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Abstract: How does the issue of the discount rate intersect the research on building energy 
efficiency and the topics into which it has branched? This contribution tries to answer the previous 
question through a comprehensive review of related studies. Those studies usually rely on two 
alternative assumptions. The first refers, explicitly or implicitly, to the notion of cost of capital and, 
hence, to the position of private stakeholders involved in the decision processes focusing on the 
adoption of energy-efficient measures in buildings. The second assumption relates to the notion of 
the social discount rate, which is meant to pursue intergenerational equity and environmental 
sustainability. As far as the results are concerned, the literature agrees that the discount rate is among 
the key parameters—possibly the most prominent—affecting the evaluation. However, despite the 
crucial role it plays, its calculation seldom relies on acknowledged methods and models. Furthermore, 
data sources sometimes lack consistency and accuracy. Some guidance and suggestions are provided 
as to the improvement of the discount rate estimation. 
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1. Introduction and methodological background 

Building energy efficiency has established itself as a promising research strand at least starting 
from the early eighties, in the wake of the oil price shocks experienced during the seventies and the 
adoption of the first regulations in the matter in several countries [1]. Accordingly, the literature 
focusing on the energy use to construct and operate buildings has sharply widened, covering a large 
range of topics: from policy evaluation to field studies using simulations, surveys, and in-situ 
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monitoring techniques [2,3]. The estimation of energy demand and consumption as a function of 
building features, occupant behavior, and other drivers [4–8], the use of innovative tools and systems 
to improve the performance of the building stock [9–13], the role played by renewable energy 
sources to reduce greenhouse gas emissions [14–16], and the relationship between embodied and 
operating energy [17–20] are just a few examples of the topics in which the research has branched. 

Under the above framework, the studies dealing with the economic feasibility and viability of 
the measures meant to improve the energy performance of buildings play a prominent role [21]. 
Those studies rely on a long-standing set of methods and models, such as the Discounted cash flow 
analysis [22–26], the Life-cycle cost analysis [27–34], and—more recently—the Cost-optimal 
methodology [35–37]. The mentioned methods share the following theoretical fundamentals. The 
implementation of building energy retrofit solutions implies the need to consider investment costs, 
operating costs, and related savings that are variously distributed across time, along a period of 
several years or decades. The corresponding values are, therefore, non-homogeneous and require to 
be discounted back to the present to determine the current worth of the analyzed solutions. 

The rationale behind the discounting procedure sinks its roots in the economic discipline and has 
been stated a century ago or so [38,39], especially in the works of Böhm-Bawerk [40], Fisher [41,42], 
and Marshall [43]. According to the latter author: “… human nature is so constituted that in 
estimating the ‘present value’ of a future benefit most people generally make a second deduction … 
in the form of what we may call a ‘discount’, that increases with the period for which the benefit is 
deferred” [43] (p. 100). A review of the concepts of discounting and intertemporal choices, including 
their historical development in the economic discipline, can be found in Frederick et al. [44]. The 
information needed to perform the discounting summarizes itself in a single parameter: the discount 
rate. It is defined as the interest rate aimed at capturing the trade-off between the present and future 
availability of values, goods, activity, and so forth, so it is also referred to as the rate of time 
preference. Denoting discount rate with r and time with t = 1, 2, …, n, where n is the time horizon of 
analysis, the discount coefficient d can be calculated as follows: 

 𝑑 = 1 (1 + 𝑟)𝑡⁄   (1) 

The discount coefficient in Eq 1 varies from 1 when r = 0 or t = 0, to 0 when r → ∞ and t ≠ 0 or 
t → ∞ and r ≠ 0. Present values (pv) are found by multiplying future values at time t (fvt) and the 
appropriate discount coefficient: 

 𝑝𝑣 = 𝑓𝑣𝑡 ∙ 1 (1 + 𝑟)𝑡⁄   (2) 

The discount rate is directly related to the topic of uncertainty: as every other interest rate, it is a 
function of the inherent risk of the analyzed transaction, be it an investment financed by equity (the 
investor’s own capital), an investment financed by debt (the funds borrowed from third parties), and 
so forth. More broadly, it is a function of the risk perceived by the involved stakeholders—and their 
need for securing against unfavorable future events—under a given macroeconomic and regulatory 
framework [45]. 

The discount rate is precisely the focus of this contribution. The primary interest lies in 
understanding how that rate is used in the studies related to building energy efficiency. The 
economic and financial literature bases its estimation on the notion of cost of capital, some well-
established models (Weighted average cost of capital and Capital Asset Pricing Model, for instance), 
and several specific data sources to implement those models (risk-free and risk-premium rates, yield 



259 

AIMS Energy Volume 9, Issue 2, 257–285. 

of treasury bonds, expected return on equity, cost of debt). Do the same notions, models, and data 
sources drive thermo-economic evaluations as far as energy efficiency in buildings is concerned? 
And how much the discount rate affects the results? 

The remainder of this literature review is arranged as follows. Section 2 focuses on the aim of 
this contribution and the research questions it tries to address. Section 3 describes the method used to 
perform the search of the relevant references. Section 4 delves into the general characteristics of the 
reviewed studies and their relationships. Section 5 presents the results, which are discussed for each 
research question in a dedicated subsection. Section 6 tries to provide some guidance and 
suggestions as to the improvement of the discount rate estimation. Section 7 draws the conclusions. 

2. Aim and research questions 

The primary question which this study aims to address may be summarized as follows: how 
does the topic of the discount rate intersect with the research strands focusing on building energy 
efficiency? The discount rate is among the parameters required to perform that kind of economic 
analysis that involves values variously distributed across time. Accordingly, it is expected to play a 
prominent role also in the assessment of building energy efficiency measures. Thus it seems 
worthwhile to investigate how the literature, with regard to both thermo-economic evaluations and 
other related studies, deals with the topic of discounting. 

The above aim translates into the following five specific research questions. 
• RQ1: What are the assumptions made before implementing the discount rate estimation? 

The estimation of the discount rate requires the adoption of a reference framework, which is 
primarily made of the issue at stake, depending on the involved stakeholders. Assumptions are 
expected to summarize those aspects, as well as to translate them into a coherent evaluation 
perspective. 

• RQ2: Are formalized models used to estimate the discount rate? 
The discount rate estimation represents the focus of specific methods and models. Nevertheless, 
their use is not always common practice and tends to be substituted by the adoption of 
reference values used in previous studies or by the fixation of ad hoc, arbitrary values. 

• RQ3: What are the information sources used for collecting data? 
Provided a model is used, at least a data source requires to be accessed, which poses the issue 
of its relevance, reliability, completeness, accuracy, and level of granularity. Since data quality 
is likely to affect the trustworthiness of the results, it deserves discussing that topic. 

• RQ4: What are the typical value ranges of the discount rate estimates? 
Depending on assumptions, models, and data sources, the estimated discount rates are expected to 
fall within bounded intervals. It may be useful to investigate whether the estimates converge —i.e., 
they more or less overlap—and the reasons why they possibly diverge. 

• RQ5: Does the discount rate affect the results? And to what extent? 
According to the findings of a few recent works, the influence exercised by the estimated 
discount rate on the analysis results and related conclusions is expected to be significant and to 
cause substantial impacts. However, there may be differences from one study to another, so it 
is worthwhile to investigate whether the analyzed literature agrees on the role played by the 
discount rate or not. 
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3. Method 

The following two search phrases have been adopted to look for the relevant literature: “building 
energy efficiency” is the former, “discount rate” is the latter. Both the search phrases have been used 
simultaneously in the indexing database Scopus. Firstly, the search has been limited to the titles, 
abstracts, and keywords. The only three documents found are by far lower than the amount of 
literature that is expected to deal with the topic. Therefore, the search has been subsequently 
enlarged to all the fields included in Scopus using the following query: ALL (“building energy 
efficiency” AND “discount rate”), which enabled to find 60 documents (as of 29.10.2018). 

Several items, 19 in total, are secondary with respect to the issue addressed here [1,46,55–63,47–54]. 
Typically, they briefly mention the topic of the discount rate when discussing the background studies, 
or their reference list features at least one article the title of which includes the phrase “discount rate”, 
and that is the reason why they are retrieved using the search key above. However, since not directly 
addressing the topic of discounting, they are no more considered from now on. It being known that the 
Scopus database and its search engine experience some limitations [64–66], not to mention the fact 
that several journals, books, and conference proceedings may be excluded from indexation, the 
search has been further extended to the references cited in the studies mentioned above. Apart from 
duplicate items, 56 more studies have been considered, bringing the total of literature sources to 116 (97 
excluding the 19 secondary documents). 

Once identified the literature base, the following data has been collected and organized in 
synoptic tables: Scopus ID and doi (if available); source title; document title; first author’s name and 
country (based on his/her affiliation); number of authors; document type (journal article; conference 
paper; book or book section; other, such as PhD dissertations, handbooks, and so forth); kind of 
study (literature review; policy paper, including theoretical formulations and position or opinion 
papers; case study, including benchmarking and comparative data analysis; report); location (for case 
studies only); kind of data analysis (survey; statistical modeling; cash flow or life-cycle analysis; 
simulation analysis; optimization modeling); methodologies and analytical tools (where applicable). 
Along with the document titles, also the keywords have been stored to be processed using a lexical 
correspondence analysis: term co-occurrence networks are explored using the mapping and 
clustering software VOSviewer [67–71]. Furthermore, as far as the discount rate is concerned, 
information about assumptions, models, data sources, estimated values, and impacts on the results is 
gathered in order to answer the research questions. 

4. Preliminary remarks 

The analyzed documents feature about three authors on average, ranging from a minimum of 
one to a maximum of eleven, mostly based in the US, the UK, China, and a few continental 
European countries (Germany, Sweden, and Italy especially). Nearly 89% of the documents are 
articles and reviews published in a total of 54 publication outlets, but primarily in a few prominent 
journals (Energy Policy with 15 occurrences, Energy Efficiency and Energy and Buildings with 8 
occurrences each, Energy with 6 occurrences, the Journal of Environmental Economics and 
Management with 5 items, the Journal of Cleaner Production with 4 documents). Book sections 
represent an additional 6% of the examined documents, while conference papers and other items play 
a marginal role. 
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A minor part of the reviewed studies is composed of literature reviews (10%) and reports (7%), while 
most of the documents are classified here as policy papers (26%) and, above all, case studies (57%). Out of 
the latter kind of items, only six performs questionnaire-based surveys. Instead, nearly half of the 
case studies present the results of a discounted cash flow analysis or a life-cycle cost assessment, 
seldom integrated with a sensitivity analysis. Other significant clusters include the papers discussing 
the outcomes of statistical investigations—especially based on regression models—and those 
showing applications of optimization models. 

A network-like arrangement of the topics the reviewed studies deal with can be found in Figure 1. 
The network visualization is built based on binary counting of term co-occurrences in titles and 
keywords. The minimum number of co-occurrences is set to three, 33 terms met the threshold, and 
the 25 most relevant (thus 75% of the total) are shown in the network map. The term building lies in 
the center of the graph and shows connections with nearly all the topics, but it is especially clustered 
with expressions such as life-cycle cost and assessment. Another significant cluster is centered 
around the discount rate and also includes the following topics: energy price, energy saving, and 
cost-effectiveness. A strictly-related cluster is that including the term uncertainty, which is tied with 
two well-known research branches: climate change is the former, intergeneration equity is the latter. 
The issue of uncertainty leads to another cluster since it requires the use of appropriate techniques—
such as sensitivity analysis and Monte Carlo simulation—to ascertain the effect on the calculation of 
the net present value in case studies. Finally, the part of the reviewed literature that examines 
investments in energy conservation measures often deal with the so-called energy efficiency gap and 
the underlying market barriers. 

 

Figure 1. Network-like arrangement of the topics addressed by the reviewed studies 
(created using VOSviewer, ver. 1.6.6). 
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5. Results and discussion 

5.1. RQ1: The notions of cost of capital and social discount rate as primary assumptions 

5.1.1. Cost of capital and market interest rates 

A common assumption is that the discount rate is tied with the notion of cost of capital. 
Sometimes the assumption is made explicit [72], otherwise it remains hidden behind the data used [73]. 
Tadeu et al. [74] refer to the average interest rate of the loans accorded by the Deposits and Loans 
Fund to carry out building rehabilitation projects. Both Copiello [75] and Brown et al. [76] use the 
yield of long-term Treasury Bonds, the former to estimate the cost of public money, the other authors 
to approximate the long run time preference of owner households. Fabbri et al. [77] implicitly refer 
to the cost of debt by introducing the sum of the EurIRS (Euro Interest Rate Swap) and a bank spread. 
Similarly, Di Giuseppe et al. [34] use both the EurIRS and a consumer loan rate. Newell et al. [78] 
and Walls et al. [79] also mention the consumer credit interest rates. 

The inherent reason behind that assumption is easily understood. Energy efficiency measures in 
buildings are primarily implemented by private stakeholders—investor firms and individuals or 
households—in the hope to lessen operating costs: they incur upfront costs in the present and expect 
to recover the investment in the future thanks to energy bill savings. Upfront costs, in turn, have to 
be funded. Therefore, the cost of capital is meant to represent the rate of time preference of the 
involved stakeholders. 

5.1.2. Intergenerational equity and environmental sustainability 

Building on a different assumption, several studies [80–86] rely on the notion of social discount rate, 
which should be prone to take on very low values—potentially zero or even negative values [87]—and 
should also be modeled according to a decreasing function of time [88–91]. That research strand 
stems from the evolution of environmental economics and heavily relies on the concepts of 
intergenerational equity and sustainable development [92–97]: the assumption of a zero—or, anyway, 
declining—discount rate over time ought to be adopted to let the preferences of future generations to 
weight at least as much as the preferences of the current generation. Lower future discount rates are 
likely to increase by many folds the present value of long-term environmental benefits [98,99]. 
Gollier [100] provides arguments supporting the claim that environmental impacts should be 
discounted using a rate lower than that suitable to discount the monetary (and financial) benefits. 
Those arguments develop around the following assertion (pp. 813, 814): “The efficient … ecological 
discount rate equals the marginal rate of substitution between future and present … environmental 
qualities. … if one believes that the quality of the environment will deteriorate over time, a negative 
ecological discount rate may be socially efficient.” 

A further shift of the above point of view is represented by the proposal of adopting a decreasing 
discount rate across time [101,102]. A befitting example is the gamma discounting approach proposed by 
Weitzman [89]. The author subdivide the future into five subperiods (p. 261): “the Immediate Future (1 
to 5 years hence), the Near Future (6 to 25 years hence), the Medium Future (26 to 75 years hence), 
the Distant Future (76 to 300 years hence), and the Far-Distant Future (more than 300 years hence).” 
The proper discount rates for each subperiod, based on a survey involving more than two thousand 
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economists, are as follows: 4%, 3%, 2%, 1%, and 0%, respectively. Newell and Pizer [98] suggest 
the following thresholds of falling rates according to an analysis performed using a random walk 
model (p. 66): “from 4% to 2% after 100 years, down to 1% after 200 years, and further declining 
to 0.5% after about 300 years.” Metz et al. [86] report that the UK government endorses the use of 
the following declining rates (p. 137): “3.5% … for 1–30 years, a 3% … for 31–75 years, a 2.5% … 
for 76–125 years, a 2% … for 125–200 years, 1.5% for 201–300 years, and 1% for longer periods.” 
Frederick et al. [44] report several studies that found empirical evidence of a declining rate of time 
preference (see p. 360), which is often referred to as hyperbolic discounting. 

Declining discount schemes are controversial not only because they are at odds with common 
practice in financial markets - since we are used to experiencing increasing yield curves (Figures 2 
and 3)—but also due to unintended side effects [102]. A few studies review the weaknesses, failures, 
and biases due to the arguments brought forward to support the adoption of low, zero, or declining 
discount rates, especially as far as their time inconsistency is concerned [103–105]. Moreover, the 
theoretical foundation of a social discount rate that declines across the time horizon has been called 
into question due to implications as regards its ambiguity and uncertainty [106]. However, it must 
also be stressed that the assumption of declining rates in the long run, over many decades or 
centuries, goes hand in hand with what has happened over the last four millennia or so. In their 
history of interest rates, Homer and Sylla [107] note that (p. 2): “interest rates in ancient Babylonia, 
Greece, and Rome show, in each case, a progressive decline … as the nation or culture developed 
and throve, and then a sharp rise … as each declined … In our culture (Western Europe and North 
America), interest rates declined most of the time from the Middle Ages to the middle of the 
twentieth century … The extraordinarily high rates of the 1970’s and 1980’s have not lasted long 
enough to show a significant change of trend in the long-run charts.” 

As far as the sustainability perspective is concerned, a brief digression may be in order here. 
Between late 2019 and early 2020, we saw the coronavirus pandemic outbreak, which is still ongoing 
at the time of writing this literature review. Although it is unclear whether or not this pandemic is 
about to become a turning point in the economic landscape, also resulting in a shift of paradigm in 
evaluation, it is already shaping changes in the studies focusing on the viability and profitability of 
energy efficiency measures [108]. It is suggested, there, that the new framework will be 
characterized by the need to reconcile the concept of sustainability with that of resilience, seemingly 
the driver of the forthcoming economic policies, in the energy field, too [109,110]. 

5.2. RQ2: The lack of formalized methods and models 

The handbook of cost-benefit analysis published by the Australian Department of Finance and 
Administration [111] examines several benchmarks useful to set the discount rate—such as the 
project-specific cost of capital, the social opportunity cost of capital, the private time preference rate, 
and the social time preference rate—and the related underlying methodologies. For instance, the 
Capital Asset Pricing Model (CAPM) and Weighted Average Cost of Capital (WACC) are identified 
as suitable to estimate discount rates based on the notion of project-specific cost of capital. Although 
criticized [112], precisely the well-established CAPM [113–116] is widely adopted in other research 
strands and has also been applied in the evaluation of energy-related investments [117–119]. 
However, and despite the availability of other options, the reviewed literature is reluctant to use 
formalized methods and models to estimate the discount rate. Therefore, the second RQ is destined 
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to remain unanswered, at least in part. 
Furthermore, even when relying on well-established methodologies, something is missing. That 

is particularly the case of variable discounting, namely, adjusting discount rates across time. It is 
long since recognized that cost of capital and risk can hardly be assumed as constant during a 
project’s life cycle, so that differential discounting [120,121] has been theorized and applied in 
various research fields. Indeed, the weighting parameters included in the calculation of the 
WACC—namely, the equity-debt ratio—are dynamic rather than static so, as remarked in the 
literature [122], a “single-period WACC applied to cash flows over multiple periods” (p. 527) is a 
source of inconsistency. Nevertheless, so far, differential discounting has not made its way into the 
research strand focused on the economic viability of energy efficiency measures. 

Even in the generalized lack of formalized methods and models, there is a remarkable exception. 
Building on a different methodological framework, Torriti [123] takes the cue from the observation 
that projects are seldom isolated items. They are instead more or less strongly interrelated, so the 
author provides a model to set a multiple-project discount rate, that is to say, a representative rate for 
a portfolio of projects. Accordingly, the fundamental parameters to estimate the discount rate are the 
interrelations and dependencies between investment choices and their economic performance. 

 

Figure 2. Real treasury interest rates in the US during the period 1979–2017 (source: US 
Office of Management and Budget, Circular A-94, Appendix C). 
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Figure 3. Yield of treasury bonds in comparison to Weitzman’s gamma discounting 
(sources: US Department of the Treasury; Bloomberg; Spain’s Ministry of Economy; 
Italy’s Ministry of Economy and Finance; Weitzman [89]). 

A wider look at the methodologies employed in the reviewed studies draws attention to how the 
issue of uncertainty and risk, which is intrinsic to the topic of discounting, is handled. The inherent 
uncertainty in investment valuations applied to energy retrofit transactions is the focus of a few 
influential publications [73,119]. Some studies agree in identifying the preeminence of a probabilistic 
approach, over a deterministic one, when dealing with stochastic input parameters [33,34,124]: the 
latter is easily inclined to reject viable energy-efficient solutions, while the former has the ability to 
deal with the various risk profiles characterizing the stakeholders involved in energy-related projects 
and transactions. 

The handbook of cost-benefit analysis mentioned above [111] suggests resorting to sensitivity 
analysis and full risk analysis as in the case of the Monte Carlo simulation technique to 
accommodate risk-related issues. Monte Carlo simulation [125,126] is also useful to address the 
inherent uncertainty of other stochastic input, such as energy price [23]. Nikolaidis et al. [127] 
perform a sensitivity analysis by setting costs, benefits, and period of analysis as stochastic 
parameters, under a given discount rate. Das et al. [128] deal with uncertainty in future economic 
trends by assuming the discount rate is normally distributed with mean 0.07 and variance 0.015. 
Copiello et al. [33] hypothesize a uniform distribution of the discount rate within the range from 0 to 0.15, 
while Burhenne et al. [73] let the interest rate varies in the range 0.02–0.10, again according to a 
uniform distribution. Mahdiyar et al. [129] also seem to adopt a uniform probability distribution of 
the discount rate, although it is not clearly stated. 
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Figure 4. Probabilistic approach: the discount rates as a stochastic input parameter. 

Instead, Di Giuseppe et al. [34] assume the interest rate—from which the discount rate is 
derived—follows a triangular distribution with minimum value 0.0149, maximum value 0.0908, 
and peak value 0.0409 (Figure 4). Cox et al. [130] estimate various average discount rates (from 17% 
to 63%) and related continuous probability distribution functions—GRKS (the acronym is named 
after Gray, Richardson, Klose, and Schumann) and Weibull—depending on appliances and energy 
end-uses (lighting, air conditioning, space or water heating, refrigerators, and cooking). A thorough 
review of uncertainty-related analysis in the assessment of building energy performance can be 
found in [131]. The authors devote ample space to the discussion of probabilistic approaches such as 
the Monte Carlo method and its variants. However, that work mostly deals with physical and 
technical variables—i.e., climate and weather conditions, building features, system properties, 
occupant behavior—rather than with the specific economic parameter that is the focus of this piece. 

5.3. RQ3: The wide use of already processed and readily available information instead of raw data 

As far as the determination of the discount rate is concerned, regardless of the implementation 
of methods and models, there are several documents published by public authorities and agencies 
which offer a priori values. For instance, the European Union guidelines accompanying the 
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Commission Delegated Regulation (EU) No 244/2012 on the cost-optimal methodology [35] recalls 
the Commission’s 2009 Impact Assessment guidelines and the 4% social discount rate suggested 
there (p. 18). It shall be stressed that the same Commission Delegated Regulation (EU) No 244/2012 
mentions, instead, a 3% real (net of the inflation) discount rate [132] (p. 26). Fennell et al. [133] rely on 
the UK Treasury Social Discount rate of 3.5%. Other examples are as follows [134]: from 5% to 10% 
according to the International Energy Agency; 10% proposed by the International Renewable Energy 
Agency; 5% suggested by the Clean Energy Solutions Center. In its 2013 and 2016 reports [135,136], 
the National Institute of Standards and Technology of the US Department of Commerce provides 
tables of discount factors based on the 3% real discount rate forecasted by the Department of Energy, 
which has been further used in the study of Paganin et al. [137]. The same Department of Energy of 
the US Government commissioned a document focusing on estimation methods and data sources, 
which presents estimates by commercial sectors such as healthcare, retail sales, warehouses, 
education, and several others [138]. Another example is provided by the Circular A-94 of the US 
Office of Management and Budget [139], relating “Guidelines and Discount Rates for Benefit-Cost 
Analysis of Federal Programs”, and especially its Appendix C, updated annually, which features 
discount rates also for cost-effectiveness analysis. The Australian Government, through the Office of 
Best Practice Regulation and its Handbook of the same name, suggests adopting a 7% discount rate [140]. 
A review of discount rates applied by public agencies when performing energy system analysis and 
policy evaluation can be found in Steinbach and Staniaszek [141]. 

Given the wide availability of already processed information, several studies identify the discount rate 
relying on the reports mentioned above or by surveying the previous literature [72,80,147,81,83,137,142–146]. 
A comparison of the values adopted in some studies performing life-cycle cost analyses can be found in 
Islam et al. [148]. Table 1 provides a synoptic view of the data sources used in part of the analyzed 
literature and contrasts them with the assumptions made prior to the discount rate estimation. 
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Table 1. Synoptic view of assumptions and data sources. 

First author Year Assumptions Data sources 
Faludi, J. [83] 
Zhou, S. [145]; Cox, M. 
[130] 
Morrissey, J. [149] 

2012 
2013 

- Previous reports; literature survey 

Burhenne, S. [73] 2013 Cost of capital - 
Brown, N.W.O. [76] 2013 Time preference of owner 

households: yield of Treasury Bonds 
Central Bank 

Bonakdar, F. [150]; Yan, X. 
[143]; Qian, D. [144]; 
Moore, T. [147] 

2014 - Previous reports; literature survey 

Copiello, S. [151] 2015 Cost of capital Central Bank, Deposits and Loans 
Fund 

Wu, L. [152] 2015 - Previous reports 
Mata, É. [153] 2015 Societal perspective and individual 

perspective 
Previous reports; literature survey 

Mahdiyar, A. [129]; Brandão 
de Vasconcelos [154], A.; 
Liu, C.-T. [155] 

2016 - Previous reports; literature survey 

Fennell, P. [133] 2016 Societal perspective HM Treasury 
Paganin, G. [137] 2017 - Previous reports 
Zhang, Y. [142] 2017 Cost of debt Literature survey 
Walls, M. [79] 2017 Cost of capital Literature survey 
Di Giuseppe, E. [34] 2017 Cost of capital Central Bank; EurIRS (Euro Interest 

Rate Swap) 
Copiello, S. [33] 2017 Cost of capital Literature survey 
Wang, J. [80] 2018 - Previous reports 
Moon, Y. [72] 2018 Weighted average cost of capital 

(WACC), cost of capital, financing 
cost, and discount rate are 
interchangeably used as they are 
assumed to stand for the same 
concept 

Literature survey 

Tadeu, S. [74] 2018 Cost of capital: average interest rate 
of the loans accorded by the 
Deposits and Loans Fund to carry 
out building rehabilitation projects 

Deposits and Loans Fund; European 
Commission 

Copiello, S. [75] 2018 Cost of public money: yield of 
Treasury Bonds 

Department of the Treasury, Ministry 
of Economy and Finance 

Dodoo, A. [81] 2018 - Literature survey 
Fabbri, R. [77] 2018 Cost of debt EurIRS (Euro Interest Rate Swap) 

rate plus bank spread 
Guo, F. [156] 2018 Societal perspective Asian Development Bank 
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5.4. RQ4: Three value ranges and their underlying rationale 

5.4.1. Discount rate values: an overview 

The discount rate estimates roughly vary according to three fuzzy ranges. Firstly, intermediate 
values are in accordance with a business perspective, hence the point of view of the firms involved in 
carrying out energy retrofit transactions as well as in the provision of energy services. Secondly, high 
values stem from the literature addressing the consumers’ behavior and their alleged bounded 
rationality as far as energy-efficient investments are concerned. Thirdly, low values reflect the 
willingness to incorporate the concept of intergenerational equity and environmental sustainability. 
The three levels above are broadly equivalent to the three perspectives mentioned in the study of Guo 
et al. [156]: the first level corresponds to the point of view of business firms and their weighted 
average cost of capital (also see the investor perspective in Steinbach and Staniaszek [141] and the 
market-potential perspective in Mata et al. [153] and Ó Broin et al. [157]); the second level translates 
in what the authors call the individuals perspective; the third level reflects in the so-called whole 
society perspective and the related social discount rate (also see the social or macroeconomic 
perspective in Steinbach and Staniaszek [141] and the techno-economic potential perspective in Mata 
et al. [153] and Ó Broin et al. [157]). 

A typical situation is to base the value of the discount rate on agreed thresholds, which are 
expected to show a more or less significant relationship with a physical, technical, or economic 
parameter. For instance, Wang et al. [80] set the discount rate to 5.5%, 6.5%, and 8.0% for relatively 
developed areas, developed areas, and less developed areas, respectively, according to the suggestion 
of a previous report. Tadeu et al. [74] make the distinction between a financial and a macroeconomic 
perspective, with higher discount factors characterizing the former (6%, 12%) than those 
characterizing the latter (3%, 6%). Brandão de Vasconcelos et al. [154] rely on the same two 
perspectives: for the macroeconomic one they assume four discrete values (2%, 3%, 4%, and 6%), 
while for the financial one the authors use five threshold values (3%, 5%, 6%, 7%, and 10%). In a 
similar vein, Dodoo et al. [81] rely on two previous studies [82,150] and define the discount rate level 
according to the following scenarios: sustainability (1%); intermediate (3%); business as usual (5%). It 
deserves mentioning that sometimes few explanations are provided, so it is not always immediately 
clear whether and why the above relationships hold. Copiello and Bonifaci [151] adopt two points 
of view: the first reflects the cost of capital for households (which is estimated to vary in the range 
from 3.0% to 5.5%); the second pertains to the cost to access the capital market for public housing 
companies (from 1.8% to 4.5%). Both the financial perspective [74,154] and the business as usual 
scenario [81,82] discussed earlier are expressive of the point of view of the firms. Similarly, several 
case studies [1,77,151,158,159] implicitly recalls the involvement of private investors. 

Other authors opt for country-specific discount rates [72], following a recently developing 
literature [45,134,160,161]. Building on the inverse relationship between income (i.e., economic 
growth) and discount rate [162], Mahdiyar et al. [129] make a rough distinction between developed 
and developing nations, the latter ones being characterized by higher rates. Country-specific discount 
factors are also endorsed by the already mentioned European Union guidelines on the cost-optimal 
methodology: “The discount rate will be different from Member State to Member State as it reflects 
to a certain extent not only policy priorities … but also different financing environments and 
mortgage conditions” [35] (p. 18). Furthermore, the country-specific discount rates in Moon and 
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Baran [72] and Ondraczek et al. [134] rely on the concept of weighted average cost of capital, which 
reflects the financing conditions of firms and investors when they enter the capital market. 

A synoptic view of point estimates and variation intervals (Figure 5, some further details are 
provided in Table 2 for a selection of studies) highlights a few shared features. Discount rates 
commonly fall within the range from 3% to 6%. The adoption of a macroeconomic and societal 
perspective usually leads to lower estimates than market benchmarks, but there are some exceptions. 
Discount rate estimates driven by sustainability concerns vary in the range from 1% to 5%, and 
especially between 1% and 3%. Market-based and country-specific discount rates show a high 
variability and, hence, are scarcely susceptible of generalization. 

Table 2. Synoptic view of discount rate estimates. 

First author Year Discount rate values 
Faludi, J. [83] 2012 Weitzman’s gamma discounting [89]: 4% (immediate future); 3% (near future); 2% 

(medium future); 1% (distant future); 0% (far-distant future) 
Kumbaroğlu, G. [23] 2012 Discount rate benchmark 4.22%, considering a discount rate for self-funded retrofit in 

the range 2.25%–5.00% and a discount rate for externally funded retrofit in the range 
2.17%–7.87% 

Burhenne, S. [73] 2013 Interest rate ~ U(0.02, 0.10) 
Copiello, S. [151] 2015 Household perspective: from 3.0% to 5.5%; Public housing company perspective: 

from 1.8% to 4.5%. 
Mata, É. [153] 2015 Two perspectives: techno-economic potential implies a societal discount rate; market 

potential implies a private discount rate (or individual’s implicit discount rate). A 
baseline discount rate of 4% is assumed, sensitivity analysis is performed on 1%–6% 
rates 

Mahdiyar, A. [129] 2016 Discount rate in developing nations: 8%–15% 
Fennell, P. [133] 2016 UK Treasury Social Discount: 3.5% 
Brandão de 
Vasconcelos, A. [154] 

2016 Two perspectives: macroeconomic the former (base: 3%, alternative: 2%, 4%, 6%), 
financial the latter (base: 6%, alternative: 3%, 5%, 7%, 10%) 

Walls, M. [79] 2017 Two different thresholds: social discount rate (5%); consumer credit interest rate 
(15%) 

Das, P. [128] 2017 Inflation-corrected discount rate ~ N(0.07, 0.015) 
Di Giuseppe, E. [34] 2017 Interest rate follows a triangular distribution with minimum value a = 0.0149 (interest 

rate swap with maturity of 30 years), maximum value b = 0.0908 (usury rate ceiling), 
and peak value c = 0.0409 (consumer loan rate) 

Copiello, S. [33] 2017 Discount rate ~ U(0, 0.15) 
Moon, Y. [72] 2018 Country-specific discount rates: 6.1% for the US, 9.2% for Germany, 3.7% for Japan, 

and 8.5% for South Korea 
Fabbri, R. [77] 2018 EurIRS (15 years term): 1.15%; bank spread: 2.00%; discount rate: 3.15% 
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Figure 5. Comparison of discount rate estimates. 

5.4.2. Individuals’ implicit discount rates 

In their review of energy-economy models and energy efficiency policies, Mundaca et al. [163] 
recall a specific empirical research strand, which claims that individuals and households show very 
high implicit discount rates [164–167]. That outcome is alternatively linked to market and behavioral 
failures (for instance, asymmetric information and bounded rationality), or hidden transaction costs 
and risk perception. There is indeed a long literature focusing on the so-called energy efficiency gap, 
namely, the fact that efficient technologies, which are seemingly cost-effective, experience a low 
market penetration [168–172]. Part of that literature investigates the implicit discount rates used by 
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consumers when taking investment decisions, especially when they evaluate the trade-off between 
upfront costs and deferred savings in energy efficiency problems [173–177]. The empirical findings 
point to unusually high values, falling within the range from roughly 15% to 50%. The origin of the 
above research strand can be dated back to some works published between the late seventies and the 
early eighties [178–180], which point out even higher implicit discount rates. The topic has been 
further expanded in the subsequent years [181,182], suggesting that a rational explanation may lie in 
the fact that energy-related investments are not only characterized by uncertainty about future savings 
but are inhibited by the lack of reliable information [183]. They also are almost irreversible [184,185], 
as well as affected by remarkable sunk costs [173] and a high-risk profile [117]. Another study has 
hypothesized that the alleged returns on energy efficiency investments are overestimated, while the 
expected individual discount rates simply reflect the underlying market risk [186]. Atmadja et al. [187] 
focus on the determinants of personal discount rates in developing countries, which are supposed to 
be higher than in developed economies, and find that those determinants are negatively related to the 
adoption of behavior aimed to prevent health harms. Comprehensive reviews on the topic and the 
related issues can be found in the works of Train [188], Howarth and Sanstad [189], and Howarth [190]. 
However, building on a survey of single-family US homeowners and their willingness to pay for 
energy efficiency, Newell and Siikamäki [191] find that individuals’ implicit discount rates are 
characterized by remarkable heterogeneity and a skewed distribution with a mean rate of 19%, a 
median rate of 11%, and a high frequency of rates lower than 10%. Those conflicting results are 
confirmed by the relatively low implicit discount rates found later by Walls et al. [79]. What is more, 
relying on the notion of indifference curves and representing interest rates as the result of the trade-
off between current and future consumption [42,44,84], it should be noted that different implicit 
discount factors may characterize even the same consumer according to various levels of 
consumption that are presently available (Figure 6), so the issue is difficult to resolve. 

 

Figure 6. Representation of interest rates as the result of the trade-off between current 
and future consumption. 

5.4.3. Discount rates, intergenerational equity, and environmental sustainability 

As mentioned earlier, several works [80–86] refer to a specific research strand, which has been 
established and developed around the idea of the social discount rate. As far as the reviewed 
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literature is concerned, there are specific cases wherein the social discount rate is set to non-
negligible values such as, for instance, developing countries or fast-growing economies, as in the 
cases of China and other South-Eastern Asian countries [156]. However, high discount rates are 
deemed to be in contrast with policies targeting the reduction of greenhouse gas emissions as an 
outgrowth of building energy efficiency [154]. Moreover, it is suggested to lower the usual 
benchmark discount rates used in life-cycle evaluations of energy supply facilities, so that the project 
options meant to deliver savings of both consumption and emission are not excluded or underrated [152]. 

5.5. RQ5: Converging results on the impact of the discount rate in the evaluations of building energy 
efficiency measures 

The reviewed literature agrees in identifying the discount rate as a significant variable in the 
assessment of energy-efficient measures in buildings. Table 3 provides a synoptic view of how it 
affects the results in a variety of evaluation issues addressed using several methodological tools. 

Table 3. Synoptic view of the role played by the discount rate. 

First author Year Role played by the discount rate 
Edenhofer, O. 
[192] 

2011 Discount rates affect the levelized costs of energy for commercially-available renewable 
energy technologies: increasing the discount rate raises the levelized cost, especially for 
those technologies characterized by a high ratio between upfront costs and variable costs 

Cox, M. [130] 2013 The choice of the discount rate influences the expected investments in energy-efficient 
equipment that the property owners are willing to undertake and, hence, the forecasts of 
future energy consumption in buildings. A downward correction of the discount rate 
leads to lower projected energy consumption and higher energy savings in comparison to 
current benchmarks 

Morrissey, J. [149] 2013 The results of life-cycle cost analysis of energy efficiency investments are highly 
sensitive to the choice of the discount rate. Especially, the use of high discount rates 
have significant effects also in intragenerational time horizons, and not only from an 
intergenerational perspective 

Burhenne, S. [73] 2013 Economic parameters—especially interest rate and energy price—are found to be very 
influential in building performance simulation, much more than the technical parameters 

Yan, X. [143] 2014 In a techno-economic evaluation of energy storage systems to be used in commercial 
buildings, the sensitivity analysis reveals that the discount rate has the greatest influence 
on the net present value of the investment and the related cash flows 

Qiu, Y. [193] 2015 The implicit discount rates, used to compare future benefits of energy efficiency 
technologies with their upfront costs, are a function of the perceived risk. The evidence 
of very high discount rates means that the actual performance of green buildings is 
uncertain, unknown, and doubted 

Copiello, S. [151] 2015 The net present value of alternative energy efficiency measures is sensitive to the 
discount rate parameter. Notably, when investment costs and expected savings of an 
alternative are a multiple of those of another alternative, the net present value curves as a 
function of the discount rate are likely to intersect, leading to uncertain outcomes 

Continued on next page 
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First author Year Role played by the discount rate 
Wu, L. [152] 2015 Under the framework of techno-economic evaluations involving greenhouse gas 

emission and related costs, the decision criteria used to rank the sites suitable to host 
water supply facilities should undergo sensitivity analysis, being the discount rate and 
carbon pricing the main influential drivers 

Mata, É. [153] 2015 Discount rate significantly affects the net annual costs and, more broadly, the market 
potential for investments in energy-saving measures 

Newell, R. [191] 2015 A skewed distribution characterizes implicit individual discount rates. In contrast with 
the previous literature, low implicit rates are found to be predominant 

Mahdiyar, A. [129] 2016 Due to its correlation with the net present value, the discount rate is featured among the 
influential parameters in a cost-benefit analysis focusing on green roof installation 

Liu, X. [155] 2016 Emission reduction efforts are modeled as part of the bid in building procurement, hence, 
lower greenhouse gas emissions correspond to higher procurement costs, and the 
discount rate is used to control the emission within the level desired by the property 
owner who awards the contract. The discount rate is found to alter the emission 
reduction efforts of the bidders substantially 

Qiu, Y. [194] 2017 Empirical evidence confirms that future energy savings are likely to be heavily 
discounted when a decision on whether to incur the upfront cost of green building 
certification has to be made 

Walls, M. [79] 2017 The empirical findings contrast with the mainstream idea that implicit discount rates are 
unusually high for the individuals that opt for energy labels and green certifications 

Das, P. [128] 2017 Under the framework of a design optimization scheme, the economic criterion requires 
considering the discount rates, along with maintenance costs and energy price changes, 
due to their impact on the optimal design option 

Di Giuseppe, E. 
[34] 

2017 Among the stochastic inputs of the Life-cycle cost analysis - such as investment cost, 
operating costs, and maintenance expenditure - there are three core economic and financial 
parameters that mostly affect the results: energy price trend, inflation rate, and discount rate 

Copiello, S. [33] 2017 Life-cycle cost analysis is suitable to be integrated with Monte Carlo simulation due to 
several stochastic inputs, among which the discount rate is a primary source of uncertainty. 
Moreover, that parameter is found to affect the results four times as much as the energy price 

Dodoo, A. [82] 2017 Under the framework of cost-effectiveness analysis, optimal energy renovation measures 
are sensitive to discount rate and energy price increase, which cause large swings in both 
heat needs and electricity consumptions 

Wang, J. [80] 2018 The study points out a strong inverse relationship between the discount rate and life-
cycle environmental impacts of buildings. Therefore, the higher the discount rate is,  the 
lower the impact 

Moon, Y. [72] 2018 The discount rate plays a crucial role in an analysis based on real options theory, altering 
the decision on the optimal time of investing in residential photovoltaic systems 

Tadeu, S. [74] 2018 Discount rate changes, according to different economic perspectives, substantially affect 
the identification of cost-optimal solutions 

Dodoo, A. [81] 2018 Discount rates, along with energy price changes, are recognized as influential parameters 
affecting the cost-effectiveness and the economic viability of building energy renovation 
measures 

Fabbri, R. [77] 2018 In a Discounted cash flow analysis of the restoration of a heritage building, the discount 
rate is not among the sensitive parameters with regard to the Net present value, as well as 
investment and operating costs 
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The most remarkable outcomes may be summarized as follows. Apart from a few exceptions [77], 
the discount rate strongly interacts with investment costs and expected energy savings of energy-
efficient solutions [81,82,128–130,153,192,194], in such a way that, although implicit individual 
discount factors are not found to be unusually high [79,191], it is possibly the most influential 
parameter in the analysis of energy-related investment [33,34,72–74,143]. Its effects are significant 
not only from an intergenerational perspective but also in intragenerational time horizons [149]. 
Moreover, it is a function of risk and uncertainty but, in turn, it further contributes to the uncertainty 
of the results [151], which also reflects on related environmental issues [80], e.g., the cost of 
greenhouse gas emissions [152] as well as the cost to reduce them [155]. 

6. Some suggestions and guidance from the literature review 

In consideration of the reviewed literature, the primary suggestion has its roots in the need to 
ensure the comparability among the studies as well as the replicability of the results. As one may 
expect, the assumptions underlying the discount rate estimation, the evaluation perspectives, and the 
data sources often vary from one study to another. Nevertheless, the primary issue lies in the fact that 
some of the aspects above are not clearly stated, which makes confounding and problematic the 
comparison of the results. Accordingly, the discount rate estimation should follow a logical 
thread (Figure 7 provides an example), which top-down hierarchical structure is as follows: starting 
from the assumptions and the related evaluation perspectives, going on with the adoption of coherent 
models and data sources, and possibly ending at the bottom with the sensitivity analysis of the results. 

Here are further specific suggestions that stem from the perusal of the references. The adoption 
of a market-based approach or a sustainability-based perspective is a primary discriminating factor. 
The former leads to consider the financing costs incurred by investors firms, individuals, and 
households, which imply a positive discount rate, ordinarily growing across time. The latter includes 
both the topic of intergenerational equity and the willingness to properly weight environmental 
concerns, which instead may suggest the use of a null or declining discount rate. Since it is likely to 
generate diverging results, the choice deserves to be clearly stated, and its implications should be 
properly made explicit. 

When adopting the notion of cost of capital, considering that the determinants of the discount 
rate vary continuously across time, the use of estimates and values found in the literature is risky. 
Those values undergo a quick aging process, unless the above determinants face a steady state due, 
for instance, to economic stagnation. It looks better to outline updated estimates based on reliable 
and fully referenced raw data. 

Because the discount rate strongly affects the results, the use of point estimates provides limited 
insights. Sensitivity analysis, at least, and stochastic approaches should be considered. Most of all, 
the Monte Carlo simulation method has established itself as the leading approach to deal with the 
inherent uncertainty of the discounting procedure. 
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Figure 7. Logical thread for the estimation and implementation of the discount rate in 
energy efficiency evaluations: an example. 

7. Conclusions 

Save for a few exceptions, the reviewed literature agrees that the discount rate is among the 
influential parameters—possibly the most prominent—affecting the evaluation of energy-efficient 
measures in buildings. Neglecting this evidence is likely to produce biased results. Nevertheless, the 
topic has still to gain the attention it deserves. Several clues support the above conclusion. Firstly, 
the studies that comprehensively deal with the estimation of the discount rate represent a niche in 
comparison to the wide and ever-growing literature focusing on the economic viability of energy 
efficiency solutions. Secondly, the methods and models meant to estimate the discount rate are 
seldom implemented and mostly disregarded. Furthermore, the data sources sometimes lack 
consistency and accuracy, especially when values are acritically taken from previous studies or 
reports. However, there is a core set of state-of-the-art studies that deeply delve into the matter of 
discounting and its relationships with the key parameters of techno-economic analyses as far as 
building energy efficiency is concerned. Those studies represent a guiding light for forthcoming 
research projects and the further development of the field. 
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