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Abstract: Proton exchange membrane fuel cell (PEMFC) is an alternate energy source that produces 

electricity without any adverse effects on the environment. The drawbacks of PEMFC are its short life 

and its non-linear voltage with loading current. Also, PEMFC is prone to ambient conditions, and its 

performance varies with different ambient conditions. In this work, the semi-empirical modeling 

approach has been used to predict the PEMFC voltage accurately. However, when the ambient 

condition varies, the voltage of PEMFC varies accordingly and consequently the previous parameters 

of the EMI-empirical model don’t produce good results. Previously the voltage variation due to 

changes in ambient has been predicted with the help of ambient conditions and load resistance, but this 

model isn’t sui for all PEMFCs. In this work, a new method has been proposed where fast and accurate 

optimization technique such as Transient search optimization (TSO) has been used to optimize 

parameters when ambient condition varies and predicts the PEMFC voltage accurately and doesn’t 

consume a lot of time. The proposed method will be very helpful in future research for predicting the 

PEMFC voltage for various PEMFC systems at different ambient conditions. The proposed method 

has been validated experimentally by performing experiments on n single-cell PEMFC system at 

normal and high ambient temperature. 

Keywords: ambient conditions; modelling; optimization; prediction; PEMFC; transient search 
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1. Introduction 

Proton exchange membrane fuel cell (PEMFC) is an alternate energy source that takes hydrogen 

and oxygen as fuel, the PEMFC converts the chemical energy of fuel gases to electrical energy. 

PEMFC doesn’t produce any harmful gases for the environment, water is the final product after the 

reaction with some heat energy loss. The non-linear voltage-current characteristics of PEMFC make it 

difficult to predict the voltage of PEMFC. PEMFC voltage depends on loading current, the temperature 

of PEMFC, and the internal characteristics of PEMFC. The pure theoretical model of PEMFC contains 

extremely complex electrochemical equations. These models cannot be used for online purposes; a 

simple approach has been used which is called the semi-empirical modeling approach. The semi-

empirical approach represents half theoretical model equations and half empirical equations. The first 

semi-empirical approach was presented in [1], this approach was more simplified in [2] and is used in 

various updated papers where the parameters are optimized by using the various approaches such as 

mentioned in [3–8]. 

The ambient conditions affect PEMFC performance directly and the voltage of PEMFC varies by 

a great deal with the change in ambient temperature and ambient pressure. In [9,10] the effect of 

ambient conditions on PEMFC performance has been studied experimentally. In [11] the ambient 

conditionhaveas have been discussed in detail and also used directly in the voltage/temperature 

modeling of PEMFC. In [12] the effect of ambient conditions on PEMFC has been reviewed and 

discussed in detail, in this review it is suggested that the model in [13] is very essential for predicting 

the change in PEMFC voltage due to ambient conditions. The model in [13] predicts the changes in 

PEMFC voltage, the formula given predict the voltage variation of PEMFC from normal ambient 

conditions (at 298 K ambient temperature and 1 atm air pressure) to other different ambient conditions. 

The formula for variation of voltage entirely depends upon ambient temperature and pressure, however, 

the equations vary with loading conditions (high load and low load). 

In this research work, it is revealed that the variation in PEMFC voltage due to changes in ambient 

conditions cannot be predicted easily as it is too complicated. Parameters of the semi-the empirical 

model vary by a great deal when the ambient condition (especially ambient temperature) varies. These 

parameters must be optimized by using fast and accurate optimizatiotechniquesue when the ambient 

condition varies. Thus a new method is proposed for predicting the PEMFC voltage which includes 

the use an of optimization technique where parameters are optimized when the ambient condition 

varies. In the literature, several optimization techniques have been used to extract the values of the 

unknown parameters of PEMFC models; for example, the Particle Swarm Optimization (PSO) 

method was proposed in [14] and a Modified Artificial Ecosystem Optimization (MAEO) was presented 

in [15]. The eagle strategy based on JAYA and JAYA-NM algorithms and the Nelder-Mead (NM) 

simplex method was developed in [16]. Moreover, Electromagnetic Field Optimization (EFO) [17], 

Thermal Exchange Optimization (TEO) [18], Ions Motion algorithm (IMO) [19], Water Evaporation 

Optimization (WEO) [20], and Water Cycle algorithm (WCA) [21] are created as competitive 

algorithms. Furthermore, many metaheuristic optimization algorithms appeared recently such as 

Bonobo Optimizer (BO) [22], Equilibrium Optimizer (EO) [23]. Recently a combination of method is 

used, an artificial neural network (ANN) with the genetic algorithm (GA) in [24]. Each model has a 

specific issue, for fault diagnosis [25], analysis of the reaction rates in the cathode [26], or maximum 

power [24,27]. The performance of the different models is analyzed in [28]. 
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The optimization technique used in this research is the most modern optimization technique which 

is not been used before for PEMFC applications, this metaheuristic optimization technique is named 

Transient search optimization (TSO) which is fast and accurate as compared to other famous 

techniques that had already been used in PEMFC applications [29]. The experiments are performed on 

a clean sed-cathode 300 mW single-cell PEMFC system and the ambient temperature has been varied 

from 298:13 K to 318:13 K. Almost all models of these the equations of the paper [1] optimize the 

parameters with various metaheuristic/heuristic optimization techniques and these techniques within 

the range of the parameter give different results. In previous models, the optimization technique will 

not be part of the model and the model parameters were considered final which was an extremely 

wrong technique. The paper is organized as follows, in Section 2 the semi-empirical model of PEMFC 

along with the upper and lower bounds are explained and Section 3 explains the impact of ambient 

conditions on the voltage variation. Section 4 explains briefly the Transient Search Optimization (TSO) 

while Sections 5–6 give the experimental setup of Fischertechnik PEMFC and the obtained results. In 

the end, Section 7 contains the conclusion and prospects of the research. 

2. Semi-empirical model of PEMFC 

The semi-empirical model of PEMFC is a very detailed model that predicts the voltage with 

good precision as discussed in [30]; this model, first introduced in [1], was updated as an extension 

in [2,4,31]. Most new models of PEMFC have used the same equation as given in [1], the notable 

papers are mentioned in the references [3–8,29,32,33] and [34] and this model is still in use in many 

new research papers from 2021 [35,36]. Recall that the voltage of PEMFC is predicted by using the 

expression: 

𝑉𝑐𝑒𝑙𝑙 =  𝐸𝑁𝑒𝑟𝑛𝑠𝑡 +  𝑉𝑎𝑐𝑡 + 𝑉𝑐𝑜𝑛 + 𝑉𝑜ℎ𝑚                                   (1) 

where ENernst is the Nernst equation which depends upon the fuel gases partial pressures PO2 (atm) and 

PH2 (atm) mainly, Vact and Vconc are the activation and concentration voltage drops simultaneously, and 

Vohm is the voltage drop due to internal resistance of PEMFC. ENernst is given by the following formula: 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡 = 1.229 − 8.5 ×  10−4𝑇 − 298.15 + 4.308 ×  10−5 𝑇 𝑙𝑛(𝑝𝐻2) + 
1

2
 ln (𝑝𝑂2)          (2) 

while, Vact is given by: 

𝑉𝑎𝑐𝑡 =  −{𝐸1 + 𝐸2𝑇 + 𝐸3𝑇[ln(𝑐𝑂2)] +  𝐸4𝑇[ln(𝐼)]}                                  (3) 

where I is the PEMFC load current and T(k) is the PEMFC temperature and the parameters E1, E3 and 

E4 are constants which mainly depend upon the chemical properties of PEMFC, however, E2 is given 

by: 

𝐸2 = (4.3 × 10−5)𝑇 ln 𝐶𝐻2 + 2.1 × 10−4 ln(𝐴) + 2.9 ×  10−3                         (4) 

where CH2(mol cm-3) and CO2(mol cm-3) are, respectively, the concentrations of hydrogen and oxygen 

defined by: 

𝐶𝐻2 =  
𝑃𝐻2

1.09 ×106 exp(
77

𝑇
)
                                                             (5) 
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𝐶𝑂2 =  
𝑃𝑂2

5.09 ×106 exp(
−498

𝑇
)
                                                          (6) 

𝑉𝑜ℎ𝑚 =  𝐼 × (𝑅𝑒 + 𝑅𝑝)                                                          (7) 

𝑅𝑝 =  
𝑟𝑚𝑙𝑚

𝐴
                                                                          (8) 

Note that Im (cm) is the membrane thickness, A ( cm2) is the area of cross-section of PEMFC, rm 

is the membrane specific resistivity for protons, Rp is the protonic resistance and Re is the electronic 

resistance of PEMFC. The empirical expression for the membrane specific resistivity protons rm is 

given by: 

𝑟𝑚 =  
181.6[ 1+0.03(

𝐼

𝐴
)+0.062(

𝑇

303
)

2
(

𝐼

𝐴
)

2

]

[𝜆−0.634−3(
𝐼

𝐴
)] exp[4.18(

𝑇−303

𝑇
)]

                                                                     (9) 

where the expression 
 181.6

(λ − 0.634)
 stands for specific resistivity at no-load and at a temperature of 30 ℃, 

the rest of the expression is the correction factor for variable temperature, the numerator term is also 

an empirical term derived after fitting the protonic resistance data and the parameter  is an empirical 

term which is a correction factor to specific resistivity (this factor depends upon membrane average 

water content and temperature of PEMFC and under ideal condition this factor is as high as 14 but the 

maximum values given in [2] is 23); however, the factor  is influenced by membrane preparation 

procedure and stoichiometric ratio of the anode feed gas (this factor is also called the average 

membrane water content).  

The concentration voltage drop Vconc depends upon the temperature T, the current I, the maximum 

current Imax, and the area A of PEMFC, the detailed formula for Vconc is given by: 

𝑉𝑐𝑜𝑛 =  − 𝛽 × ln (1 −  
𝐼𝑑𝑒𝑛

𝐼𝑚𝑎𝑥
)                                                        (10) 

where N is the factor which has an inverse relationship with PEMFC temperature, see [19], and Imax 

is the maximum limiting current; many parameters need to be optimized for each PEMFC system, 

Table 1, see [30], gives lower and upper bound of these parameters (an optimization algorithm is 

needed to optimize the parameters for the PEMFC on which the experiments are performed). 

Table 1. The upper and lower bounds for the considered PEMFC model. 

Sr. No. Parameter Lower limit Upper limit 

1 E1 −1.2 −0.853 

2 E2 36 × 10-6 98 × 10-6 

3 E3 −26 × 10-5 −95.4 × 10-6 

4 E4 10 24 

5 E5 1 × 10-4 8 × 10-4 

6 E6 0.013 0.5 
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3. Voltage variation model with ambient conditions 

The voltage of PEMFC surely varies with ambient temperature and pressure as described in 

various experimental studies [9,10,12,37,38]. The model mentioned in [13] models the variation of the 

voltage Vamb of PEMFC. These variations are from normal ambient conditions i.e., 298 K and 1 atm 

pressure. The model extracts the equations based on the detailed model given in [32]. The final 

equations use ambient temperature Tamb, ambient pressure of air Pressure, and output resistance Rc(Ω). 

There are two different equations, one is for low loading conditions, the other is for high loading 

conditions. For low loading conditions i.e less than 50 percent of the rated current, the equation is 

based on Tamb and Pair. The equation for Vamb is given as which depends upon Vnor (the voltage of 

PEMFC at 298 K, 1 atm) and Vvar (the voltage of PEMFC at different ambient conditions): 

𝑉amb =  𝑉nor −  𝑉var                                               (11) 

where  

                      𝑉amb =  0.01804 +  1.41839
(𝑇amb −298

25
)  − 0.0189

(𝑃air −0.8

0.2
) −

                     0.00739
(𝑇amb −298

25
)

(𝑃air −0.8

0.2
),   +  0.01158

(𝑇amb −298

25
)2 𝑓𝑜𝑟 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 50% 𝑙𝑜𝑎𝑑     (12) 

                𝑉amb =  0.0476 +  1.8753
(𝑇amb −298

25
) − 0.0508

(𝑃air −0.8

0.2
) − 0.043

(𝑅c −0.75

0.25
), +

                0.1301
(𝑇amb −298

25
)2 𝑓𝑜𝑟 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 50% 𝑙𝑜𝑎𝑑                                                                 (13) 

The equations predict the variations in PEMFC voltage for the NEXA 1200 W PEMFC system with 

ambient conditions and may not work for all PEMFC systems, these equations are to be checked in this 

paper for single-cell PEMFC (the experimental setup for this research is explained in Section 5). 

4. Transient Search Optimization (TSO) 

The Transient Search Optimization (TSO) algorithm, mentioned in [29], is a newly developed 

metaheuristic algorithm, this algorithm is based on the transient behavior of electrical circuits using 

storage elements such as capacitors and inductors, and it is verified and compared with some recent 

optimization algorithms, see [29] for more details. In addition, the process of the TSO algorithm begins 

with the initialization of search agents then evaluates them using the cost function, and finally updates 

the research agent according to the function evaluation; it is modeled as: 

1. Initialization of the search agents between lower and upper bounds of the search area: the 

initialization of the search agents is randomly generated as: 

               𝑌 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏)                                        (14) 

where Y is the position of the search age and is then a uniformly distributed random number, Ub is the 

upper bound and Lb is the lower bound. 

2. Searching for the best solution (Exploration): the exploration behavior of TSO is inspired by the 

oscillations of the second-order RLC circuit around zero. 
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3. Reaching the steady-state or best solution (Exploitation): the exploitation of TSO is inspired by 

the decaying of first-ordered electricircuitscuit during discharge. 

The random number r1 is used which decides the balance between the exploration and exploitation 

phases: if r1 is greater or equal to 0.5 it is the exploration phase and if r1 is less than 0.5 it is the 

exploitation phase. The new position Yl of the search agents can be found from the best position (Yl)* 

of previous search agents, the complete process is explained as follows: 

𝑌𝑙+1 = {
(𝑌𝑙) ∗ +(𝑌𝑙 − 𝐶1 × (𝑌𝑙) ∗)𝑒−𝑇 𝑓𝑜𝑟 𝑟1 < 0.5 

(𝑌𝑙) ∗ + 𝑒−𝑇[cos(2𝜋𝑇) + sin (2𝜋𝑇)]|𝑌𝑙 − 𝐶1 × (𝑌𝑙) ∗ | 𝑓𝑜𝑟 𝑟1 ≥ 0.5
}             (15) 

𝑇 = 2 × 𝑧 × 𝑟2 − 𝑧                                                          (16) 

𝐶1 = 𝑘 × 𝑧 × 𝑟3 + 1                                                         (17) 

𝑧 = 2 − 2 × (
𝑙

𝐿𝑚𝑎𝑥
)                                                        (18) 

where z is the variable that changes from 2 to 0, C1 and T are random coefficients, (ri)i =1 
3  are random 

numbers distributed uniformly from 0 to 1, l is the iteration number, k is a constant number (0, 1, 2, … ) 

and Lmax is the maximum number of iterations. The coefficient T senses the balance between the 

exploration and exploitation phases and it varies between 2 and −2 (the exploration phase has been 

achieved when T is less than zero while the exploitation phase is achieved when T is greater than 0). 

To extract the optimal values of the PEMFC parameters which allow the proposed model to match 

well with the measured data, the proposed objective function is a measure of the quality of the extracted 

parameters, the root mean square error (RMSE) between the measured generated voltage of PEMFC 

and the simulated one is defined as the Objective Function (OF), which depicts the error between the 

modeled values and the experimental values as described in the following equation: 

ℎ𝑒 OF =  RMSE =  √
∑(Vmod−𝑉exp)2

Total number of samples
                                 (19) 

where Vmod and Vexp describe the model and the PEMFC experimental output voltage according to the 

Table 1 which illustrates the lower and upper bounds for the considered PEMFC mode [30]. The 

pseudo-code of TSO is given in Table 2 (see also the research in [29] for more details on TSO). 

Table 2. The pseudo-code of TSO. 

Initialize the population and the best positions Yl and Yl* 

Evaluate the objective function (RMSE) 

While l < Lmax 

        Update the values of C1 and T using Eqs (13) & (14) 

       do all populations Yl 

                  Update the population place by Eq (12) 

         End do 

         Calculate the objective function for all population 

         Update the best value if the recent objective function is less than the previous best l = l + 1 

End While 

Output the best value Y1* 
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5. Experimental setup and experiments performed 

The modeling of the pile requires several experimental data, within the framework of our study, 

a test bench was used. This test bench has made it possible to obtain a great deal of knowledge on the 

operation of fuel cells in general and in particular on the influence of the various ambient conditions 

on the operation of the cell. This is important given the building of the voltage and temperature model 

of the fuel cell. 

In this regard, we proceeded to the realization of an experimental test bench to validate the 

simulation results of the predictive model. 

In the first part, the physical and experimental side is described by specifying the material selected 

for the realization of the different parts.  

 The control part controls ambient conditions (temperature, humidity) 

 The control part of the operation of the battery (variable charge, charge, discharge of the battery) 

 The measurement and data acquisition part. 

The experimental setup is the single-cell PEMFC from Fischertechnik with the rated power 

of 300 mW. The electrolyzer is supplied with a voltage limited to 3 V to produce H2 and O2. Once 

the storage cylinders are full, the supply stops and waits for the instruction from the control interface 

to supply the load (the specifications of PEMFC are given in Table 3.) 

Table 3. Fischer Technik Single-cell PEMFC specifications. 

PEMFC make (company name) Fischer Technik 

Rated power (W) 300 ×10-3 

The pressure of Hydrogen (atm) 0.9 

Membrane thickness (cm) 50 × 10-4 

Area of PEMFC (cm2) 4 

Maximum limiting current (A) 0.9 

 

Figure 1. Description of the fuel cell: 1. Overflow chamber, hydrogen side; 2. Hydrogen 

storage cylinder; 3. Plugs for the vent ducts; 4. Oxygen storage cylinder; 5. Negative 

connector; 6. Protective diode; 7. Positive connector; 8. Overflow chamber, oxygen side; 

9. Fill level marking. 
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The Experimental setup of Fischer Technik PEMFC is shown in Figure 1 with its schematic 

diagram in Figure 2.   

  

Figure 2. Experimental setup of Fischer Technik PEMFC & Schematic diagram of the 

experimental setup. 

The experiments were carried out on a test bench developed within the Renewable Energies and 

Power Electronics team, within the ENSMR, Figure 2 shows a photograph of the experimental bench 

implemented. The details of the test bench are shown by numbers in the Figure 1 which can be listed 

as follows.  

1. The heating and cooling system are based on Peltier technology which makes it possible to 

implement a heating or refrigeration process within our incubator, indeed as soon as the Peltier 

element is energized, one side cools, while the opposite side heats up at the same time. The hot and 

cold sides of the Peltier element are inverted thanks to a simple inversion of the poles of the supply 

voltage, the conversion is done by the relays controlled by the ARDUINO MEGA card also 

controlled by the control/command platform, measurement, and supervision developed in the 

LABVIEW environment. Humidity is manually regulated within the incubator. 

2. The DHT22.  

3. The electrolyzer is supplied with a voltage limited to 3 V to produce H2 and O2. 

4. The incubator is a chamber that isolates the fuel cell from the outside and limits heat transfer. 



262 

 

AIMS Energy  Volume 10, Issue 2, 254–272. 

5. Voltage source which represents renewable energy source, and which supplies the electrolyzer. 

6. Relay module to control circuits from Arduino. 

7. Series and parallel resistor module controlled by relay for desired resistances. 

8. LM2596 DC/DC step-down module with digital display. 4/40 V to 1.3/37 V. 

9. 5A current sensor /voltage sensor based on voltage division principle. 

10. The ATMega2560.  

The bench control system is made with the Labview software. It allows the acquisition of the 

various measurements. The Figure 3 shows the control block through LIFA under LABVIEW, and 

Figure 4 shows the interface and application window created in LBAVIEW. 

 

Figure 3. LABVIEW block diagram.  

 

Figure 4. LABVIEW front panel.  
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The experiments are performed at normal ambient conditions where the first one is performed 

at 298.13 K and the second one is performed at 318.13 K (both experiments are performed at an air 

pressure of 1atm but the subject PEMFC is a closed cathode so the pressure of air doesn’t matter and 

the pressure of oxygen remains at 1 atm). The fuel cell bias curve is the voltage versus current 

characteristic. It is measured statically, positioning the current point and letting the voltage stabilize 

before noting the values. The load current of the PEMFC remains the same for both experiments, see 

Figure 5, and the voltage is shown in Figure 6 while the temperature of the PEMFC is given in Figure 7. 

 

Figure 5. Voltage of PEMFC for experiment 1 & experiment 2. 

 

Figure 6. Current of PEMFC for experiment 1 & experiment 2. 
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Figure 7. Temperature of PEMFC for experiment 1 & experiment 2. 

6. Results and discussion  

The semi-empirical model mentioned above can also be fit for the experiments performed on 

PEMFC. The parameters are to be optimized by using the TSO algorithm by using the limits mentioned 

in Table 1. The initial population is set as 50 and the maximum number of iterations is set at 200. The 

optimized parameters are given in Table 4 with RMSE being 0.02 and the runtime being almost 2 

seconds. 

Table 4. Optimized parameters for Fischer Technik PEMFC at normal ambient condition. 

Sr. No. Parameter Final values 

1 E1 −1.152 

2 E3 3.6 ×10-5 

3 E4 −0.0001 

4 λ 23 

5 Re 0.0001 

6 β 0.2551 

The comparison of the modeled and the experimental voltage waveform is given in Figure 8 and 

it shows the good fit with new parameters. 
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Figure 8. Comparison of model and experimental voltage for experiment 1 & TSO performance. 

Now the Experiment-2 voltage (at 318.13 K ambient temperature) has been modeled by using the 

parameters mentioned in Table 4. Here RMSE is very high and its value is almost 2. The comparison 

of the model and experimental voltage is shown in Figure 9. 

 

Figure 9. Performance comparison of model and experimental voltage for experiment 2. 
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This change in voltage due to the change in ambient temperature is modeled in Section 3. The 

voltage variation has been predicted by using ambient temperature, ambient air pressure (which is 

constant in this case), and output resistance connected to PEMFC. Figure 10 shows the comparison of 

improved model voltage by using Eqs 12 and 13 with experimental voltage. The RMSE is huge in this 

case and the comparison waveform revealed that the model in Section 3 may only be valid for the 

NEXA 1200 W PEMFC system, and it cannot be applied to any other PEMFC system. 

 

Figure 10. Comparison of improved model and experimental voltage for experiment 2. 

Now the parameters are again optimized for Experiment-2 by using TSO and the new parameters 

are given in Table 5. Here RMSE is almost 0:01 and the comparison of modeled and experimental 

voltage waveforms reveals a good fit. 

Table 5. Newly optimized parameters for experiment 2. 

Sr. No. Parameter Final values 

1 E1 −1.0966 

2 E3 9.799*10-5 

3 E4 −0.0001 

4 λ 10 

5 Re 0.000799 

6 β 0.14088 
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Figure 11. Comparison of model and experimental voltage by using newly optimized 

parameters & TSO performance. 

The new parameters show big variations in the parameters such as E1, E3, λ, Re and β. However, 

E4 shows no variation at all. These parameters are explicitly explained in [2] and every parameter has 

a very complex nature that cannot be generalized, these parameters depend on the nature and behavior 

of PEMFC under various operating conditions. This work reveals that change in ambient temperature 

affects the parameters by a great amount, this means that these parameters have different values under 

different ambient conditions. The prediction of PEMFC voltage at varying ambient conditions is very 

complex. The difference between the experimental and modeled voltage in Figure 9 (for Experiment-2 

with old parameters mentioned in Table 4) is revealed graphically in Figure 12 and it is revealed that the 

difference is not constant for low loading conditions as well, which means that the Eqs 12 and 13 

are not accurate at all and these equations cannot predict the actual change in the PEMFC voltage 

with ambient conditions. 
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Figure 12. Comparison Difference in model voltage and experimental voltage by using 

old parameters. 

The only feasible solution is to add TSO to the model and the parameters are to be optimized 

again when the PEMFC is used in different ambient conditions. The TSO runtime is fast and this 

optimization technique works better than all optimization techniques used before for PEMFC such as 

Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and Whale Optimization 

Algorithm (WOA) with details mentioned in [29,32–34]. The newly proposed method for predicting 

PEMFC voltage accurately at different ambient conditions is given in Figure 13, this method involves 

the use of TSO as the part of modeling technique, and the parameters are optimized again by using the 

voltage, current, and temperature of PEMFC data which is recorded by varying load current from zero 

to rated current. 
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Figure 13. Proposed method for prediction of PEMFC voltage at varying ambient 

conditions by using TSO. 

7. Conclusions 

In this research work, the previous semi-empirical model, and the model of PEMFC for varying 

ambient have been checked. It has been revealed that the varying ambient model is not feasible for 

predicting the voltage variation of PEMFC. The PEMFC behavior highly depends on loading for high 

and low loading conditions. The parameters of the semi-empirical model don’t fit all ambient 

conditions. Hence, an optimization technique such as Transient Search Optimization (TSO) will be 

used again to optimize the parameters for varying ambient conditions. The Transient Search 

Optimization (TSO) is fast and takes very less time i.e., 2 seconds to optimize the parameters for 200 

iterations. The complete procedure has been proposed in this work where the voltage of PEMFC can 

be predicted accurately at different ambient conditions with the help of the Transient Search 

Optimization (TSO) algorithm. In the future various modern optimization techniques have been used 

to implement the proposed modeling technique. The best optimization, high-performance, cost-

effective technique must be adapted based on the accuracy and computation time. This hybridization 

provides better solutions satisfying the situation. The emulator can be developed by using this 
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technique and can be very helpful in future research for the prediction of PEMFC voltage. It must be 

used in the prediction applications where PEMFC may undergo ambient temperature change and the 

power electronics such as DC-DC converters/inverters must be designed to accommodate these voltage 

variations. Hence this predictive model can be very useful in this regard. This novel method has better 

performance as compared to the traditional methods.  
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