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Abstract: In this work, a deep learning model was developed to predict future neurological parameters 

for patients with hypothyroidism, enabling proactive health management. The model features a 

sequential architecture, comprising a long short-term memory (LSTM) layer, a bidirectional LSTM 

layer, and several fully connected layers. The study assessed the interplay between serum cortisol, 

dopamine, and GABA levels in hypothyroid individuals, aiming to illuminate how these hormonal 

fluctuations influence the condition's symptoms and progression, especially in relation to Parkinson's 

disease. Conducted at the Tabriz Sadra Institute of Medical Sciences in Iran, the observational study 

involved 80 hypothyroid patients and 80 age-matched healthy controls. The findings showed a 

correlation between cortisol levels and TSH and an inverse relationship with T3 and T4 levels among 

hypothyroid patients. Dopamine levels also correlated with TSH, T3, and T4, highlighting their 

potential impact on Parkinson's disease. Notably, hypothyroid patients aged 54–71 years old 

experiencing visual hallucinations had reduced occipital GABA levels correlating with hormone levels. 

The results indicated significant relationships among cortisol, dopamine, and GABA levels, providing 

insights into their roles in the pathophysiology of hypothyroidism and its association with neurological 

disorders. The BiLSTM model achieved the highest accuracy at 92.79% for predicting Parkinson’s 

disease likelihood in adult hypothyroid patients, while the traditional LSTM model reached 84.48%. 

This research suggests promising avenues for future studies and has important implications for clinical 

management and treatment strategies. 
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1. Introduction   

Hashimoto's thyroiditis (HT) is a common autoimmune condition characterized by thyroid 

inflammation, lymphocytic infiltration, and increased autoimmune antibodies. Studies investigating 

the relationship between HT and cancer have yielded conflicting results, prompting a meta-analysis to 

clarify this connection [1]. Hypothyroidism, which predominantly affects women and the elderly, 

involves intricate interactions among thyroid function, the HPA axis, and cortisol, with T3 and T4 

playing vital roles in metabolism and bodily functions [2]. Diagnosis typically involves evaluating 

TSH and T4 levels in the blood. Subclinical hypothyroidism, characterized by elevated TSH levels 

while T4 and T3 levels remain within normal range, has garnered attention. This study aimed to explore 

the potential links between thyroid hormones and neurological issues such as Parkinson's disease 

progression [3].  

Factors such as stress and low blood sugar can trigger the release of cortisol. In Parkinson's 

disease, neurotransmitters like GABA [4], cortisol [5], and dopamine [6] play crucial roles in the 

progression and management of the condition. Research indicates that serum levels of autoimmune 

antibodies (AIAs) against α-synuclein (α-syn) could serve as a biomarker for Parkinson's disease, 

distinguishing PD patients from healthy individuals and those with other neurodegenerative diseases 

like Alzheimer's [7]. GABA regulates muscle tone, cortisol influences disease progression through 

stress-related mechanisms, and dopamine depletion contributes to both motor and emotional symptoms. 

Maintaining a balance in these neurotransmitter levels through medication, lifestyle modifications, and 

therapies is essential for effectively managing Parkinson's symptoms and improving patients' quality 

of life. Regular monitoring of these levels can provide valuable insights for optimizing treatment 

strategies, potentially aiding in the management of Parkinson's disease by enhancing our understanding 

of the connection with hypothyroidism. The main aim of this study is to investigate the relationship 

between neurological abnormalities, specifically Parkinson's disease, in individuals with thyroid 

dysfunction. 

In primary hypothyroidism, heightened cortisol levels result in an increase in cortisol levels and 

a decrease in TSH levels. The complex interplay between the thyroid and adrenal systems involves 

cortisol influencing the secretion of hormones and feedback mechanisms. Autoimmune thyroiditis makes 

hypothyroidism more prevalent in elderly women. Disturbances in cortisol levels among hypothyroid 

patients can impact the presentation of the disease. Understanding the connection between cortisol and 

hypothyroidism is crucial for improving diagnosis and treatment. In Parkinson's disease (PD), 

dysfunction in the HPA axis related to cortisol levels is observed [8]. Research by Cramb et al. [9] has 

shown that deficits in dopamine release from nigrostriatal neurons are present in many models of 

Parkinson's disease before or without neurodegeneration. Exploring the relationship between cortisol 

and dopamine in hypothyroidism can provide insights into the progression and treatment of 

neurological abnormalities. Managing the body's condition during the emergence of hand tremors and 

lower levels of T3 and T4 are key aspects of PD. The primary focus of this study is to understand these 

scenarios. More than 50% of individuals experience hand tremors, prompting the investigation of the 

effects of dopamine, cortisol, and hypothyroidism. Elevated cortisol levels in Parkinson's disease play 

a significant role in cognitive decline and disease progression, as well as impacting the effectiveness 
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of vascular Parkinsonism treatment. PD also disrupts the cortisol cycle. While individuals with 

Parkinson's disease maintain a consistent circadian rhythm of cortisol, the amount of cortisol released 

increases in early Parkinson's disease [10]. 

2. Literature review 

Gamma-aminobutyric acid (GABA) serves as the primary inhibitory neurotransmitter in the 

central nervous system (CNS), peripheral nervous system, and enteric nervous system. It is implicated 

in a wide range of physiological functions both within and outside the nervous system. Błaszczyk [11] 

proposed that the traditional understanding of Parkinson's disease (PD) as resulting from the specific 

loss of dopaminergic neurons in the midbrain should be revised to view it as a complex multisystem 

neurodegenerative disorder affecting the entire nervous system. The clinical manifestations of PD are 

believed to be closely linked to the localization and progression of GABA pathology. The connection 

between neurological disorders like PD, characterized by initial symptoms such as hand tremors, and 

thyroid dysfunction is undeniable [12]. Certain neurological parameters may play a crucial role in 

identifying individuals predisposed to Parkinson's disease and in determining the most effective 

treatment strategies. Understanding the intricate relationship between GABA, dopamine, cortisol, and 

thyroid function in the context of neurological disorders like PD is essential for advancing both 

diagnosis and treatment approaches. Further research into these interconnected systems could provide 

valuable insights into the pathophysiology of PD and potentially lead to more targeted therapeutic 

interventions. 

The use of various artificial neural network techniques in medical sciences is increasing, 

particularly in forecasting disease progression. Numerous methods have been developed to predict 

blood levels. Shanthi [13] implemented an autoregressive integrated moving average (ARIMA) model 

for short-term predictions. Additionally, machine learning approaches [14] have been employed; for 

instance, Daskalaki et al. [15] created a real-time learning recurrent neural network (RNN) that 

combined glucose and insulin data, surpassing traditional models. Bunescu et al. [16] utilized support 

vector regression (SVR), considering daily elements such as insulin doses and meals, while Georga et 

al. [17] improved SVR by integrating models for meals, insulin, and exercise to provide personalized 

predictions. Recently, deep learning techniques have demonstrated enhanced performance due to their 

capacity for automatic feature extraction. Mhaskar et al. [18] introduced a deep convolutional neural 

network (DCNN) that exceeded the performance of shallower networks. Conventional RNNs often 

face challenges with long-term dependencies because of problems like vanishing or exploding 

gradients [19,20]. To address this, advanced architectures such as long short-term memory (LSTM) 

networks have been created, featuring memory cells and forget gates [21] that improve predictive 

accuracy by effectively combining historical and current data. LSTMs have been successful in various 

time series applications, including biopsy images detection [22], dynamics of virus spreading [23], and 

blood glucose behavior modeling [24,25]. Their rapid learning abilities and capacity to manage 

complex tasks have made them more favorable compared to older RNN algorithms [21]. Furthermore, 

deep bidirectional LSTM (Bi-LSTM) architectures facilitate the incorporation of information from 

both past and future contexts, as shown by Su et al.'s [26] study on blood pressure prediction. 

Most studies have focused on a limited range of machine learning models, leading to restricted 

forecasting capabilities and less independence in predictions. Additionally, prior methods often relied 

on specific biomarkers, such as glucose and insulin levels, to make predictions. In contrast, the present 
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study examines the interplay between serum cortisol, dopamine, and GABA levels in individuals with 

hypothyroidism. This research seeks to shed light on how fluctuations in these hormones may affect 

symptoms and progression of the condition, particularly in relation to Parkinson’s disease—an aspect 

that has been overlooked by other researchers. Moreover, a significant innovation in our approach lies 

in the use of correlation data to make predictions using BiLSTM neural networks, which we then 

compare to standard LSTM models. This application of correlated data prediction is a novel 

contribution, as previous studies have not addressed this aspect. In summary, our proposed model is 

designed to analyze and predict sequences of correlated data rather than solely handling individual 

data points.  

This study focuses on using a deep neural network with bidirectional LSTM architectures to 

predict blood serum levels related to neurological conditions, particularly concerning disorders like 

Parkinson's disease. It investigates the levels of serum cortisol, dopamine, and GABA in individuals 

with hypothyroidism to better understand the complex interplay between these endocrine systems. The 

research explores how variations in these serum levels may influence the progression and management 

of hypothyroidism, especially in patients exhibiting hand tremors, which may indicate a predisposition 

to Parkinson's disease. The findings aim to enhance understanding of hormonal interactions and could 

lead to improved treatment strategies and personalized care for patients with hypothyroidism and 

neurological disorders. In a future chapter of this article, we will provide the material and methods 

containing clinical measurement, the structure of the ANN model to predict the correlations of data, 

and evaluation criteria. In another chapter, we will demonstrate the archived results and, finally, 

provide a conclusion to this work.  

3. Materials and methods 

Thyroid hormones (THs) are essential for the development and functioning of GABAergic 

neurons, where T3 enhances the activity of glutamic acid decarboxylase (GAD) necessary for 

converting glutamic acid into GABA. However, neonatal hypothyroidism decreases GAD activity, 

disrupting GABA metabolism, which may result in locomotor dysfunction and anxiety [27]. The 

effects of TH deficiency on GABA differ between neonates and adults—lowering GABA function in 

the former while potentially increasing GABA levels in the latter—while hyperthyroidism reduces 

GABA levels and elevates glutamate. T3 also facilitates GABA release by enhancing calcium uptake, 

and the regulation of the GABAergic system by THs varies with developmental stages, having 

significant implications for epilepsy [28−30]. Additionally, GABA inhibits thyroid function at the 

hypothalamic, pituitary, and thyroid levels, indicating a bidirectional relationship whereby THs may 

assist in seizure suppression during brain development (Figure 1). As an inhibitory neurotransmitter, 

GABA is implicated in various therapeutic effects for conditions like high blood pressure, diabetes, 

and insomnia, identifying GABA receptors as key drug development targets. However, inhibiting 

GABA neurons can raise dopamine levels, suggesting a link between GABA activation and dopamine 

suppression, particularly in the ventral tegmental area [28−30]. This study employs a deep neural 

network with BiLSTM architectures to predict blood serum levels related to neurological conditions, 

particularly Parkinson's disease. Cortisol, dopamine, and GABA levels are investigated in individuals 

with hypothyroidism to understand the complex interactions among these endocrine systems and how 

variations in serum levels may influence the progression and management of hypothyroidism, 

especially in patients with hand tremors indicative of Parkinson's risk. The findings will contribute to 
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a deeper understanding of hormonal interactions, potentially leading to improved treatment strategies 

and personalized care for patients with hypothyroidism and associated neurological disorders. 

 

Figure 1. Structure of the present work. 

3.1. Clinical measurements  

An observational exploration aiming to investigate serum cortisol, GABA, and dopamine levels 
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in individuals grappling with hypothyroidism [31] was undertaken at The Tabriz Sadra Institute of 

Medical Sciences in Tabriz, Iran, from July 2023 to November 2023. The investigation encompassed 80 

hypothyroid patients and 80 healthy individuals of corresponding age, who were either outpatients or 

inpatients at the Department of Endocrinology and Department of General Surgery. Patients were 

chosen based on ATA criteria, and demographic information was obtained [32]. Exclusion criteria 

encompassed individuals undergoing thyroxin therapy, recent tobacco users, specific medical ailments, 

extensive medication usage, and recent administration of psychotropic medications or psychiatric 

hospitalization. Ethical endorsement for the inquiry was obtained from the Institutional Ethics Committee 

at the Tabriz Sadra Institute of Medical Sciences, and all participants provided informed consent. Stringent 

confidentiality and data safeguarding protocols were meticulously adhered to. 

Table 1. P-values of gathered data. 

Parameter Group Age group Significant difference (p-value) 

TSH Male  18−35 P < 0.0001  
Male  36−53 P = 0.0080  
Male  54−71 P = 0.0022 

 Female  18−35 P < 0.0001  
Female  36−53 P = 0.0061  
Female  54−71 P = 0.0292 

T4 Male  18−35 P = 0.0298  
Male  36−53 P = 0.0278  
Male  54−71 P = 0.0365  
Female  18−35 P = 0.0050  
Female  36−53 P = 0.0690  
Female  54−71 P = 0.0750 

T3 Male  18−35 P < 0.0001  
Male  36−53 P = 0.3246 

 Male  54−71 P < 0.0001  
Female  18−35 P < 0.1837  
Female  36−53 P < 0.0001 

 Female  54−71 P < 0.0001 

Hematological samples were obtained early in the day following an 8–10 h fasting period to mitigate 

diurnal fluctuations in cortisol levels. The samples were handled by allowing coagulation, followed by 

centrifugation and preservation at −20 °C. Methodical labeling and documentation were upheld for precise 

monitoring and evaluation. Biochemical analysis included tests for TSH, T3, T4, serum cortisol, GABA, 

and dopamine using advanced technologies on the Abbott ARCHITECT system. Strict quality control 

procedures, such as equipment calibration and compliance with protocols, were implemented to ensure 

accurate results. Statistical analysis was performed using STATA software, applying descriptive statistics, 

t-tests, chi-square tests, and Pearson's correlation to compare and examine relationships between variables. 

A comprehensive logistic regression analysis was conducted to assess the impact of thyroid function 

parameters on serum cortisol levels, with a significance level set at p < 0.05. The results in Table 1 revealed 

that all p-values in the dataset were below 0.05, leading to the rejection of the null hypothesis. Additionally, 

the baseline values were significantly lower than the critical p-values.  
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Data was subjected to preprocessing to resolve issues such as missing values, outliers, duplicate 

entries, and inconsistent formatting. This step is crucial for ensuring data integrity and improving the 

overall quality of the dataset. During preprocessing, features may be scaled or normalized for more 

effective comparisons. Checking for missing values is essential, as they may indicate that an event did 

not happen, data was not available, or the data was irrelevant. The approach to dealing with missing 

data depends on the amount and pattern of the missing information, with potential strategies including 

removing affected rows or columns, imputing values using mean, median, or regression techniques, or 

utilizing more advanced methods like K-nearest neighbors (KNN) or multiple imputation. In this case, 

since the dataset contains no missing values, data cleaning is not required. The main focus of our 

preprocessing involved modifying or converting the units of the collected data to align with our 

proposed BiLSTM method. 

3.2. Proposed structure for prediction by BiLSTM 

A key feature of long short-term memory (LSTM) networks is their memory cell (C) combined 

with a gate structure that enables the network to determine which information to retain or discard. Each 

LSTM cell contains four gates: the input gate (i), forget gate (f), control gate (c), and output gate (o). 

The output gate plays a vital role in producing the output and updating the hidden vector ht-1. The 

mathematical formulation of these processes incorporates the sigmoid activation function sigma and 

the hyperbolic tangent function tanh, allowing LSTMs to effectively manage information over long 

sequences, making them well-suited for tasks involving temporal data. By dividing the state neurons 

of a standard RNN into forward and backward directions, BRNNs can separate outputs from these 

states and be trained in both directions. This bidirectional architecture can be applied to various RNN 

variants. In this study, we employed bidirectional LSTM (BiLSTM) [33,34]. The BiLSTM model, 

illustrated in Figure 1, is a specific type of RNN that addresses the vanishing gradient problem 

commonly faced by RNNs. Following the embedding layer, a bidirectional LSTM layer is 

implemented, accompanied by fully connected layers and dropout layers for regularization. The output 

layer of the BiLSTM consists of a fully connected layer with sigmoid activation units. The ReLU 

activation function is used in all hidden layers, and the model employs binary cross-entropy as its loss 

function. Additionally, gated recurrent units (GRU) consist of two gates: the update gate (z) and the 

reset gate (r). At timestep t, these gates generate output vectors labeled as zt and rt, with the hidden 

layer's output at timestep t denoted as ht. The calculations for these output vectors are described in 

detail as follows [35]: 

( )1t z t z t zz W x U h b −= + +          (1) 

( )1 t r t r t rr W x U h b −= + +          (2) 

( ) ( )( )1 11       t t t t h t h t t hh z h z tanh W x U r h b− −= − + + +      (3) 

Where t represents the time step index, the symbol ◦ denotes the Hadamard product operation, tanh 

indicates the hyperbolic tangent function, σ symbolizes the sigmoid function, and Wα, Uα, and bα 

stand for the weight matrix and bias elements of gate α, which are shared by hidden units within the 
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same layer. This configuration results in 3L sets of weight matrices and biases for a GRU-RNN with 

L layers. The output vector ht from the hidden unit is transmitted to the hidden unit at time step t + 1 

in the same layer, or to the hidden unit at time step t in the next layer. Following the functions of the 

gates as described in equation (3), an increase in rt diminishes the impact of ht−1 on updating ht, while 

an increase in zt lessens the influence of ht on resetting ht to ht−1. The prediction model was built using 

Keras 2.0.8 in a Python 3.4.3 environment, featuring one LSTM layer and one BiLSTM layer, each 

with four units, along with three fully connected layers of 8, 64, and 8 units. The output layer was a 

single dense unit for predicting blood neurological values. Cross-validation (80% training, 20% 

validation) was used to prevent overfitting. 

Table 2. A comparison of our proposed framework with baseline approaches utilized in 

previous studies. 

Authors Approaches Parameters Precision 

Krishnamoorthy et al. 

[36] 

ARIMA–LSTM Glucose and cholesterol RMSE of 31.24 for 

ARIMA and 109.43 for 

LSTM 

Zhang et al. [37] ARIMA–LSTM–GRU Dynamic blood glucose * 

 

Yang et al. [38] ARIMA model with 

adaptive orders 

Blood glucose concentrations 

and hypoglycemia 

* 

 

Ali et al. [39] ANN Blood glucose level in type 1 

diabetes 

Mean absolute 

percentage error of 3.87% 

Robertson et al. [40] Elman recurrent 

artificial neural 

networks 

Blood glucose in AIDA 

diabetes 

RMSE of 0.15 

Mamandipoor et al. [41] LSTM Blood lactate AUC of 0.77 

Hu et al. [42] Six machine learning 

algorithms—bagging, 

AdaBoost, GaussianNB, 

logistic regression, 

MLP, and SVC 

Type 2 diabetes MLP and AdaBoost 

models with AUC of 

0.8487 and accuracy rates 

of 0.9249 

Song et al. [43] LSTM–CNN Hypertension  0.90 = 0.95 

Yu et al. [44] LSTM Stroke neurologists RMSE of 89.4  

Hong et al. [45] LSTM Alzheimer’s disease by 

image preprocessing 

AUC of 0.777 

Miri-Moghaddam et al. 

[46] 

LSTM Blood cells (LR-RBC), and 

platelets (PLT), PLT-

apheresis, and fresh frozen 

plasma (FFP) 

* 

Benyamin et al. [47] LSTM Arrhythmias or abnormal 

blood pressure fluctuations 

Accuracy of 83%  

Present work BiLSTM Neurological  Mean accuracy was 

92.79% for training 
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Table 2 provides an in-depth overview of various methodologies employed by different 

researchers to forecast health-related parameters, highlighting a range of techniques and performance 

metrics. Several models have been tailored to address specific health conditions: the ARIMA–LSTM 

model for predicting glucose and cholesterol levels, the ARIMA–LSSVM–GRU method for dynamic 

blood glucose monitoring, and an adaptive ARIMA model for tracking blood glucose concentrations 

and hypoglycemia. Additional methodologies include leveraging artificial neural networks (ANN) for 

managing Type 1 diabetes, employing Elman recurrent neural networks for blood glucose regulation 

in the AIDA diabetes framework, utilizing LSTM networks for blood lactate analysis, and integrating 

LSTM–CNN for hypertension and various blood components. Furthermore, LSTM models have been 

utilized to forecast arrhythmias and abnormal fluctuations in blood pressure, underscoring the efficacy 

of artificial neural networks in predicting diverse health conditions. 

Nevertheless, there is a notable scarcity of research exploring the use of BiLSTM networks in 

predicting abnormalities related to neurological parameters. This study seeks to fill that gap by introducing 

an innovative BiLSTM model. GABA (gamma-aminobutyric acid) plays a crucial role in understanding 

these neurological concerns. One emerging treatment modality is deep brain stimulation (DBS), which 

involves implanting a device in the brain to enhance neurological activity across various disorders [48]. 

Although research on the benefits of DBS for conditions like Parkinson's disease (PD) is still in its 

early stages, initial findings indicate it may exert diverse neurochemical effects at the network level, 

likely activating both inhibitory and excitatory pathways [49]. Studies show that GABA levels in the 

basal ganglia are significantly higher in PD patients compared to control groups, while glutamate and 

glutamine (Glx) levels are markedly lower. While GABA levels did not correlate significantly with 

post-surgery outcomes, basal ganglia glutamate levels emerged as a critical predictor, suggesting that 

glutamatergic neurotransmission may be pivotal in the success of DBS treatment for PD [49]. From a 

neurochemical perspective, cortisol levels—which are stress-sensitive—may influence certain PD 

symptoms. This is supported by various studies examining the impact of cortisol levels on motor 

symptoms, based on the Unified Parkinson’s Disease Rating Scale. Elevated serum cortisol levels seem 

to correlate with anxiety, risk-taking behavior, sleep disturbances, and depressive symptoms, which 

are common and often troubling in PD patients suffering from neuroleptic malignant syndrome [50]. 

The exact mechanism by which dopaminergic medication affects cortisol levels remains unclear; 

however, it can be hypothesized that dopamine exerts a regulatory effect on thyroid dysfunction 

mechanisms responsible for cortisol release. The relationships among serum levels of dopamine, 

GABA, cortisol, and thyroid hormones are not well understood. We aim to illustrate these relationships 

by modeling BiLSTM, which represents a novel approach within the field of biophysics research. 

4. Ablation study  

An ablation study is a method utilized in the analysis of neural network research to assess the 

impact of various components or features within a model on its overall performance. The primary 

objective of this approach is to discern the significance of different elements by systematically 

removing or altering them and observing the resulting effects on model performance. Ablation studies 

play a crucial role in enhancing model interpretability, debugging, and refinement by providing 

insights into which model components are most advantageous for its learning process. In our study, 

we analyzed the relationship between loss and epochs to explore ablation behavior. As the number of 

epochs increases, the output from the LSTM becomes progressively more accurate. Figure 2 illustrates 
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the plot of epochs versus loss for the LSTM model. For the BiLSTM modeling, we set the number of 

epochs to 200. In this figure, we present the losses of the BiLSTM for (a) cortisol, (b) dopamine, and (c) 

GABA. Notably, the figure indicates that after reaching 200 epochs, the average losses stabilize and 

remain relatively unchanged.  

Figure 2. Epochs vs. loss for BiLSTM across different prediction levels. 

5. Performance evaluation measures 

In model evaluation, the main focus is on accuracy to assess the correctness of predictions. 

Accuracy is determined by dividing the total of true positives (TP) and true negatives (TN) by the 

overall population (TOTAL). The confusion matrix is used to analyze classification errors, allowing 

for the assessment of precision and true positive rate (TPR), also known as sensitivity or recall. 

Precision is computed by dividing TP by the number of positive predictions (POS PRED), while TPR 

is calculated by dividing TP by the total actual positive instances. The formulas for these metrics are 
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outlined in Table 3 for reference. 

Table 3. Performance evaluation measures. 

Criteria  Equation  

Precision TP

POS PRED
 

Sensitivity TP

ACTUAL POS
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 TP + TN

TOTAL
 

To comprehensively evaluate model performance, k-fold cross-validation is applied for reliable 

assessments. These evaluation metrics provide an in-depth analysis of the model's predictive ability by 

contrasting the actual test datasets with the predicted outcomes. The model's performance was 

evaluated using four primary metrics: root mean square error (RMSE), correlation coefficient (CC), 

time lag (TL), and fit. RMSE (mg/dL) measures the variance between the actual and predicted 

neurological parameters levels. It is calculated by taking the square root of the average of the squared 

differences, where lower RMSE values signify enhanced prediction accuracy [51]: 

2 21ˆ ˆ(( ) ) ( )RSME E G G G G
N

= − = −        (4) 

G and Ĝ represent the actual and predicted values of the neurological parameters, respectively. The 

CC assesses the linear relationship between the actual and predicted datasets and is calculated as 

follows [51]: 

xy

xy

x y

CC


 
=            (5) 

where σx and σy denote the standard deviations, and σxy represents the covariance. This formula can 

also be written as [51,52]: 

2 2

ˆ ˆ( )( )

ˆ ˆ( ) ( )

mean mean

mean mean

G G G G
CC

G G G G

− −
=

− −



 
        (6) 

where Gmean and Ĝmean are the average values of the actual and predicted neurological parameters, 

respectively. The TL indicates the smallest time shift necessary for the actual and predicted signals to 

reach the maximum correlation coefficient. The fit metric is determined by the ratio of RMSE to the 

root mean square difference between the target values and their average. A higher fit value indicates 

superior prediction performance [51,52]: 
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2

2

1 ˆ( )

(1 ) 100%
1

( )mean

G G
N

Fit

G G
N

−

= − 

−





        (7) 

6. Results and discussion  

Out of 80 cases, 38 were males and 42 were females. The study also included 80 healthy controls 

matched for age and sex. Table 4 presents the biochemical and socio-demographic characteristics of 

the participants, along with the normal function test range according to ATA guidelines. The average 

age in the case and control groups was 40.2 ± 12.3 and 35.25 ± 11.20 years, respectively. There were 

no significant differences in age and sex between the case and control groups. A linear regression 

analysis was performed to identify the independent factors influencing the most significant changes in 

TSH, T3, T4, and cortisol levels. The average serum cortisol level in the case group was 60.01 ± 10.78 

μg/dL.  

Table 4. Lists of the biochemical and socio-demographic characteristics of the study 

participants. BMI: body mass index; TSH: thyroid stimulating hormone; T3: 

triiodothyronine; T4: thyroxine. 

 Normal range Case (n = 80) Control (n = 80) p-value 

Age (years) NA 40.2 ± 12.3 35.25 ± 11.20 > 0.05 

BMI (kg/m2) 18.5–24.9  24.18 ± 3.1 24.45 ± 4.45 > 0.05 

TSH (uIU/L) 0.4–5.5  25.44 ± 9.42 6.62 ± 1.11 < 0.05 

T3 (ng/mL) 0.8–2  0.65 ± 0.10 1.32 ± 0.32 < 0.05 

T4 (μg/dL) 5.0–12.0  5.54 ± 1.21 9.1 ± 1.96 < 0.05 

Cortisol (μg/dL) 5–25  60.01 ± 10.78 14.25 ± 5.12 < 0.05 

The model was trained over 100 epochs, a time frame chosen to ensure adequate learning while 

minimizing the risk of overfitting. The learning rate was established at 0.0015, a pivotal 

hyperparameter that affects the speed at which the model updates its weights using gradient descent. 

Utilizing a categorical cross-entropy cost function, the model was adept at managing multi-class 

classification tasks, making it ideal for scenarios where the target variable includes multiple categories. 

To enhance performance, the Adam optimizer was applied. This adaptive learning rate optimization 

technique merges the advantages of two popular methods, AdaGrad and RMSProp, by keeping a 

moving average of both the gradients and their squares. This method facilitates efficient calculations 

and aids the model in converging more quickly and effectively to a minimum in complicated loss 

terrains. Throughout the training phase, the model's performance was meticulously monitored by 

evaluating both training and validation accuracies. Table 5 displays the accuracies achieved by 

the inception of BiLSTM and LSTM across all folds. The top fold for LSTM showed impressive 

outcomes, with a training accuracy of 87.23% and a validation accuracy of 77.36%, as illustrated in 

Table 4. According to the table, the mean accuracy for BiLSTM was 92.79%, 88.75%, and 89.58% 

for training, validation, and testing, respectively, while LSTM recorded values of 84.48%, 74.58%, 

and 74.62%. The results indicate a progression over the epochs, demonstrating the model's 
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improvement over time and the optimization point at which it reached its highest performance. 

Alongside tracking training and validation accuracies, a thorough evaluation of a distinct test set was 

conducted, resulting in overall accuracies of 96.4% and 87.3% for LSTM and 97.1% and 98.2% for 

BiLSTM, as shown in Figure 3, corresponding to fold 1. This metric is essential for assessing the 

model's generalization to new data, confirming that it is not simply memorizing the training data but 

is capable of making accurate predictions in real-world contexts. Additional performance insights 

across various folds are provided in Table 5, including (a) the confusion matrix for training data fold 

1 (LSTM), (b) the confusion matrix for test data fold 1 (LSTM), (c) the confusion matrix for training 

data fold 1 (BiLSTM), and (d) the confusion matrix for test data fold 1 (BiLSTM), all presented in 

Figure 3. These tables offer a detailed breakdown of accuracy metrics for the training, validation, and 

test sets, reinforcing the model's reliability and robustness. Each fold represents a unique subset of 

data, and evaluating performance across these multiple folds enhances our understanding of the 

model's dependability and its capability to manage data variability. Analyzing these statistics can also 

highlight areas for improvement, such as refining hyperparameters, modifying the model architecture, 

or investigating additional data augmentation strategies to further boost performance. Overall, these 

findings lay a strong groundwork for further experimentation and development within the model's 

application context. In another section of the results, we compare the correlation of various 

neurological parameters to BiLSTM, which demonstrates superior prediction accuracy. 

Table 5. Achieved accuracies of inception BiLSTM and LSTM across all folds. 

BiLSTM Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Train 89.31% 89.99% 92.52% 95.36% 96.78% 92.79% 

Validation 85.63% 86.96% 89.36% 90.30% 91.65% 88.75% 

Test 86.34% 87.65% 90.25% 91.32% 92.36% 89.58% 

LSTM Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Train 83.22% 85.31% 84.35% 85.28% 87.23% 84.48% 

Validation 71.22% 76.33% 71.65% 76.34% 77.36% 74.58% 

Test 74.34% 75.36% 71.23% 77.63% 74.36% 74.61% 
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Figure 3. (a) Confusion matrix for training data fold 1 (LSTM); (b) confusion matrix for 

test data fold 1 (LSTM); (c) confusion matrix for training data fold 1 (BiLSTM); (d) 

confusion matrix for test data fold 1 (BiLSTM). 

6.1. Correlation between T3, T4, TSH, and cortisol for BiLSTM 

Neurological abnormalities are linked to cortisol levels, as shown in Figure 4a–c, which reveals 

that women have higher cortisol levels than men. These cortisol levels are closely associated with 

depression, with depressed women exhibiting elevated evening cortisol and cortisol awakening 

response (CAR), alongside reduced stress reactivity compared to healthy women. Previous research 

has established a direct connection between neurological disorders and the progression of Parkinson's 
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disease [53−55]. The current study aims to elucidate this relationship by leveraging deep learning 

networks. Similarly, depressed men also show higher overall cortisol levels in both the morning and 

evening compared to their healthy counterparts. Gender differences play a crucial role in assessing 

cortisol levels within the context of depression. One possible therapeutic approach to address 

neurological abnormalities is to assist individuals in adopting new roles—such as becoming mothers 

to alleviate postpartum depression symptoms or engaging in volunteering after retirement, which can 

aid in their recovery. The results from the BiLSTM analysis are illustrated in Figure 4d–f. A 

comparison of this figure with Figures 4a–c reveals a strong relationship between clinical outcomes 

and predicted results. The correlation of serum cortisol levels with T3, T4, and TSH is presented in 

Table 6. Table 6 illustrates a strong positive correlation (r = 0.932) between serum cortisol and TSH, 

as well as strong negative correlations (r = −0.915 and −0.912) between serum cortisol and T3 and 

serum cortisol and T4, respectively. 

Figure 4. Correlation between T3, T4, TSH, and cortisol. 

Table 6. Correlation of serum cortisol levels with T3, T4, and TSH. 

Serum cortisol (μg/dL) Correlation 

TSH (mIU/L) 0.932 

T3 (ng/mL) −0.915 

T4 (μg/dL) −0.912 

The study investigated the relationship between serum cortisol levels and hypothyroidism, 

revealing a strong positive correlation between TSH and cortisol, as depicted in Figure 4a–c. Negative 

linear correlations were observed between serum T4, T3, and cortisol levels in the hypothyroidism 

group. The research emphasized the intricate connection between cortisol dynamics and thyroid 

function, highlighting the significance of considering the HPA axis in hypothyroidism. Elevated 
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cortisol levels were detected in individuals with more severe hypothyroidism, indicating a 

compensatory mechanism initiated by the HPA axis in response to metabolic disturbances. The study 

emphasizes the importance of evaluating both thyroid function and cortisol dynamics in managing 

hypothyroid patients, suggesting that assessing blood cortisol levels alongside traditional thyroid 

function tests could provide valuable insights for treatment. The findings underscore the complex 

interplay between cortisol and hypothyroidism, underscoring the need for further research to explore 

potential therapeutic implications and enhance personalized treatment strategies for individuals with 

hypothyroidism. 

7. Correlation between T3, T4, TSH, and dopamine for BiLSTM 

Dopamine has long been recognized as a key contributor to Parkinson's disease, a progressive 

neurodegenerative condition that may begin with mild hand tremors and gradually impair movement 

coordination. Interestingly, levels of dopamine are positively correlated with thyroid hormones like 

TSH, T3, and T4. This connection highlights the complex relationship between dopamine 

dysregulation and thyroid function in the context of Parkinson’s disease. Gaining insight into how 

these neurotransmitter and hormone systems interact can shed light on the underlying mechanisms of 

Parkinson’s disease progression and symptoms. In Figure 5a–c, correlation coefficients illustrate a 

positive relationship between TSH, T3, T4, and dopamine, indicating a direct association between 

serum T4, T3, and dopamine levels in individuals facing hypothyroidism. Our research emphasizes the 

interaction between dopamine dynamics and thyroid function, pointing out the importance of 

considering the HPA axis in hypothyroid patients. Additionally, we observed a significant link between 

serum cortisol levels and indicators of thyroid dysfunction. Thyrotropin (TSH) governs the production 

of T3 and T4 by the thyroid gland, where increased TSH levels with low T3/T4 levels indicate 

hypothyroidism and low TSH with high T3/T4 levels suggest hyperthyroidism. It is critical to monitor 

TSH levels within the 0.4–4.0 mIU/L range for diagnosing thyroid disorders, with any deviations 

necessitating further investigation of T3, T4, and TSH levels for effective management.  

Optimal T3 levels generally range from 100 to 200 ng/dL, T4 levels should be between 5.0 

and 12.0 μg/dL, and free T4 levels ideally range from 0.8 to 1.8 ng/dL. Hormonal imbalances can 

indicate thyroid problems that may lead to symptoms such as weight loss, sleep issues, Graves' 

disease, and other severe consequences [56,57]. Although thyroid hormones are vital for dopamine 

neuron function, excessive levels can result in hyperthyroidism. Therefore, it is crucial to develop 

thyroid hormone derivatives that enhance dopamine function without causing hyperthyroidism in 

Parkinson’s treatment. Studies highlight the significance of iodine in serotonin and dopamine synthesis, 

with low iodine levels potentially leading to neurotransmitter deficiencies [58,59]. The enzyme 

tyrosine hydroxylase (TH) is instrumental in the biosynthesis of DA and other catecholamines, 

suggesting that modulating TH could improve gene therapy strategies and other therapeutic approaches. 

Notably, Figure 5 shows that dopamine levels in males were higher than those in females, indicating 

that excessively elevated dopamine levels in the brain can result in various neurological and psychiatric 

disorders. Effective regulation of dopamine signaling is vital for optimal brain health, as imbalances 

can lead to a spectrum of neurological and psychiatric conditions. The slope of the interpolated line 

for both sexes was quite similar, with the most significant difference observed in serum T4 levels. In 

individuals with hypothyroidism, dopamine levels exhibited strong positive correlations with T3 (r = 0.89, 

p = 0.021), T4 (r = 0.901, p = 0.026), and TSH (r = 0.81, p = 0.026) serum levels in both groups. The 
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results from the BiLSTM analysis, which illustrate the correlation between T3, T4, TSH, and dopamine, 

are presented in Figure 5d–f. This figure, when compared to Figure 5a–c, highlights a robust 

relationship between clinical findings and predicted outcomes. Additionally, the correlation of 

dopamine levels with T3, T4, and TSH is detailed in Table 7. 

Figure 5. Correlation between T3, T4, TSH, and dopamine. 

Table 7. Correlation between dopamine levels and T3, T4, and TSH. 

Dopamine (μIU/dL) Correlation 

TSH (mIU/L) 0.810 

T3 (ng/mL) 0.890 

T4 (μg/dL) 0.901 

8. Correlation between T3, T4, TSH, and GABA for BiLSTM 

Figure 6a–c illustrates the correlations between GABA levels and T3, T4, and TSH levels in 

individuals suffering from hypothyroidism. In this group, GABA levels exhibited strong positive 

correlations with T3 (r = 0.942, p = 0.016), T4 (r = 0.962, p = 0.026), and TSH (r = 0.917, p = 0.026) 

serum levels. Thyroid hormones are essential for the production and breakdown of GABA, influencing 

its levels, release, reuptake, and receptor function in the brain. The effect of thyroid hormones on the 

GABA system differs between developing and adult brains, generally enhancing GABA function 

during development and inhibiting it in adulthood. Additionally, there is evidence that GABA can 

affect the thyroid system by inhibiting TRH release in the hypothalamus, thereby reducing TSH 

secretion from the pituitary and thyroid hormone release from the thyroid gland [60]. While some 

studies present conflicting results, the interaction between thyroid hormones and GABA is likely 
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significant, especially given the link between thyroid disorders and neurological issues related to 

GABA. In patients with Parkinson's disease experiencing visual hallucinations and aged 54−71, there 

is a notable association with decreased occipital GABA levels. GABA, known for its inhibitory role 

on neuronal activity, shows a fascinating positive correlation with thyroid hormones like TSH, T3, and 

T4. The correlation between T3, T4, TSH, and GABA for the BiLSTM is illustrated in Figure 6d–f. 

This relationship suggests a potential interaction between GABA neurotransmission and thyroid 

function in these patients. Since thyroid hormones are crucial in regulating various bodily functions, 

including brain activity, investigating the link between GABA levels and thyroid hormone 

concentrations in Parkinson's patients with visual hallucinations could provide important insights into 

the mechanisms behind these symptoms. Understanding these relationships might lead to novel 

therapeutic approaches to manage visual hallucinations and improve the overall quality of life for those 

living with Parkinson's disease. 

Figure 6. Correlation between T3, T4, TSH, and GABA. 

Table 8. Correlation of GABA levels with T3, T4, and TSH. 

GABA (μM) Correlation 

TSH (mIU/L) 0.917 

T3 (ng/mL) 0.942 

T4 (μg/dL) 0.962 

In Parkinson's disease patients aged between 54 and 71 years old who experience visual 

hallucinations, there is a noticeable decrease in occipital GABA concentrations. Notably, GABA 

exhibits a positive correlation with thyroid hormones, including TSH, T3, and T4, within this specific 

group of individuals. This association underscores the possible interaction between GABA 
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neurotransmission and thyroid function in Parkinson's disease patients experiencing visual 

hallucinations within this age group. Table 8 illustrates the correlation between GABA levels and the 

hormones T3, T4, and TSH. 

9. Conclusions 

A new deep learning architecture, specifically the BiLSTM model, was developed to predict 

outcomes in patients with hypothyroidism, showing better performance than existing models. This 

model effectively captures multi-correlation features from various neurological parameters for 

assessing Parkinson's disease risk in hypothyroid patients. As incidences of thyroid cancer rise, 

research is focusing on the links between thyroid hormones and neurological disorders. Managing 

hypothyroidism typically involves synthetic hormone medications, while hyperthyroidism may require 

radioactive iodine, anti-thyroid drugs, or surgery, along with lifestyle changes like diet and exercise. 

Parkinson's disease, characterized by dopamine neuron loss, results in symptoms like tremors and 

cognitive issues. Its causes are not fully understood but may involve genetic and environmental factors. 

Treatment mainly focuses on symptom management through medication and support systems. 

Research indicates correlations between cortisol, TSH, T3, and T4 hormone levels, with BiLSTM 

achieving higher accuracy (92.79%) compared to LSTM at 84.48%. These findings highlight potential 

future research directions and implications for treatment strategies in managing these conditions. 

The current study faces limitations in extracting additional neurotransmitter parameters that may 

be critical for understanding neurological changes associated with thyroid dysfunction. While this 

research has focused on key neurological parameters related to the disease, we recommend 

incorporating other relevant parameters. Key neurotransmitters, such as glutamate, acetylcholine, 

serotonin, norepinephrine, and melatonin, may all play a role in the abnormalities observed in 

individuals with thyroid dysfunction. To analyze these parameters, researchers may primarily utilize 

two methods: cerebrospinal fluid (CSF) analysis, which involves collection via lumbar puncture, and 

brain tissue analysis, which examines post-mortem samples for neurotransmitter levels and protein 

expression. However, brain tissue analysis presents challenges due to the need for surgical procedures 

and limitations to specific locations and laboratories. This research suggests including the effects of 

the aforementioned neurotransmitters and integrating them into the under-studied parameters. 

Additionally, we propose using alternative artificial neural network (ANN) models to predict 

neurological parameters related to thyroid dysfunction. Furthermore, future research should consider 

employing image segmentation techniques for analyzing MRI scans, potentially utilizing various ANN 

architectures, such as convolutional neural networks (CNN) and long short-term memory networks 

(LSTM), to better predict the progression of thyroid-related changes. 
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