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Abstract: Energy sustainability is becoming paramount today with the focus being on renewable and 
alternative energy. This manuscript therefore embarks on clean alternative energy rooted in    
thermoelectricity with focus on thermoelectric generator (TEG). However, a TEG do practically 
needs heat-exchangers or heatsinks to properly and reliably work but heatsinks present another      
problem—thermal resistance, which affects a TEG power output and efficiency and thus, must be    
addressed. Consequently, we investigate a TEG with heatsinks model based-on dimensional analysis 
using Matlab and Simulink. Our research has three unique contributions. Firstly, we derived the  
analytical formulas for direct calculations of TEG dimensionless hot and cold sides temperature and 
by introducing and applying a new dimensionless parameter, the dimensionless temperature       
difference (DTs). Secondly, we simplified further the new TEG dimensionless hot and cold sides 
temperature analytical formulas to obtain simpler and simplest forms. Thirdly, we implemented a 
TEG with heatsinks Matlab/Simulink theoretical model, that employs the simplified dimensional 
analysis, in which a TEG with heatsinks parameters of interest can be simulated to variously determine 
the analytical, numerical and graphical results with various optimal options to opt for, before doing a 
practical design. 

Keywords: alternative energy; dimensional analysis; energy harvesting; TEG with heatsinks;  
thermoelectricity 
 

Abbreviations and Symbols: a: TEG p-n junction thermocouple area in m2; A1: TEG hot side 
heatsink1 total surface area in m2; A2: TEG cold side heatsink2 total surface area in m2; Ab: Heatsink 
base area in m2; ∆T: TEG(s) temperature difference (Th – Tc) in ℃ or kelvin; DTs: TEG dimensionless 
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temperature difference; Eff*: TEG dimensionless conversion efficiency; h1: TEG hot side heatsink1 
convection coefficient; h2: TEG cold side heatsink2 convection coefficient; HFD: TEG heat flux 
density in W/m2; HS: Heatsinks; I: TEGs output current in ampere through the TEG; k: TEG/TEC 
effective thermal conductivity in W/mK; K: TEG/TEC thermal conductance in (W/K); K1: TEG hot 
side heatsink1 thermal conductance; K2: TEG cold side heatsink2 thermal conductance; L: TEG/TEC 
p-n junction thermocouple length in meter; LHS: Left Hand Side; n: TEG/TEC manufacturer p-n 
thermocouples amount used in a TEG/TEC; N: TEG number of modules required; Nh: TEG      
dimensionless convection conductance; Ni: TEG-HS dimensionless output current; Nk: TEG dimen-
sionless thermal conductance; Nv: TEG-HS dimensionless output voltage (Vos); ɳ: TEG        
thermal/electrical/conversion efficiency; Ƞ1: TEG hot side heatsink1 fin efficiency; Ƞ2: TEG cold side 
heatsink2 fin efficiency; ɳhA: TEG convection conductance; ɳ1h1A1: TEG hot side heatsink1    
convection conductance; ɳ2h2A2: TEG cold side heatsink2 convection conductance; ρ: TEG/TEC   
electrical resistivity in Ωm; ρe: TEG/TEC effective electrical resistivity in Ωm; Pn: TEG normalized 
output power; Po: TEG output power in watt, is the difference between Qh and Qc; Pos: TEG      
dimensionless output power, is the difference between Qh*(Qs1) and Qc*(Qs2); Qc: TEG heat emitted 
on its cold side in watt; Qh: TEG heat absorbed on its hot side in watt; Qs1: TEG hot side dimensionless 
heat absorbed (Qh*); Qs2: TEG cold side dimensionless heat released (Qc*); r: TEG/TEC thermo-
couples p-n junction unit resistance in ohm; RHS: Right Hand Side; RL: TEG electrical load resistance 
in Ω connected to the TEG output; Rt: TEG/TEC module internal resistance in ohm—also denoted as 
RR in Figure 2; Rr: TEG dimensionless internal electrical resistance—also denoted as rr in Figure 2; S: 
TE device Seebeck coefficient in V/K; Se: TEG/TEC effective Seebeck coefficient in V/K; T: TE 
device average temperature (Th + Tc)/2 in K or ℃; T1: TEG hot side temperature (Th); T2: TEG cold 
side temperature (Tc); TE: Thermoelectric; TEC: Thermoelectric cooler; TEG: Thermoelectric gen-
erator; Ti: TEG hetasinks fluid dimensionless temperatures (Tis); Ti1: TEG hot side heatsink1 fluid      
dimensionless temperature; Ti2: TEG cold side heatsink2 fluid dimensionless temperature; Ts1: TEG 
hot side dimensionless temperature; Ts2: TEG cold side dimensionless temperature; Tc: Temperature 
on TEG/TEC cold side in ℃; Th: Temperature on TEG/TEC hot side in ℃; Tp: TEG/TEC modules 
quantity in parallel; Ts: TEG/TEC modules quantity in series; Vo: TEG module output voltage in volt; 
Voc: TEG ideal or open circuit output voltage (consider it as EMF = electromotive force) in volt; Vos: 
TEG dimensionless output voltage (Nv); Vn: TEG normalized output voltage; Z: TE device figure of 
merit in per K; Ze: TEG/TEC effective figure of merit in per K; ZT: TE device average dimensionless 
figure of merit; ZTi2: TEG dimensionless figure of merit at temperature Ti2; ZTA: TEG dimensionless 
figure of merit at temperature TA (T) 

1. Introduction 

Indicated in [1], South Africa has pledged its commitments to become a carbon reduced and green 
economic system, by considering a mixture of energy sources to secure energy sustainability. Upon 
ratifying the Paris agreement on climate change, renewable energy and energy efficiency frameworks 
as well as the regulatory policies have been developed and continuously fine-tuned taking into   
cognizance the current energy dynamics. In this regard, there is necessity and increasing demand for 
renewable energy to supplement and stabilize the unstable national grid, as well as for private use. 
These circumstances, warrant our research for an alternative energy rooted in thermoelectricity, with 
focus on basic residential energy sources and energy efficient loads. Basically, TEGs convert heat to 
DC power, whereas their dual thermoelectric coolers (TECs), reversibly converts DC power to cold 
and heat depending on the applied voltage polarity. If TEGs and TECs are properly designed, both can 
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be relatively energy efficient and helpful for essential domestic energy use such as low-voltage DC 
power, lighting, heating and cooling. Theoretical frameworks and applications of both TEG and TEC 
were comprehensively presented in [2–5]; however, they fell short of some practical aspects—which 
this article seeks to advance as articulated next.  

In [4–9], thermoelectricity or thermoelectric (TE) devices (TEGs and TECs), require heatsinks or 
heat-exchangers to physically and reliably function and maintain a working temperature difference on 
the TEG and TEC hot and cold sides and most significantly to discharge the internal heat resulting 
from Joule (Ohmic) heating cause by the current flowing through the TEG/TEC. This Ohmic heating is 
irreversible and will become excessive if not properly managed and consequently, will cause drop in 
the output/cooling powers and inefficiency (change in entropy-heat flow will change direction due to 
increase in the cold side junction temperature). This can as well damage the TEG and TEC as a result 
of over-heating exceeding the hot and cold sides maximum temperature limit—which will melt the 
thermoelectric devices p-n junction thermocouples solder joints. The inclusion of heatsinks as a   
solution to alleviate this over-heating practical limitations in thermoelectric devices, unfortunately as 
well add/increase the TEGs and TECs hot and cold sides thermal resistances, which then oppose the 
ideal heat flow, hence making the TE devices inefficient. 

To circumvent this thermal resistance problem resulting from adding heatsinks/heat-exchangers, 
various approaches have been investigated and some are stated briefly as follows. Simplified in [6] is a 
dimensional analysis by converting thermal resistance to convection conductance when using TEC 
with heatsinks—which was researched originally in [7]; however, the presentation lacks key analytical 
formulas. In [8], a TEG with heatsink for waste energy harvesting was analysed and optimised as a 
Thevenin equivalent circuit and investigated in [9] is a dimensionless model of a TEC functioning at 
real heat transfer state. Examined in [10], a multi-physics simulations were conducted to examine the 
thermal and electrical performances of a TEG module sand-witched between hot and cold blocks, 
whereas in [11], a parametric thermal analysis of TEG performance was done using dimensional 
analysis and presented in [12] is a numerical simulation and performance analysis of a TEC based-on 
the lattice Boltzmann method. Studied in [13] is a multi-parameters analysis and optimization of a 
typical TEC using dimensional analysis. Proposed in [14] is a thermal resistance matching for TEC 
systems whereas examined in [15], is an optimal design of a multi-couple TEG, meanwhile [16]   
employed a graphical approach to design TEC systems. Demonstrated in [17] is an           
electron-transparent TEC using nano-particles and condensation thermometry and investigated in [18] 
is an optimal heat-exchanger in different automobile exhaust temperatures for TEG system using 
dimensional analysis. From the reviewed studies, the dimensional analysis technique, especially the 
unique and practical approach presented in [7] to improve TE devices efficiency when used with 
heatsinks, is of interest. This paper with keen focus on TEG as exemplified in Figure 1, further de-
velops the dimensional analysis, by now employing a simplified Matlab implementation to derive 
novel analytical formulas to directly calculate a TEG hot and cold sides dimensionless temperature.  

Our study was structured around the following points. We begin with the TEG with heatsinks 
applicable maths developed from [6,7] with now emphasis on the new additional analytical formulas. 
We derived the TEG hot and cold sides dimensionless temperature, as well as the further optimal 
simplifications contributed relative to the shortcomings of the formulas/approach used in [7]. In a 
next step, we depict the TEG with heatsinks simulator easy user interface modeled with 
Matlab/Simulink. The presentation of our results is followed by discussions as well as validations 
and lastly we conclude our study with a summary. 
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Figure 1. TEG with heatsinks on its hot and cold sides. 

2. Dimensional analysis mathematics 

The relevant mathematics for a TEG with heatsinks is expressed herein and we then introduce 
the new dimensionless temperature difference (DTs)—which is employed to simplify the apt    
approach given by [7]. Dimensional analysis is a technique that enables parameters with the same 
unit to be normalized within a minimum and maximum value, thus making them dimensionless and 
easier to work with, without worrying about their dimensions or unit of measurement. Nonetheless, 
novel in [7] is the conversion of TEG heatsinks thermal resistance to their convection conductance. 
This optimization technique gets rid of the TEG heatsinks thermal resistance which are harder to 
work with, in favour of the TEG heatsinks fluid convection conductance which are related to the 
TEG heatsinks fluid temperature and physically simpler to work with. This approach is pragmatic 
and the mathematical analysis is articulated in what follows. 

TEG with heatsinks general heat flow equations:  
Herein, the TEG heat flow equations, the heatsinks thermal resistance, their corresponding thermal 
conductance and convection conductance relationships developed from [6] are constituted as    
follows: 

                           Q1 = K1(Ti1 − T1)         (W)                                        (1) 

                           Q2 = K2(T2 − Ti2)         (W)                                        (2) 

With Q1 and Q2 being respectively the heat flow rates on the TEG heatsinks hot and cold sides, 
K1 and K2 are respectively the TEG hot and cold sides heatsinks thermal conductance, Ti1 and Ti2 are 
respectively the temperatures of the heatsinks fluid on the TEG hot and cold sides and lastly T1 and 
T2 are respectively the TEG hot and cold sides p-n junction temperatures. It is worthy of note that 
thermal resistance is the reciprocal of thermal conductance K—which corresponds to the convection 
conductance (ȠhA) and thus, Eqs 1 and 2 in respect of the convection conductance, can be re-written 
as: 
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                          Q1 = Ƞ1h1A1(Ti1 − T1)    (W)                                          (3) 

                          Q2 = Ƞ2h2A2(T2 − Ti2)    (W)                                          (4) 

With Ƞ1 being the fin efficiency of heatsink1 (on the TEG hot-side), h1 is the convection coeffi-
cient of heatsink1 and A1 is the total surface area of heatsink1. Similarly, Ƞ2 is the fin efficiency of 
heatsink2 (on the TEG cold-side), h2 is the convection coefficient of heatsink2 and lastly A2 is the 
total surface area of heatsink2. 

The TEG standard ideal heat flow equations are defined as: 

                          Qh = n[(SIT1) + (K∆T)] − 0.5I2R  (W)                                  (5) 

                          Qc = n[(SIT2) + (K∆T)] + 0.5I2R  (W)                                  (6) 

where Qh is the heat absorbed on the TEG hot side, n is the number of p-n junction thermocouples 
used in the TEG, S being the Seebeck coefficient, I being the output current from the TEG, K is the 
thermal conductance (computed as ak/L, with a being the area of the TEG p-n junction thermocou-
ple, k is the TEG thermocouple p-n junction thermal conductivity and L is the TEG thermocouple p-n 
junction length). ∆T = T1 − T2 is the temperature difference between the TEG hot and cold sides, R = 
nr is the TEG module resistance, with r being the resistance of the TEG thermocouple p-n  junction 
and Qc is the heat released on the TEG cold side. The three terms on the right side of Eqs 5   and 6 
are the Seebeck, Fourier and Ohmic terms respectively; with S, K and R considered as    tempera-
ture invariant. Now, taking into account the energy balance of the TEG with heatsinks   system, 
Eqs 1, 3 and 5 are respectively equivalent now to Eqs 2, 4 and 6—which boils down to (with param-
eters T1, T2 and I being the unknowns):  

      Q1 = Qh = K1(Ti1 − T1) = Ƞ1h1A1(Ti1 − T1) = n[(SIT1) + (K∆T)] − 0.5I2R      (W)           (7) 

      Q2 = Qc = K2(T2 − Ti2) = Ƞ2h2A2(T2 − Ti2) = n[(SIT2) + (K∆T)] + 0.5I2R      (W)           (8) 

With recognition to [7], TEG with heatsinks (HS) is optimised by defining the dimensionless 
parameters with regards to fluid 2 (water or air on the TEG cold side of heatsink2) and because the 
optimization is rendered dimensionless relative to fluid 2, fluid 2 temperature (Ti2) and convection con-
ductance must be given initially. The following dimensionless maths is developed further from [6,7] as: 

TEG-HS dimensionless thermal conductance (Nk): 
This is the ratio of the thermal conductance K and the convection conductance ȠhA in fluid 2,   
deduced as: 

                           Nk = K/ȠhA = (ak/l)/Ƞ2h2A2                                           (9) 

TEG-HS dimensionless convection (Nh): 
This is the ratio of fluid 1 and fluid 2 convection conductances, denoted as: 

 

                            Nh = Ƞ1h1A1/Ƞ2h2A2                                                 (10) 

TEG-HS dimensionless current (Ni): 

                          Ni = SI/K = SI/(ak/l) = ZTi2 (Ts1 − Ts2)/(Rr + 1)                         (11) 

TEG dimensionless temperatures (Ts1, Ts2, Ti and DTs): 
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TEG dimensionless temperatures are presented as: 

T1 dimensionless temperature: Ts1 = T1/Ti2                                                       (12) 

T2 dimensionless temperature: Ts2 = T2/Ti2                                                       (13) 

Fluids dimensionless temperature: Ti (Tis) = Ti1/Ti2                                               (14) 

Dimensionless temperature difference DTs = Ts1 − Ts2 = ∆T/Ti2                                   (15) 

TEG-HS dimensionless heat absorbed (Qs1): 

                              Qs1 = Q1/Ƞ2h2A2 Ti2                                               (16) 

TEG-HS dimensionless heat released (Qs2): 

                              Qs2 = Q2/Ƞ2h2A2 Ti2                                               (17) 

TEG dimensionless output power (Pout* or Pos): 

                              Pout* = Pout/Ƞ2h2A2 Ti2                                             (18) 

                              Pos = Pout* = Qs1 − Qs2                                              (19) 

where Pout is the TEG output power (power delivered to the electrical load) 
TEG dimensionless output voltage (Vos or Nv): 

                              Nv = V/nSTi2                                                      (20) 

                              Nv = Vos = Pos/NiNk                                               (21) 

TEG dimensionless conversion efficiency (Eff
*): 

                              Eff* = Pos/Qs1                                                     (22) 

NB: TEG conversion efficiency by default is dimensionless. The mentioned of dimensionless in 
front conversion efficiency is just for emphasis on the dimensionless analysis technique used.  

TEG-HS dimensionless heat absorbed (Qs1) in terms of Ts1: 

                               Qs1 = Nh (Ti − Ts1)                                                (23) 

TEG-HS dimensionless heat released (Qs2) in terms of Ts2: 

                               Qs2 = Ts2 – 1                                                     (24) 

TEG-HS dimensionless internal electrical resistance (Rr): 

                                Rr = RL/Rt                                                       (25) 

where RL is the electrical load connected to the TEG output and Rt is the TEG module internal  
electrical resistance. NB: Rr is denoted as rr in the TEG-HS simulator in Figure 2. 

As per [7], using the dimensionless Eqs 9–14, Eqs 3–6 reduce to the following two expressions (26) 
and (27) having five unknowns that must be found for Ts1 and Ts2 in terms of five independent   
dimensionless parameters of ZTi2 (dimensionless figure of merit at Ti2), Ti, Nh, Nk and Rr. 

 Nh(Ti − Ts1)/Nk = ((ZTi2(Ts1 − Ts2)Ts1)/(Rr + 1)) − (((ZTi2(Ts1 − Ts2)2))/(2(Rr + 1)2)) + (Ts1 − Ts2)  (26) 
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 (Ts2 − 1)/Nk = ((ZTi2(Ts1 − Ts2)Ts2)/(Rr + 1)) + (((ZTi2(Ts1 − Ts2)2))/(2(Rr + 1)2)) + (Ts1 − Ts2)      (27) 

As noticeable, Eqs 26 and 27 are cumbersome and unsolved further in [7] in terms of Ts1 and 
Ts2; therefore, there are no exact analytical equations to directly compute Ts1 and Ts2. Eqs 26 and 27 
are awkward closed-form expressions of Ts1 and Ts2, which can only be solved by using numerical 
analysis; as a result, a numerical method using iterations, tables, graphs and approximations were 
employed by [7], as well as using a computer programme (NEDO) was further recommended.  
Consequently, because Eqs 26 and 27 could not be simplified further by [7], Ts1 and Ts2 could only 
be expressed as in Eqs 28 and 29 as functions of ZTi2, Ti, Nh, Nk and Rr for solving numerically.  

                         Ts1 = f (ZTi2, Ti, Nh, Nk, Rr)                                             (28) 

                         Ts2 = f ( ZTi2, Ti, Nh, Nk, Rr)                                            (29) 

This entire numerical process is tedious to determine Ts1 and Ts2; thus, this limitation motivated 
our study to seek for a direct analytical and better solution(s) which are asserted next. 

We now introduce Eq 15—the dimensionless temperature difference DTs, which is used to   
replace Ts1 − Ts2 in Eqs 26 and 27 to give Eqs 30 and 31 as: 

        Nh(Ti − Ts1)/Nk = ((ZTi2(DTs)Ts1)/(Rr + 1)) − (((ZTi2(DTs)2))/(2(Rr + 1)2)) + (DTs)        (30) 

        (Ts2 − 1)/Nk = ((ZTi2(DTs)Ts2)/(Rr + 1)) + (((ZTi2(DTs)2))/(2(Rr + 1)2)) + (DTs)            (31) 

As instantly apparent, Eqs 30 and 31 can respectively and directly be solved for Ts1 and Ts2 in-
dependently in terms of the five dimensionless parameters ZTi2, Ti, Nh, Nk and Rr. Now, making Ts1 
and Ts2 subjects of their respective Eqs 30 and 31, we derived new analytical equations for Ts1 and 
Ts2 as given in Eqs 32 and 33 as: 

Ts1 = (NkZTi2DTs
2 − 2NkDTsRr

2 − 4NkDTsRr − 2NkDTs + 2NhTiRr
2 + 4NhTiRr + 2NhTi)/ 

                    (2(Rr + 1)(Nh + NhRr + DTsZTi2Nk))                                        (32) 

Ts2 = (NkZTi2DTs
2 + 2NkDTsRr

2 + 4NkDTsRr + 2NkDTs + 2Rr
2 + 4Rr + 2)/ 

                      (2(Rr + 1)(Rr − DTsNkZTi2 + 1))                                           (33) 

Furthermore, by adding Eqs 26 and 27 or Eqs 30 and 31; we can easily get rid of the nonlinear 
quadratic terms as shown in Eqs 34 and 35 and by re-arranging and solving for Ts1 and Ts2, we can 
further derive a simpler Ts1 and Ts2 novel analytical formula as shown in Eqs 36 and 37. 

   Nh(Ti − Ts1)/Nk + (Ts2 − 1)/Nk = (ZTi2DTsTs1)/(Rr + 1) + (ZTi2DTsTs2)/(Rr + 1) + DTs + DTs     (34) 

   Nh(Ti − Ts1)/Nk − ((ZTi2DTsTs1)/(Rr + 1)) − DTs = ((ZTi2DTsTs2)/(Rr + 1)) +(Ts2 − 1)/Nk + DTs  (35) 

Equation (34) was re-arranged to give Eq 35, such that the left hand side (LHS) of Eq (35)  
constitutes Ts1 without Ts2 and the right hand side (RHS) of Eq 35 constitutes Ts2 without Ts1. Finally, 
the LHS and RHS were both solved independently by equating each to zero, to easily obtain Ts1 in 
terms of ZTi2, Ti, Nh, Nk, Rr and DTs (NB: now six unknown parameters) and similarly to obtain Ts2 in 
terms of ZTi2, Nk, Rr and DTs (NB: now four unknown parameters) to respectively give Eqs 36 and 37  
expressed as: 

                   Ts1 = (NhTi − DTsNk)(Rr + 1)/(Nh + NhRr + DTsNkZTi2)                        (36) 
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                   Ts2 = (DTsNk + 1)(Rr + 1)/(Rr − DTsNkZTi2 + 1)                               (37) 

As seen, Ti and Nh are absent in Eqs 33 and 37, meaning these two dimensionless parameters, 
don’t directly affects Ts2 or affects Ts2 indirectly through Ts1 and DTs; thus, making these equations 
insightful. 

Finally, we furthermore obtained the simplest optimal analytical relationship to calculate Ts1 
and Ts2 by utilizing a set of optimal numerical values given in [7] as: ZTi2 = 1, Ti = 2.6, Nh = 1,    
Nk = 0.3, Rr = 1.7 and DTs = 0.8 and by substituting these values in Eq 35 and solving further, we 
obtain Eqs 38 and 39 as: 

                            Ts1 = 41Ts2/49 + (36/35)                                             (38) 

                            Ts2 = 49(Ts1 − (36/35))/41                                           (39) 

It should be noted that, the ZTi2 = 1, Ti = 2.6, Nh = 1, at Nk = 0.3, Rr = 1.7 and now DTs = 0.8 
optimal values set are not arbitrarily chosen but specifically deduced optimal values, that are     
inter-linked to each other and obtained under the same specified operating conditions. Furthermore, 
parameters ZTi2, Ti and Nh are initially provided or can be calculated from a chosen TEG-HS     
operating parameters and finally the optimal combinations of Nk, Rr and now DTs, can all be     
established from the above specified dimensionless equations. NB: other optimal values set can be 
used in Eq 35 to get new Eqs 38 and 39 also. 

Now, to validate our new Ts1 and Ts2 formulas, we substitute this the same chosen set of optimal 
values (given in [7]) of ZTi2 = 1, Ti = 2.6, Nh = 1, Nk = 0.3, Rr = 1.7 and DTs = 0.8 to finally    
determine, compare and verify the Ts1 and Ts2 values by using our newly derived simple, simpler and  
simplest analytical formulas; respectively using Eqs 32 and 33, Eqs 36 and 37 and Eqs 38 and 39 as  
follows: 

Using the now simple formulas (Eqs 32 and 33), Ts1 and Ts2 are optimally directly computed as: 

Ts1 = 2.1794 

Ts2 = 1.3754 

Using the now simpler formulas (Eqs 36 and 37), Ts1 and Ts2 are optimally directly deduced as: 

Ts1 = 2.1673 

Ts2 = 1.3610 

As seen, both these new simple and simpler optimal solutions are approximately the same. We 
can then also easily verify both with Eqs 38 and 39 to get the simplest solution, by substituting Ts2 to 
calculate Ts1 or vice versa. We’ve now introduced three new analytical sets of formulas to easily 
compute Ts1 and Ts2 without going through the cumbersome numerical process. With Ts1 and Ts2  
easily deduced, the other dimensionless parameters and ultimately all their physical dimensional  
parameters, can then be worked out using Eqs 1–25.  

3. Model simulator 

The relevant TEG with heatsinks mathematics based on dimensional analysis was articulated in 
Section 2 and the formulas for Ts1 and Ts2 were developed and expressed analytically in respect of 
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the now six independent parameters ZTi2, Ti, Nk, Nh, Rr and DTs. Furthermore, Ts1 and Ts2 were opti-
mally simplified and validated in terms of Ts1 and Ts2 using Eqs 38 and 39. As apparent, the entire 
numerical as well as analytical procedures could be very tedious and as well subject to errors if 
manually done. In view of this, a Matlab and Simulink TEG model with heatsinks on both the TEG 
hot and cold sides, was then implemented using the formulas asserted in Section 2. Enclosed in the 
simulated TEG with heatsinks model, are the followings: i) The TEG parameters analysed in Section 2, 
which include; S the Seebeck coefficient, 273.15 the absolute temperature in kelvin, Ti1 fluid tempera-
ture of heatsink1, Ti2 fluid temperature of heatsink2, if required the TEG configuration in series Ts 
and or in parallel Tp, r the TEG thermocouple p-n junction resistance, k the TEG thermocouple p-n 
junction thermal conductivity, Ῥ the TEG thermocouple p-n junction electrical resistivity, a the TEG 
thermocouple p-n junction area, L the TEG thermocouple p-n junction length and Preq the TEG total 
output power required. ii) The heatsinks parameters, which include; Ab the heatsink base area, n1 fins 
efficiency of heatsink1, h1 convection coefficient of heatsink1 fluid, A1 total area of heatsink1 with 
fins sides, n2 fins efficiency of heatsink2, h2 convection coefficient of heatsink2 fluid and A2 total 
area of heatsink2 with fins sides. All these parameters can easily be input in the model simulator and 
the TEG optimal parameters value computed as depicted in Figure 2.  

Additionally, the TEG dimensionless parameters such as; Ni the dimensionless output current, 
Nk the dimensionless thermal conductance, Eff* (nth) the conversion efficiency, Pos (Ws1) the dimen-
sionless output power, Ts1 the TEG hot-side dimensionless temperature, Ts2 the TEG cold-side   
dimensionless temperature and Nv the dimensionless output voltage, can all be either manually   
entered (as depicted in Figure 2 on the left side of the TEG with heatsinks model) or computed   
automatically. They’re then used to finally calculate the TEG practical parameters values in SI units 
(as shown in Figure 2 on the right side of the TEG with heatsinks model). Some of the TEG physical 
parameters of interest that are computed include; Z the TEG figure of merit, n the TEG amount of 
p-n junction thermocouples, Qh (Q1) the TEG hot side heat absorbed, Qc (Q2) the TEG cold side heat 
released, Po the TEG output power, T1 (Th) the TEG hot side temperature, T2 (Tc) the TEG cold side 
temperature, RR (Rt) the TEG internal resistance, Vo the TEG output voltage,Voc is the TEG ideal 
output voltage, I the TEG output current, N the total amount of TEG modules required, DT or ΔT the 
TEG temperature difference and QPD is TEG with heatsinks heat flux density. The computed 
heatsinks parameters are: nhA the dimensionless convection conductance of heatsinks 1 or 2 fluid, Ti1 
and Ti2 are fluids 1 and 2 hot and cold temperatures respectively, Ti the dimensionless fluid tempera-
ture, Nh the dimensionless convection conductance, ZTi2 the dimensionless figure of merit at Ti2, ZTA 
the TEG dimensionless figure of merit at TA. The TEG with heatsinks normalised, maximum and 
effective parameters are also computed.  

In terms of the aesthetics, the TEG-HS output and inputs parameters were sorted together based 
on their commonalities, as well as labeled and colour coded accordingly to make the TEG with 
heatsinks model simple to comprehend and as well user friendly as shown in Figure 2.  
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Figure 2. TEG with heatsinks model simulator. 

Finally, in addition to the TEG with heatsinks numeric model computations, miscellaneous 
characteristics curves of some of the TEG crucial parameters of interest such as Qs1, Qs2, Pos, Eff*, 
Ts1 and Ts2; were plotted against Nk, Rr and DTs to graphically calculate Qs1, Qs2, Pos, Eff*,Ts1 and Ts2 
different optimal values for ZTi2 = 1, Nh = 1, Ti = 2.6, Nk = 0.1 − 0.4, Rr = 0.5 − 2 and DTS = 0.1 − 1. 
These graphical results are in details, variously demonstrated next in Figures 3 to 6 and with the 
highlights summarised in Table 1. 

Table 1. Summary of the study comparing the “simple” and “simpler” equations results in Figures 3–6. 

4. Simulation results, discussions and validation 

In Section 3, the TEG with heatsinks simulated model was presented with highlights on its  
various parameters and the numeric results, as exemplified in Figure 2 and summarised in Table 2. 
These results as well as the numerous graphical results displayed extensively next, are based on the 
new simple and simpler analytical Ts1 and Ts2 formulas derived in Section 2. These are comparatively 
engaged and displayed next and various comparisons of Qs1, Qs2, Pos, Ts1, Ts2 and Eff* with different 
combinations of ZTi2, Nh Ti, Nk, Rr and DTS using the simple Eqs 32 and 33 as well as using the  
simpler Eqs 36 and 37 are shown and organised as follows. i) all the figures on the left are based on  
using the simple Eqs 32 and 33 Ts1 and Ts2 values, whereas all the figures on the right are based on 
using the simpler Eqs 36 and 37 Ts1 and Ts2 values. ii) Figure 3 graphs depict Qs1, Qs2, Pos, Ts1, Ts2 

 Rr Nk DTS Ts1-Ts2 Qs1 Qs2 Pos Eff* Ts1 Ts2

Using “Simple” 
Eqs 32 and 33 

2 0.3 0.8 0.83564 0.404938 0.35942 0.045518 0.112407 2.19506 1.35942
1.7 0.3 0.8 0.80401 0.420599 0.375429 0.0451302 0.10731 2.17944 1.37543
1.1 0.3 0.8 0.7129 0.462515 0.424578 0.0379377 0.0820247 2.13748 1.42458
1 0.3 0.8 0.69221 0.471429 0.436364 0.0350649 0.0743802 2.12857 1.43636
0.5 0.3 0.8 0.54428 0.528736 0.526984 0.00175151 0.00331263 2.07126 1.52698

Using “Simpler” 
Eqs 36 and 37 

2 0.3 0.8 0.83736 0.414815 0.347826 0.0669887 0.161491 2.18519 1.34783
1.7 0.3 0.8 0.80637 0.432653 0.360976 0.0716775 0.16567 2.16735 1.36098
1.1 0.3 0.8 0.71795 0.482051 0.4 0.0820513 0.170213 2.11795 1.4
1 0.3 0.8 0.69805 0.492857 0.409091 0.0837662 0.16996 2.10714 1.40909
0.5 0.3 0.8 0.55829 0.565517 0.47619 0.0893268 0.157956 2.03448 1.47619
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and Eff* results using ZTi2 = 1, Nh = 1, Ti = 2.6, Nk = 0.1 − 0.4, Rr = 0 − 6 and DTS = 0.8. iii) Figure 4 
graphs depict Qs1, Qs2, Pos, Ts1, Ts2 and Eff* results using ZTi2 = 1, Nh = 1, Ti = 2.6, Nk = 0.05 − 0.5, 
Rr = 0.5 − 2 and DTS = 0.8. iv) Figure 5 graphs depict in 3D Qs1, Qs2, Pos, Ts1, Ts2 and Eff* results 
with ZTi2 = 1, Nh = 1, Ti = 2.6, Nk = 0.3, Rr = 0.2 − 3.2 and DTS = 0.1 − 1. v) Figure 6 graphs depict  
in 3D Qs1, Qs2, Pos, Ts1, Ts2 and Eff* results using ZTi2 = 1, Nh = 1, Ti = 2.6, Nk = 0.05 − 0.5, Rr = 1.7 
and DTS = 0.1 − 1. Table 1 summarises the comparison of the simple Eqs 32 and 33 results and the 
simpler Eqs 36 and 37 results. Figures 2–6 results are also provided as supplementary picture files to 
enable every aspect of our findings to be viewed clearly in high quality without ambiguities. 

 
Table 2. Summary of Figure 2 (TEG-HS model simulator) simulation results. 

Figure 3 graphs depict Qs1, Qs2, Pos, Ts1, Ts2 and Eff* results using ZTi2 = 1, Nh = 1, Ti = 2.6, 
Nk = 0.1 − 0.4, Rr = 0 − 6 and DTS = 0.8. It also compares the newly introduced simple vs simpler 
equations results. 

 

 

Input Parameters Output Parameters
TEG Parameters Heatsinks Parameters Heatsink Fluids Temps Convection Conductances 
S        (V/K) 0.00044 Ab (W/cm2) 25 Ti1  (K) 773.15 ɳ1h1A1  (W/K) 4.8 
Absolute T (K) 273.15 n1 0.8 Ti2  (K) 298.15 ɳ2h2A2  (W/K) 4.8 
Ti1         (℃) 500 h1 (W/m2K) 60 Ti 2.593 Nh 1 
Ti2         (℃) 25 A1  (m2) 0.1 Figures of Merit Dimensionless Heat Flows

Ts 1 n2 0.8 Z   (K−1) 0.003457  Qs1 0.420599 
Tp 1 h2 (W/m2K) 60 ZTi2 1.031 Qs2 0.375429
R          (Ω) 0.01 A2  (m2) 0.1 TEG Practical Performance Parameters 
k      (W/mK) 2.8  RR  (Ω) 2.571 Rr (rr) 1.679 
Ῥ        (Ωm) 0.00002 Dimensionless Parameters n 257.1 N 18.63 
a          (m2) 0.000002 Ni 0.306 Qh (Q1)  (W) 611.5 Qc (Q2) (W) 544.7 
L            (m) 0.001 Nk 0.3 Po    (W) 64.4 Wn     (W) 65.69 
RL           (Ω) 4.32 nth (Eff*) 0.108 T1 (Th) (℃) 374.4 T1 (Th)  (K) 647.6 
Preq        (W) 1200 Ws1 (Pos) 0.045 T2 (Tc) (℃) 134.4 T2 (Tc)  (K) 407.6 
     Ts1 2.172 QPD (W/cm2) 24.46 Nc 0.3706 
  Ts1 1.367 Vo      (V) 16.87 Vmax     (V) 27.16 
  Nv 0.5 Io       (A) 3.896 Imax      (A) 10.56 
  DTs 0.8 Voc      (V) 27.16 Wmax     (W) 71.69 
  

NB: the dimensionless parameters 
here can both be inputs and outputs 

ΔT      (℃) 240 Nmax 0.1092 
  TA      (℃) 527.6 Nmpmax   (%) 10.29 
  ZTA     (℃) 1.824 ΔT       (K) 240 
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Nk = 0.1 − 0.4: Using “simple” Eqs 32 and 33 

    (a) 

Nk = 0.1 − 0.4: Using “simpler” Eqs 36 and 37

 (g) 

(b) (h) 
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(c) (i) 

(d) (j) 
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Figure 3. Performance and comparison plots of the: i) simple Eqs 32 and 33; (a) Qs1 vs 
Rr @Nk = 0.1 − 0.4; (b) Qs2 vs Rr @Nk = 0.1 − 0.4; (c) Pos vs Rr @Nk = 0.1 − 0.4; (d) Ts1 
vs Rr @Nk = 0.1 − 0.4; (e) Ts2 vs Rr @Nk = 0.1 − 0.4; (f) Eff* vs Rr @Nk = 0.1 − 0.4; ii) 
versus simpler Eqs 36 and 37; (g) Qs1 vs Rr @Nk = 0.1 − 0.4; (h) Qs2 vs Rr @Nk = 0.1 − 0.4; 
(i) Pos vs Rr @Nk = 0.1 − 0.4; (j) Ts1 vs Rr @Nk = 0.1 − 0.4; (k) Ts2 vs Rr @Nk = 0.3; (l) Eff* 
vs Rr @Nk = 0.1 − 0.4.  

Figure 4 graphs depict Qs1, Qs2, Pos, Ts1, Ts2 and Eff* results using ZTi2 = 1, Nh = 1, Ti = 2.6, 
Nk = 0.05 − 0.5, Rr = 0.5 − 2 and DTS = 0.8. It also compares the newly introduced simple vs simpler 
formulas results. 

(e) (k) 

(f) (l) 
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Rr = 0.5 − 2: Using “simple” Eqs 32 and 33 

(a)

Rr = 0.5 − 2: Using “simpler” Eqs 36 and 37 

    (g) 

(b) (h) 
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(c) (i) 

(d) (j)
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Figure 4. Performance and comparison plots of the: i) simple Eqs 32 and 33; (a) Qs1 vs 
Nk @ Rr = 0.5 − 2; (b) Qs2 vs Nk @ Rr = 0.5 − 2; (c) Pos vs Nk @ Rr = 0.5 − 2; (d) Ts1 vs 
Nk @ Rr = 0.5 − 2; (e) Ts2 vs Nk @Rr = 0.5 − 2; (f) Eff* vs Nk @ Rr = 0.5 − 2; versus ii) 
simpler Eqs 36 and 37; (g) Qs1 vs Nk @Rr = 0.5 − 2; (h) Qs2 vs Nk @ Rr = 0.5 − 2; (i) Pos 
vs Nk @ Rr = 0.5 − 2; (j) Ts1 vs Nk @ Rr = 0.5 − 2; (k) Ts2 vs Nk @ Rr = 0.5 − 2; (l) Eff* vs 
Nk @ Rr = 0.5 − 2. 

Figure 5 graphs depict in 3D Qs1, Qs2, Pos, Ts1, Ts2 and Eff* results with ZTi2 = 1, Nh = 1, Ti = 2.6, 
Nk = 0.3, Rr = 0.2 − 3.2 and DTS = 0.1 − 1. The newly introduced simple vs simpler equations results 
are also correlated. 

(e) (k) 

(f) (l)
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Rr vs DTs: Using “simple” Eqs 32 and 33 

(a) 

Rr vs DTs: Using “simpler” Eqs 36 and 37 

    (g) 

(b) (h) 
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(c) (i) 

(d) (j)
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Figure 5. Performance and comparison plots of the: i) simple Eqs 32 and 33; (a) Qs1 vs 
Rr vs DTs; (b) Qs2 vs Rr vs DTs; (c) Pos vs Rr vs DTs; (d) Ts1 vs Rr vs DTs; (e) Ts2 vs Rr vs 
DTs; (f) Eff* vs Rr vs DTs; versus ii) simpler Eqs 36 and 37; (g) Qs1 vs Rr vs DTs; (h) Qs2 
vs Rr vs DTs; (i) Pos vs Rr vs DTs ; (j) Ts1 vs Rr vs DTs ; (k) Ts2 vs Rr vs DTs; (l) Eff* vs Rr 
vs DTs. 

Figure 6 graphs depict in 3D Qs1, Qs2, Pos, Ts1, Ts2 and Eff* results using ZTi2 = 1, Nh = 1, Ti = 2.6, 
Nk = 0.05 − 0.5, Rr = 1.7 and DTS = 0.1 − 1. The newly introduced simple vs simpler formulas results 
are compared. 

(e) (k) 

(f) (l)
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Nk vs DTs: Using “simple” Eqs 32 and 33 

(a) 

Nk vs DTs: Using “simpler” Eqs 36 and 37 

     (g) 

(b) (h) 
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(c) (i) 

(d) (j)
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Figure 6. Performance and comparison plots of the: i) simple Eqs 32 and 33; (a) Qs1 vs 
Nk vs DTs; (b) Qs2 vs Nk vs DTs; (c) Pos vs Nk vs DTs; (d) Ts1 vs Nk vs DTs; (e) Ts2 vs Nk vs 
DTs; (f) Eff* vs Nk vs DTs ; versus ii) simpler Eqs 36 and 37; (g) Qs1 vs Nk vs DTs; (h) Qs2 
vs Nk vs DTs; (i) Pos vs Nk vs DTs; (j) Ts1 vs Nk vs DTs; (k) Ts2 vs Nk vs DTs; (l) Eff* vs Nk 
vs DTs. 

In the first part of Section 4, the study results were variously and extensively displayed, reveal-
ing what combinations of Rr vs Nk vs DTs values that will give optimal Qs1, Qs2, Pos, Ts1, Ts2 and Eff* 
outcomes; by employing our newly introduced analytical Eqs 32 and 33 which are termed the  
“simple equations” and comparing with the further simplified versions, Eqs 36 and 37 which as well 
are termed the “simpler equations”. It should be noted that each set of figures results, validate each 

(e) (k)

(f) (l)
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other set of figures results. That is, Figure 3 results validates Figure 4 results which in turn validates 
Figure 5 results and consequently which validates Figure 6 results. Furthermore, the figures on the 
left results (based on Eqs 32 and 33 exclusively) validate the figures on the right results (based on Eqs 
36 and 37 exclusively). In the second part of Section 4, the highlights of our presented findings are 
discussed next and lastly the results are validated where applicable with reference to the original re-
sults presented in [7]. 

Beginning with Figure 3, parameters Qs1, Qs2, Pos, Ts1, Ts2 and Eff* are plotted against Rr with 
Nk = 0.1 − 0.4 and DTs = 0.8 as well as ZTi2 = 1, Nh = 1, Ti = 2.6—which were fixed throughout our 
entire study and therefore have no relevance in our results/discussions. NB: Nk = 0.1 − 0.4 instead of 
just Nk = 0.3 was used to see the effects of different Nk values on Qs1, Qs2, Pos, Ts1, Ts2 and Eff* at  
also different Rr values. As evident, Qs1, Qs2 and Ts2 are inversely proportional to Rr with Nk = 0.3 
and DTs = 0.8. Ts1 is directly proportional to Rr whereas Pos and Eff* are initially directly       
proportional to Rr, until Pos and Eff* reach their respective maximum value and then becomes    
inversely proportional to Rr and also with the rates of Pos and Eff* incline and decline, being faster 
using the “simpler” Eqs 36 and 37. With the “simple” equations, our optimal values for Pos is 
0.045518 and for Eff* is 0.112407 and both occur at approximately Rr = 2 and not at exactly Rr = 1.7 
as reported in [7]; however, at Rr = 1.7, our Pos and Eff* values of 0.0451302 and 0.10731 respec-
tively, are exactly the same as those reported in [7]. With the “simpler” equations, our optimal values 
for Pos is 0.0893268 and for Eff* is 0.170213 and both occur at different Rr values—at Rr = 0.5 for 
Pos and at Rr = 1.1 for Eff*; however, at Rr = 1.7, both the Pos and Eff* values are respectively 
0.0716775 and 0.16567, as well as respectively 0.0669887 and 0.161491 at Rr = 2. The rest parame-
ters Qs1, Qs2, Ts1 and Ts2 values are closely the same using either the “simple” or “simpler” analytical 
equations. Further observable, the results dynamics have the following interesting aspects. i) Qs1, Qs2 
and Ts2 values increase with increasing Nk values; however, they decrease with increasing Rr values 
as noticed and explained already. ii) Ts1 values increase with decreasing Nk values; as well as    
increase with decreasing Rr values as noticed and already explained. iii) Eff* values also increases 
with decreasing Nk values with the increase being more significant at lower values of Rr, especially at 
Rr values below 1.0. iv) Pos values are interesting—as the dynamics are irregular with different Nk  
values, with Pos values sharply increasing initially with decreasing Nk values and at very low Rr  
values and once after their respective optimal points, Pos values again increase but with now     
increasing Nk values and at high Rr values.  

In Figure 4, parameters Qs1, Qs2, Pos, Ts1, Ts2 and Eff* are plotted against Nk with Rr = 0.5 − 2 
and DTs = 0.8 and using ZTi2 = 1, Nh = 1, Ti = 2.6—which were fixed throughout the study. Rr = 0.5 − 2 
instead of only Rr = 1.7 was used to see the effects of different Rr values on Qs1, Qs2, Pos, Ts1, Ts2 and 
Eff* at also over different Nk values. As can be seen, Qs1, Qs2 and Ts2 values are directly proportional 
to Nk. However, Ts1 and Eff* values are inversely proportional to Nk values. Pos initially increases 
proportionally to Nk till it reaches optimal point at Nk = 0.25 in Figure 4c (simple equation) and     
Nk = 0.3 in Figure 4i (simpler equation); after which Pos values becomes inversely proportional to Nk. 
Further noticeable, Qs1, Qs2 and Ts2 values are inversely proportional to Rr values, though directly 
proportional to Nk values as indicated earlier. Nevertheless, Ts1 is directly proportional to Rr values 
but indirectly proportional to Nk. Initially, with increasing Nk, Pos increases more with less Rr at 
mostly low Nk values till maximum Pos is attained and thereafter, Pos decreases more with less Rr at 
high Nk values. The optimal Pos of 0.0478788 using our simple equation occurs at Rr = 1.1 with Nk = 0.2, 
whereas at Rr = 1.7, the optimal Pos = 0.0474483 with Nk = 0.25—slightly contrary to [7] which  
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reported an optimal Pos of 0.045 at Rr = 1.7 with Nk = 0.3—which we also have exactly the 
same result of Pos = 0.0451302 at Rr = 1.7 with Nk = 0.3; however, this result was not the 
exact optimal outcome in our case. Using our simpler equation, we have at Rr = 0.5, two Pos opti-
mal values of 0.0966733 and 0.0977376 at respectively Nk = 0.2 and Nk = 0.25. Initially Eff* with 
increasing Nk, decreases more with more Rr at mostly low Nk values till optimal Eff* is attained and 
thereafter, Eff* decreases more with less Rr at high Nk values. This Eff* dynamics is mostly and 
clearly noticeable in Figure 4l using our simpler equation.  

Figure 5 is a 3D plot of Qs1, Qs2, Pos, Ts1, Ts2 and Eff* parameters against Rr = 0.2 − 3.2 but with 
now DTs = 0 − 1 and Nk fixed at 0.3. The results summarily reveal that Pos and Eff* increase    
proportionally with increasing DTs, reach maximum and decrease, especially at lower Rr values but 
at higher Rr, Pos and Eff* increase linearly with DTs. Also, Qs1, Qs2, Ts1 and Ts parameters exhibit 
comparable dynamics to those of Figures 3 and 4 results. 

Figure 6 is another 3D plot of Qs1, Qs2, Pos, Ts1, Ts2 and Eff* parameters against Nk = 0.05 − 0.5 
but now with DTs = 0 − 1 and Rr fixed at 1.7. As apparent, Qs1, Qs2 and Ts2 have similar dynamics as 
already noted and discussed earlier in the previous figures. The only difference now is, these dynam-
ics happen across different values of DTs. The same dynamics applies to Ts1 and Eff*. Pos generally 
increases proportionally to DTs at especially lower Nk values but at higher Nk values, Pos decreases 
with DTs as revealed.  

It’s worth stating that, these different plots simply show the different dynamics involved and 
generally, it’s up to designers to now choose optimal values depending on the design constraints and 
design objectives. 

 

  

(a)                                (b) 

Figure 7. Figures 2–6 results validator adapted from [7] (Lee H, 2013) (a) Pos (Wn*) & 
Eff *(nth) vs Rr; (b) T1* & T2* & nth vs Nk. 

To validate our findings in Figures 2–6 and Tables 1 and 2 where applicable, Figure 7 and Table 3 
results adapted from [7] were used. In summary, validating our findings using [7] results affirms i) 
exactly the accuracy of our simple equations results and ii) fairly the approximation of our simpler 
equations results. It should be noted that, just reference [7] was used to validate our findings because 
a) reference [7] is the original research now developed and simplified with direct analytical formulas 
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to easily calculate Ts1 and Ts2 and therefore it’s only prudent to validate the new developments with 
the original study and b) reference [7] is the only study we know with the aforementioned method 
and having the stated datasets that we can use.  

Table 3. TEG input and output dimensionless and actual results adapted from [7] (Lee H, 
2013) to validate Tables 1 and 2. 

 

 

 

 

 

 
 

5. Conclusions 

Sustainable energy is transcending to become the future of energy to complement the national 
grid and for private use. As a result, we’ve researched thermoelectricity (TEG) as an alternative  
energy source for household applications requiring low DC power and lighting. However, practical 
TEG use requires heatsinks to work efficiently and reliably but regrettably adding heatsinks add 
thermal resistances, which consequently degrades the TEG efficiency as well as its output power. We 
investigated various techniques, especially dimensional analysis and shortlisted the approach     
by [7]—which converts thermal resistance to convection conductance, making it easier for practical 
use. However, the formulations in [7] could not find the exact analytical formulas to directly    
calculate Ts1 and Ts2; as a result, [7] used numerical analysis (a bit cumbersome) which we developed  
further by introducing DTs to simplify and derive new simple accurate analytical formulas that can be 
applied to compute Ts1 and Ts2 directly. Furthermore, these simple formulas were further simplified 
to obtain simpler analytical equations for Ts1 and Ts2. Finally, our simplest Ts1 and Ts2 formulas and 
their optimal relationships were established. These formulas were all verified with chosen optimal 
values and all gave approximate results that correlated each other. We further used these newly   
introduced formulas to model, numerically simulate and plotted various characteristics curves of Qs1, 
Qs2, Pos, Ts1, Ts2 and Eff* against Rr vs Nk vs DTs using Matlab and Simulink. These results were  
articulated variously in both 2D and 3D plots and finally the equivalent outcomes were comparatively 
discussed and validated using each other and as well with results asserted in [7]. In [7], Pos of 0.045 is 
optimal with Nk = 0.3 at Rr = 1.7, contrary to our study which gave optimal Pos of 0.0474483 at    
Nk = 0.25 using our simple equations; however, using our simpler equations, it gave optimal Pos     

of 0.0716775 at Nk = 0.3. Notwithstanding, our simple equations gave Pos of 0.0451302 at Nk = 0.3 
(though not optimal in our case) which corresponds exactly to optimal Pos value of 0.045 with     
Nk = 0.3 as in [7]. In addition, the magnitude of Pos and Eff* are more (almost doubled) using our 
simpler Eqs 36 and 37, compared to using our simple Eqs 32 and 33. Furthermore, the optimal values 

Inputs Dimensionless (W*n,opt) Actual (Wn,opt) 
T∞ 1 = 500 ℃, T∞ 2 = 25 ℃, ΔT∞ 1 = 475 ℃ Nk = 0.3 n = 254
A = 2 mm2, L = 1 mm Nh = 1 Ƞ1 h1 A1 = 4.8 W/K 
Ƞ2 = 0.8, h2 = 60 W/m2K, A2 = 1000 cm2 Rr = 1.7 RL = 1.7 x n x R = 4.32 Ω 
Ƞ2 h2 A2 = 4.8 W/K T*

∞ = 2.6 T∞ 1 = 500 ℃ 
Base area Ab of module = 5 cm x 5 cm ZT∞ 2 = 1.0 ZT∞ 2 = 1.0 
αp = -αn = 220 µV/K T*

1 = 2.172 T1 = 374 ℃ 
Ῥp = Ῥn = 1.0 x 10-3 Ωcm T*

2 = 1.367 T2 = 137 ℃ 
kp = kn = 1.4 x 10-2 W/cmK W*n = 0.045 Wn = 65 W 
(Z = 3.457 x 10-3 K-1) Ƞth = 0.108 Ƞth = 0.108 
(R = 0.01 Ω per thermocouple) NI = 0.306 I = 3.9 A
(Ƞ1 = 0.8, h1 = 60 W/m2K, A1 = 1000 cm2) Nv = 0.5 V = 16.7 V 
(Power Density Pd = Wn/Ab W/cm2) － Pd = 2.6 W/cm2 

Compare values 
with values in 
Figure 2/Table 2 Check colour 

coding with 
the markings 
on Figure 7 

Compare values 
with values in 
Figure 2/Table 2 
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of Pos and Eff* using both our “simple” and “simpler” equations, respectively occurred at different 
values of Rr. In sum, Eff* is best at very low Nk values. The highlights of our study are marked in the 
various figures and also summarised in Tables 1 and 2. It’s worth mentioning that, DTs = 0.8 for this 
set of optimal values, is rightly only equal to Ts1 − Ts2 = ~0.8 only at Rr = 1.7 and Nk = 0.3 as  
summarised in Table 1 and not at any other values when used in both our simple and simpler equa-
tions. Finally, in as much as our newly introduced simpler analytical formulas didn’t give exact Pos and 
Eff* results correlating those in i) [7] and ii) our newly introduced analytical simple equations (that 
gave accurate results), we reckon the simpler equations can be used as first approximation to quickly 
find Ts1 and Ts2 as well as Qs1 and Qs2 values with fair accuracy. In sum, Ts1 and Ts2 are the most vital 
physical parameters, as they’re those that can be easily practically manipulated to achieve the other 
values. However, first ascertaining the electrical load or Rr value to ensure maximum power transfer 
is most paramount to achieve optimal result, as a TEG as well TEC, are non-linear devices whose 
dynamics must be well understood before embarking on a practical design. The next phase of our 
research is to validate and refine our study practically and then design a household TEG alternative 
DC power source. 
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