account the additional taxes and levies imposed by the 

governments of the countries under consideration. For each country there are two values for the kWh 

price, one for each semester. The average of the two semesters is considered the kWh price per year. 

The 27 of the 35 participants included in our analysis are members of the European Union (EU), with 

Turkey, Norway, Iceland, the United Kingdom, Serbia, Northern Macedonia, Montenegro, and 

Kosovo representing the remaining countries in our study.  

Another important aspect to consider, is the corresponding average household income in these 

countries. Particular attention is paid to the simultaneous investigation of these two characteristics, 

with the aim of revealing patterns around Europe. We provide the links for the income data and 

electricity prices under all taxes and levies. The interested reader can find the utilized household 

incomes for 2018 in the link https://ec.europa.eu/eurostat/databrowser/view/ilc_di16/default/table?lang=en  

and the corresponding electricity prices during the time period 2007–2018 in the link         

https://ec.europa.eu/eurostat/databrowser/view/NRG_PC_204__custom_3683549/default/table?lang=en.  
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The original purpose of this article is to classify European countries and to draw conclusions 

about electricity prices as a function of the income of an average family. Using the clustering 

algorithms discussed earlier, we aim to find out in which countries the distribution of average incomes 

does not match the respective kWh prices, while looking for specific factors that cause such imbalances. 

At the same time, we explore the evolution of electricity prices for the period 2007–2018, showing a 

general tendency in energy prices observed in most of the participating European countries. 

Our analysis is based on the results of K-means++, PAM, CLARA, DBSCAN and UPGMA. We 

avoid using algorithms such as OPTICS due to the small number of observations. This limitation is 

associated with the lack of dense regions, which may lead to unreliable results [35]. We also avoid 

using the conventional K-means algorithm due to its limited efficiency. Finally, we do not examine 

the results of the Gaussian mixed models, as they are best suited for a larger number of observations, 

since the accuracy of the estimation of the ellipsoids requires a satisfactory element cardinality [36]. 

According to the plots of within clusters sum of squares for kWh prices and household earnings (Figure 1), 

we do not observe significant changes in the WCSS for a number of clusters greater than 4. Hence, the 

choice of 4 clusters will be followed throughout this section.  

 

Figure 1. WCSS diagram for the electricity prices and mean household incomes. 

First, we consider the grouping of the 35 countries studied, based on the income of an average 

family using the K-means++ algorithm (Figure 2). The red cluster includes the countries with the 

highest incomes, the blue cluster includes the countries with the second highest incomes, while the 

countries with the lowest average household earnings are shown in green. There is an obvious 

distinction between the western and eastern parts of Europe, where the eastern countries are classified in 

the yellow and green clusters, representing the cases whose citizens receive the least prosperous wages. 
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Figure 2. Clustering results of average household incomes of European countries by K-means++. 

The green cluster contains incomes between 2059–9346 euros, the yellow cluster has incomes 

between 10524–16844 euros, while the blue cluster is characterized by incomes between 21464–30104 

euros and the red cluster by incomes between 34472–39918 euros. We note that the group of countries 

with the most satisfactory average family earnings is quite small and includes only Norway, Iceland, 

and Luxembourg. An interesting observation is the inclusion of Estonia in the yellow group, 

corresponding to higher average incomes compared to most eastern European countries. There seems 

to be a clear distinction between the northern and Mediterranean countries, with the latter classified in 

the green and yellow groups, showing a decreasing trend in salaries as we move from north to south. 

Namely, participants of the green cluster are Serbia, Greece, Turkey, Poland, Czechia, etc., while the 

yellow group contain countries such as Italy, Spain and Estonia. Another important observation is the 

separation of Norway from the other 2 Scandinavian countries and Finland, which are now included 

in the blue cluster, suggesting that Norway offers quite more generous salaries than its neighbors. 

The application of the UPGMA procedure, provide equivalent results with the K-means++ 

algorithm, where the only exception is the case of Denmark that is included in the red cluster, 

corresponding to the group of highest incomes. Now Denmark resembles the behavior of Norway, 

differentiating it from Sweden and Finland.  

 

Figure 3. Clustering of European countries based on the average family incomes using 

PAM or CLARA. 
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The results of the application of CLARA and PAM are shown in Figure 3. The color interpretation 

remains the same, while this color selection is also used for the clustering of the national electricity prices, 

i.e., the highest national kWh prices are assigned red color, etc. The green cluster contains family 

earnings between 2059–10524 euros, the yellow cluster includes earnings between 13244–16844 euros, 

while the blue cluster is characterized by earnings between 21464–30104 euros and the red group by 

earnings between 34472–39918 euros. The results of these two algorithms are similar, a fact that is 

quite expected based on the operation of these methods. Moreover, there are minor differences 

compared to the clustering proposed by Κ-means++, where Estonia is now also included in the green 

cluster, along with the rest of the Baltic and eastern countries. The results of Figure 3, show a clear 

distinction between southeastern and northwestern countries in terms of the earnings of an average family.   

At this point, we proceed to apply the same algorithms to national electricity prices. The results 

after applying Κ-means++ are shown in Figure 4. The color interpretation is similar to the 

interpretation of the graph of mean incomes. There is no significant pattern in electricity prices 

depending on the location of the countries studied, as there are cases with relatively high kWh prices 

in both western and eastern Europe. The red group contains countries such as Germany, Denmark and 

Belgium, which represent the cases with the most expensive electricity in Europe during 2018. On the other 

hand, the eastern and southern participants of the analysis are included in the yellow and green groups.   

Countries like Greece, Poland, Romania, Slovakia, Hungary, Czech Republic, Croatia and Latvia 

belong to the group with the third most expensive kWh (yellow cluster), while the same algorithm 

placed them in the group with the least prosperous salaries (green cluster). Also, countries such as Italy 

and Spain are now classified in blue cluster of the second most expensive energy prices, while they 

were classified in the yellow group according to the mean incomes of their citizens. Portugal is 

particularly noteworthy, as it is the only country included in the group of less generous salaries and at 

the same time in the group of the second most expensive kWh.      

On the other hand, there are also cases where the electricity prices and the average family earnings 

seem to be balanced. For instance, countries like Serbia, North Macedonia, Kosovo, Turkey, Latvia 

and Bulgaria are placed in the green cluster. These countries are characterized by lower incomes 

compared to participants in western and northern Europe, although the respective energy prices do not 

impose significant financial burden on the average household. Therefore, these countries provide more 

favorable conditions to their citizens, compared to cases like Greece, Poland, Romania, Croatia etc., 

where the kWh value is disproportionate to the consumer’s financial capabilities.   

Figure 5 shows the classification derived from PAM and CLARA, as they provided similar results. 

The only exceptions between these methods and K-means++ are France and Hungary, which are 

included in clusters with higher electricity prices. Looking at the results of all the algorithms used, 

cases such as Finland and France seem to offer cheaper kWh prices compared to the income of their 

citizens. This phenomenon is reinforced in the cases of Iceland, Norway and Luxembourg, which are 

simultaneously found in the group of the wealthiest salaries and the third group of electricity prices. 

Finally, the UPGMA method provides similar results to K-means++ with the difference that the UK is 

now classified in the yellow cluster. 
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Figure 4. Clustering of national kWh prices in 2018 according to K-means++.  

 

Figure 5. Clustering of European countries based on their electricity prices in 2018 using 

PAM or CLARA.  

In Figure 4, the green cluster includes values between 0.0636–0.1121 €/kWh and the yellow 

cluster includes prices between 0.1296–0.1712 €/kWh. Moreover, the blue group contains prices 

between 0.1774–0.2454 €/kWh and the red group between 0.2880–0.3125 €/kWh. On the other 

hand, the green group of Figure 5, represents prices from 0.0636 to 0.1097 €/kWh, the yellow 

group from 0.1121 to 0.1681 €/kWh, the blue group from 0.1712 to 0.2454 €/kWh and the red group 

from 0.2880 to 0.3125 €/kWh. The lowest electricity prices are provided by Kosovo with 0.0636 €/kWh 

and the highest by Denmark with 0.3125 €/kWh.  

An important observation regarding kWh prices for all displayed algorithms is that Denmark and 

Germany consistently provide the most expensive electricity, at least for 2018. The explanation for 

this phenomenon is that Denmark ranks first based on total electricity taxes and levies. That is, 70% 

of the final kWh cost consists of taxes. The reason for this level of taxation is the government's decision 

since 2012, to support investments that will gradually move the country away from traditional 
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electricity generation methods and towards less polluting alternatives. The main goal of the proposed 

plan is for half of Denmark’s electricity generation to come from renewable energy sources by 2020.    

Germany is on the same wavelength, where taxes account for half of the final price of a kilowatt-hour, 

as the government has decided to significantly reduce the use of lignite for electricity generation  

since 2000. Therefore, Κ-means++, PΑΜ, CLARA and UPGMA have identified and separated 

these 2 cases, as they are the 2 countries with the highest additional burdens on electricity prices.  

Another country whose citizens seem to pay a lot for electricity is Belgium. In 2018, complications 

arose at Belgian nuclear power plants, which meant that electricity had to be imported from 

neighboring France, leading to an abrupt increase in electricity prices. In countries such as Greece, 

Latvia, Poland, Slovakia, Romania and especially Portugal, the price level seems to be much higher 

compared to the mean income levels. 

Now we turn to the exploration of electricity prices over the period 2007–2018. First, the countries 

are divided into clusters for each year of the period 2007–2017. Each country is then ranked in the 

cluster to which it belonged for the most years. This approach helps to examine all 35 European 

countries, as during the period 2007–2017 we encounter several missing values regarding kWh prices. 

Missing values are observed in many countries such as Italy, Iceland, Lichtenstein and the Balkan 

countries Kosovo, Montenegro, North Macedonia, and Serbia. Namely, recordings for Italy start from 

the second semester of 2010, recordings for Kosovo and Serbia initiate from 2013, recordings in 

Lichtenstein begin in 2014 etc. Therefore, a grouping of the countries studied using the entire 2007–2017 

in one clustering attempt is not possible due to the aforementioned limitations. Presented missing 

values can only be replaced using an extrapolation methodology, which is highly unreliable due to the 

short length of the dataset’s time series. 

Then, a comparison can be made with the clustering for the year 2018. We note that we present 

only the implementation of K-means++, since the produced results are almost identical to those of 

PAM, CLARA and UPGMA (Figure 6). Countries like Iceland, the United Kingdom, Estonia, 

Romania, Hungary and Belgium are classified in higher price clusters in 2018 than in most of 

the 2007–2017 period. At the same time, the only country with lower electricity prices in 2018 

compared to the 2007–2017 period is Norway. Perhaps this is an indication of generally rising kWh 

prices in Europe during 2018. 

 

Figure 6. Clustering using K-means++ for the time period of 2007–2017. 
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The only two countries that remain consistently in the red group of the highest electricity prices 

are Denmark and Germany. This fact is consistent with the comments we made earlier about the 

additional taxes on the price of electricity in the early 2010s and 2000s. Moreover, the increase in 

the kWh price in Belgium in 2018—due to disruptions in the national nuclear power plants—is also 

confirmed by this part of the analysis. In general, Belgium is classified in the blue cluster for the 

period 2007–2017. Looking separately at the kWh price of 2018, Belgium belongs to the red cluster 

of countries with the most expensive kWh. Thus, the nuclear power plant incidents in 2018 raised the 

prices to a level that is not representative for the country. 

 

Figure 7. Two-dimensional representation of the household incomes of European 

countries in relation to the respective kWh value.  

Finally, we group the 35 examined countries regarding average family earnings and 

corresponding national kWh prices simultaneously. In Figure 7, we display a two-dimensional graph 

presenting the examined European countries based on their electricity prices per kWh in parallel with 

household incomes. This visual representation validates the aforementioned comments about the 

imbalances between prices and earnings. Countries that are close to the diagonal provide relatively 

balanced conditions to their citizens. On the other hand, as we move away for the diagonal line 

countries either provide favorable salaries or overpriced electricity. For example, countries such as 

Norway, Luxembourg, Iceland, Sweden and Finland show higher incomes compared to the electricity 

costs, while others like Portugal, Greece, Latvia etc. display disadvantageous conditions for their 

inhabitants. 
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Figure 8. 3-ΝΝ distance graph and clustering of European countries regarding the average 

household earnings and the respective electricity prices using DBSCAN. 

In this part we utilize DBSCAN aiming to identify irregular cases, as the previously utilized 

algorithms do not provide information about outliers. We consider a value of 𝑀𝑖𝑛𝑃𝑡𝑠 =  3 due to 

the small number of observations. In Figure 8, we present the graph of each country’s distance from 

its 3rd closest neighbor. Through this graph, a suitable estimation of the parameter 𝜀 is 1500.   

The countries corresponding to each cluster can be easily determined from the information 

provided by Figure 7. We observe the formation of four clusters and the marking of six irregular points. 

Focusing on the points marked as outliers, we can see that the algorithm characterized Denmark as an 

extreme case, a conclusion that is quite expected after the above comments on the country’s energy 

policies. On the other hand, Norway, Iceland and Luxembourg are considered outliers due to their 

low kWh value compared to their high mean incomes.  

This last observation explains that these 3 countries provide the most advantageous balance 

between income and electricity prices to their citizens. Quite positive is also the balance offered by 

Sweden and Finland—based on Figure 7—leading to the general conclusion that the northern countries 

display the most advantageous conditions for their population. Finally, countries such as Greece, 

Latvia, Portugal, Poland, Romania, Germany and Denmark seem to behave in a completely opposite 

way, as their electricity prices are relatively overpriced compared to the income of their population. 

4. Discussion  

In this study, we investigated the national kWh prices in relation to the corresponding average 

European household earnings using established clustering methods like K-means++, CLARA, PAM, 

UPGMA, and DBSCAN. Based on the clustering methodology, we distinguish cases of extreme 

overpricing and explore the external factors that cause these significant differentiations. At the same 

time, the proposed methodology reveals four price and salary groups that indicate the existence of 

geographical patterns from east to west and from south to north. 

Regarding the examination of national electricity prices, our analysis shows an increasing trend 

in the kWh values. Countries such as Iceland, the United Kingdom, Estonia, Romania, Hungary, and 

Belgium are included in groups with higher kWh prices in 2018 compared to the period 2007–2017. 
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On the other hand, there are almost no countries included in clusters with overall lower kWh prices 

in 2018 compared to the 2007–2017 clustering results, confirming the phenomenon described above. 

This observation illustrates that the recent increase in energy prices should not be seen entirely as an 

unexpected event, but also as a situation that has emerged and gradually developed over the years.  

The clustering results for both income and electricity prices are representative of each country 

over this period. This derives from the fact that each country was ranked in the cluster to which it 

belonged for the most years of that decade. The year 2018 was chosen for the comparisons with the 

clustering results for the ten-year period, due to the notable imbalances occurring this year.  

Based on the clustering results for the mean family incomes of the 35 countries participating in 

the analysis, we observe a clear differentiation between the northwestern and southeastern European 

countries. The further we move from east to west and from south to north, the more satisfactory 

incomes become for the European population. In contrast, the respective national electricity prices do 

not follow this geographical pattern, leading to significant imbalances. In many countries, such as 

Greece, Poland, Romania, Slovakia, Croatia, Latvia, Hungary, the Czech Republic, Italy, Portugal and 

Spain, the kWh is overpriced compared to the mean incomes of an average household, with Portugal 

being the most representative example of this phenomenon. All the examples mentioned, are Eastern 

European countries or countries around the Mediterranean Sea. 

On the other hand, the northern and Scandinavian countries offer the most favorable conditions. 

Representative instances of this phenomenon are Finland, France and the Netherlands, while this 

phenomenon is reinforced in countries like Iceland, Norway and Luxembourg. These three countries 

are simultaneously classified in the cluster with the most prosperous wages and in the cluster with the 

third most expensive kWh prices. Moreover, these three cases are identified as outliers by the 

DBSCAN algorithm (Figure 8), showing a deviant behavior compared to the other 32 European cases. 

Finally, the clustering analysis has succeeded in separating the three northern countries with the 

most expensive kWh, whose final price is based on important exogenous factors. As we mentioned 

earlier, electricity prices in Germany and Denmark are characterized by increased taxation, 

corresponding to the effort to support sustainable energy sources. In addition, the high Belgian kWh 

value is due to disruptions in nuclear power plants, which led to the import of electricity from France. 

As a result, we note that in the only cases of the northern countries with relatively overpriced electricity, 

the final prices are significantly affected by additional parameters. 

To sum up, after the abovementioned investigation we find an increasing trend in energy prices 

across Europe. Undoubtedly, there is a clear pattern in kWh prices depending on the geographical 

location of each country. If we move from the northern to the southern and eastern regions of Europe, 

we observe significant variations in the balance between incomes and kWh values, leading to the 

conclusion that these regions are often characterized by excessive electricity prices. In contrast, 

conditions in northern and Scandinavian countries are much more favorable for the population. Even 

in the few cases where we observed a relative increase in energy prices, this phenomenon is influenced 

by exogenous factors and its effect seems to be temporary. The fact that the results studied come not 

from one but from a total of five algorithms drastically increases their trustworthiness, as these methods 

suggest quite similar clustering, even if their functioning is fundamentally different. 
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5. Conclusions 

In this article, we examine electricity price levels in 35 European countries relative to their 

respective average household incomes. For our analysis, we use five robust clustering methodologies, 

namely K-means++, PAM, CLARA, UPGMA and DBSCAN. Examining the results obtained from 

not just one, but a total of 5 clustering algorithms greatly increases their credibility, as these methods 

suggest similar groupings, even though their operation is fundamentally different.  

There seems to be an increasing trend in national electricity prices, as in 2018, countries such as 

Iceland, the United Kingdom, Estonia, Romania, Hungary, and Belgium are classified in clusters that 

show a higher kWh value compared to the 2007–2017 period. Electricity prices in many southern and 

eastern countries seem to be overpriced in relation to the respective national household incomes, with 

Portugal being the most characteristic case of this phenomenon. On the other hand, countries like 

Norway and Iceland show the exactly opposite behavior. 

A subsequent study concerning electricity prices later than 2018, could provide more information 

on the phenomenon under study, which could lead to a validation or modification of the presented 

patterns. Another perspective for future work would be to apply a similar methodology to examine the 

prices of other energy products, such as natural gas or heating oil prices in Europe. This attempt could 

complement the results of this article, while the comparisons between the evolution of electricity, 

natural gas and heating oil prices could provide valuable conclusions about the current and future state 

of energy prices.      

In summary, existing kWh prices in recent years have led to remarkable imbalances among the 

European countries. These imbalances ultimately affect national economies, and this situation is 

expected to worsen, especially due to the recent energy crisis. This observation suggests that the recent 

rise in energy prices should not be seen as a completely unexpected event, but rather as a phenomenon 

that has become apparent over the years and is systematically intensifying. 
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