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Abstract: The metal ion is ubiquitous in the human body and is essential to biochemical reactions. The 

study of the metal ion complexes and their charge transfer nature will be fruitful for drug design and 

may be beneficial for the extension of the field. In this regard, investigations into charge transport 

properties from ligands to metal ion complexes and their stability are crucial in the medical field. In 

this work, the DFT technique has been applied to analyze the delocalization of electrons from the 

water ligands to a core metal ion. At the B3LYP level of approximation, natural bond orbital (NBO) 

analysis was performed for the first five distinct complexes [Mg(H2O)6]2+ and [[Mg(H2O)6](H2O)n]2+; 

n = 1-4. All these complexes were optimized and examined with the higher basis set 6-311++G(d, p). 

In the complex [Mg(H2O)6]2+, the amount of natural charge transport from ligands towards the metal 

ion was 0.179e, and the greatest stabilization energy was observed to be 22.67 kcal/mol. The donation 

of the p orbitals in the hybrid orbitals was increased while approaching the oxygen atoms of H2O 

ligands in the 1st coordination sphere with the magnesium ions. The presence of water ligands within 

the 2nd coordination sphere increased natural charge transfer and decreased the stabilizing energy of 

the complexes. This may be due to the ligand-metal interactions. 
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1. Introduction 

Dication magnesium complexes have a unique place in chemistry and biochemistry due to their 
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diverse structural arrangements and applications in numerous fields. Magnesium is very crucial for 

living beings. For example, about 300 metabolic activities and 800 proteins require this metal to function 

in our body. This metal is also necessary for DNA [1,2], RNA [3,4], antioxidant glutathione production [5], 

energy generation, oxidative phosphorylation, and glycolysis among other elements, helps the anatomical 

formation of bone, with exterior layers assisting in the maintenance of blood magnesium levels [6], while 

magnesium shortage has been associated with decreased bone mass [7,8]. In plants, Chlorophyll, a 

magnesium coordination molecule, is required for plant life (Photosynthesis) and the survival of life on 

Earth [9,10]. Magnesium also participates in active Ca and K ion transport across cell membranes, which 

are required for nerve impulse transmission, muscle contraction, and a regular heart rhythm [11,12]. 
Computational chemistry has recently acquired popularity among scholars and researchers as a 

method of addressing real-world challenges in chemical, pharmaceutical, biotechnology, and material 

science [13]. By Bock et al., the stereochemistry of ligand binding by bivalent magnesium metal was 

effectively analyzed, as was how likely these ligands are to be water [14]. Ab initio molecular orbital 

(MO) calculation of M2+(H2O)n complexes having central alkaline earth metal ion with varying water 

ligands from one to six at RHF and MP2 level with basis set 6-31+G∗ was investigated by Glendening 

et al. [15]. The alkaline-earth metal ions M2+(H2O)n, n = 5-7 (M = Mg, Ca, Sr, and Ba) hydration 

energies and geometries were determined by Rodriguez-Cruz et al. [16] using the DFT-B3LYP 

method. According to Pavlov et al. [17], charge transfer between the ligands and the metal lowers the 

interaction energy of the complex [Mg(H2O)n]2+ between M···H2O as the number of ligands rises 

in the 2nd coordination sphere. By employing the kinetic energy release measurement method, Bruzzi 

et al. [18] investigated the binding energies of complexes [Mg(NH3)n]2+, [Ca(NH3)n]2+, and [Sr(NH3)n]2+ 

for n = 4–20, and these results are supported by DFT calculations. These desired impacts have 

provided new insights into the trustworthiness of computational methodologies. 

 

Figure 1. Structural representation of the octahedral magnesium complex [Mg(H2O)6]2+ 

showing bond lengths. 

Several preceding studies reveal the focus on the coordinative behavior of metal ions however, 

the natural bond orbital analysis of metal complexes by using the DFT-B3LYP approach with 

varying numbers of ligands in 2nd coordination sphere is yet to be studied. The charge transfer from 
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surrounding ligands to a central metal ion and vice versa affects its geometry and other physical features 

of complexes. Two charge transfer mechanisms, Mulliken and natural, are explained by population 

analysis. NBO analysis provides a solid framework for researching charge transfer and conjugative 

interactions in atoms and molecules. The second-order perturbation hypothesis leads to the availability 

of some electron donor orbitals, acceptor orbitals, and association stabilization energies [19]. The 

system conjugation increases with increasing 𝐸(2)  value and electron donor interaction. When 

electron density delocalizes between occupied Lewis type (bond or lone pair) and nominally vacant 

non-Lewis type (antibonding or Rydberg) NBO orbitals, a stable donor-acceptor interaction is 

ensured [17]. The natural bond orbital study of magnesium compounds using the DFT-B3LYP 

approach with varying quantities of ligands in 2nd coordination sphere remains unexplored. This 

work reports the study of natural transfer properties in the coordination complex [Mg(H2O)6]2+. 

Figure 1 illustrates the optimized structural representation of complex [Mg(H2O)6]2+ that displays 

bond lengths. The central metal ion is attached to identical six water ligands, forming an octahedral 

structure. The distance between Mg and O is 2.112 Å, while the distance between O and H is 0.967Å. 

The remaining four complexes were created by gradually expanding the number of water molecules 

within 2nd coordination sphere from one to four. Natural charge transfer behavior of the different 

complexes was then compared. This study of magnesium complexes will shed light on the charge 

transfer behavior of metal ions. The analysis of these complexes will be beneficial for medicinal 

design and could aid in the development of new drugs. 

2. Materials and methods 

The quantum computations in this extensive analysis of metal complexes were accomplished 

with the Gaussian 16 program packages [20]. Gaussian inputs of magnesium ion compounds were 

generated, and outputs were displayed using GaussView 6 [21]. The structural geometrics of 

complexes were firstly optimized utilizing various basis sets with B3LYP functional, which combines 

Becke’s gradient-correlated exchange functional (B3) [22] and Lee-Yang-Parr (LYP) [23]. These 

inputs were acquired by retaining the ligands in a quasi-octahedral structure. There was no symmetry 

limitation enforced, and the C1 point group symmetry was used for optimization. Frequency 

estimations were carried out during the geometry optimization process, and global minima were 

validated. Every calculation was carried out by applying 6-311++G(d,p) basis set and B3LYP 

functional. NBOs provide precise details on the type of electronic conjugation occurring between 

molecular bonds. In metal complexes, the delocalization of electrons results once the hybridized 

orbitals of water molecules and metal ions coincides. NBO evaluation is a strong approach for 

determining this electron delocalization. NBOs strongly support the assumption that localized bonds 

and lone pairs are the essential building blocks of molecular structure, hence it is feasible to understand 

ab initio wave functions in perspective of Lewis structure theories by effectively converting them to 

NBO form. The NBO technique was utilized to study how the non-bonding pairs of oxygen atoms in 

the water decreased their native charge densities. NBO analysis is performed by looking at all 

conceivable interactions between 'full' (donor) Lewis-type NBOs and 'empty' (acceptor) non-Lewis 

NBOs and evaluating their energetic significance using second-order perturbation theory. Since these 

exchanges result in the transfer of occupancy from the idealized Lewis structure's localized NBOs into 

the unoccupied non-Lewis orbitals (and hence deviations from the idealized Lewis structure 

description), they are termed to as "delocalization" corrections to the zeroth-order natural Lewis 
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structure [23]. This work presents the outcomes of a second-order perturbation theory investigation of 

the Fock matrix within the NBO of the complexes. The delocalization-related stabilizing energy 𝐸(2) 

for each donating NBO (i) and receiver NBO (j) is determined as 

𝐸(2) = 𝑞𝑖  
< 𝑖|�̂�|𝑗 >

𝜖𝑖 − 𝜖𝑗
 

where 𝑞𝑖 stands for orbital occupancy of a donor, 𝜖𝑖, 𝜖𝑗 represents orbital energies, and F(i,j) 

for the off-diagonal NBO Fock matrix component [24]. Higher value of stabilization energy 𝐸(2) 

denotes powerful interaction between acceptors and donors [25]. 

3. Results and discussion 

 

Figure 2. Natural charges on constituent atoms in the complex [Mg(H2O)6]2+. 

Table 1. Natural charges on the central metal ion MgQ and ligands to metal charge 

transfer ∆Q in the complexes [[Mg(H2O)6](H2O)n]2+; n = 0-4. 

Complex MgQ(e) ∆Q(e) 

[Mg(H2O)6]2+
 1.821 0.179 

[[Mg(H2O)6](H2O)]2+
 1.820 0.180 

[[Mg(H2O)6](H2O)2]2+
 1.819 0.181 

[[Mg(H2O)6](H2O)3]2+
 1.818 0.182 

[[Mg(H2O)6](H2O)4]2+
 1.817 0.183 

The natural charges on the central metal ion Mg2+ and charge transfer in the complexes 

[[Mg(H2O)6](H2O)n]2+; n = 0-4 are demonstrated in Table 1. The charge transfer takes place in all 

complexes. The NBO partial charge on metal ions does not widely vary when the number of molecules 

within the 2nd coordination sphere is increased, but there are modest increases, as shown in Table 1. 

Figure 2 depicts the octahedral structural representation of complex [Mg(H2O)6]2+ with natural charges 
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on constituent atoms. This central metal ion is surrounded by six identical water molecules in the 1st 

coordination sphere. The total charge constituent in the whole complex equals +2e. Figure 3(a) shows 

the representation of the complex when one water ligand is added to its 2nd coordination sphere. 

Likewise, Figure 3(b), Figure 3(c), and Figure 3(d) represent the figurative representatives of 

complexes after the addition of two, three, and four water ligands to their 2nd coordination sphere, 

respectively. The total electron density of the [Mg(H2O)6]2+ is used to express the overall effectiveness 

of the natural Lewis structure analysis as a percentage. Table 2 demonstrates the importance of valance 

non-Lewis orbitals in comparison to extra-valence electron shells in modest deviations from a 

confined Lewis structure model. 

 

 

Figure 3. The natural charges on constituent atoms in the complex (a) 

[[Mg(H2O)6](H2O)]2+, (b) [[Mg(H2O)6](H2O)2]2+, (c) [[Mg(H2O)6](H2O)3]2+, and (d) 

[[Mg(H2O)6](H2O)4]2+ with extension of one to four ligands in the 2nd coordination sphere 

respectively. 
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Table 2. Separation of Lewis and non-Lewis occupancies within complex [Mg(H2O)6]2+ 

into core, valence, and Rydberg shell components. 

Orbitals Occupancy 

Core 21.99748 (99.989% of 22) 

Valence Lewis 47.77540 (99.532% of 48) 

Total Lewis 69.77288 (99.676% of 70) 

Valence non-Lewis 0.18649 (0.266% of 70) 

Rydberg non-Lewis 0.04063 (0.058% of 70) 

Total non-Lewis 0.22712 (0.324% of 70) 

The electron delocalization through lone pairs of oxygen to iron orbitals was evaluated. The table 

below shows the two most powerful interactions. The interchange of non-bonding pairs of oxygen with 

metal n∗ orbitals is determined to be greatest in the instance of a complex [Mg(H2O)6]2+. The greatest 

interaction in the complex is likewise demonstrated to be between metal orbitals and virtual orbitals. 

Table 3. Result of second-order perturbation theory evaluation of Fock matrix within 

NBO of complex [Mg(H2O)6]2+. 

Donor 

NBOs 

Occupancy 

(e) 

Hybrid 

(%) 

Acceptor 

NBOs 

Occupancy 

(e) 

Hybrid 

(%) 

𝐸(2) 

(kcal/mol) 

LP O (2) 1.96849 s47.65p52.34 LP∗ Mg 0.17178 s100 22.67 

LP O (5) 1.96853 s47.66p52.34 LP∗ Mg 0.17178 s100 22.63 

LP O (8) 1.96853 s47.65p52.34 LP∗ Mg 0.17178 s100 22.63 

LP O (11) 1.96851 s47.66p52.34 LP∗ Mg 0.17178 s100 22.66 

LP O (14) 1.96849 s47.65p52.34 LP∗ Mg 0.17178 s100 22.67 

LP O (17) 1.96854 s47.66p52.34 LP∗ Mg 0.17178 s100 22.62 

From Table 3, it is seen that delocalization of oxygen lone pairs to n∗ orbitals of Mg2+ occurred in 

the stronger interactions of  LP O (2) and LP O (14) with LP∗ Mg with occupancy of 0.17178e 

stabilizes [Mg(H2O)6]2+ complex by 22.67 kcal/mol. These stabilization energies of complexes are 

balanced by the remaining stabilization energies of complexes. This analysis reveals that, on the donor 

orbital side, the p orbital contributes more than the s orbital, whereas the d orbital does not contribute. 

On the acceptor side, the contribution of the p and d orbitals was negligible in comparison to the s 

orbital for the maximum stabilization energy. In a few cases of acceptor orbitals, the contribution of 

the p orbital and d orbital is also seen. The greatest stabilization energy of complex [Mg(H2O)6]2+ is 

less than that of the complex [Zn(H2O)6]2+ as reported by Pokharel et al. [26]. 
The NBO partial charge on the metal ions does not change much on adding the number of ligands 

within the 2nd coordination sphere. It displays some findings from an investigation into the Fock matrix 

within the NBO of complexes by utilizing second-order perturbation analysis. Only the interaction resulting 

from the delocalization of the electrons from the oxygen lone pairs of ligands in the 1st coordination sphere to 

the n∗ orbitals of Mg2+ was obtained to have stabilization energies of more than 5 kcal/mol in all 

circumstances. As a result, these tables only include the most powerful interactions. The powerful 

interaction among the associated interactions is one in which electrons from non-binding pairs of O (2) 

are delocalized to the LP∗ Mg with occupancy 0.17343e, as shown in Table 4. This is the interaction when 
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one water ligand is attached within the 2nd coordination sphere of a complex [Mg(H2O)6]2+. As shown by 

the preceding result, the bond between magnesium and oxygen has been shortened compared to that of 

the complex [Mg(H2O)6]2+ because of the presence of one water ligand in the 2nd coordination sphere. 

Table 4. Result of second-order perturbation theory evaluation of matrix within NBO of 

the complex [[Mg(H2O)6](H2O)]2+. 

Donor 

NBOs 

Occupancy 

(e) 

Hybrid 

(%) 

Acceptor 

NBOs 

Occupancy 

(e) 

Hybrid 

(%) 

𝐸(2)  

(kcal/mol) 

LP O (2) 1.96238 s43.80p56.20 LP∗ Mg 0.17343 s100 25.47 

LP O (5) 1.96938 s47.66p52.34 LP∗ Mg 0.17343 s100 22.38 

LP O (8) 1.96955 s47.65p52.35 LP∗ Mg 0.17343 s100 22.06 

LP O (11) 1.96874 s46.67p53.32 LP∗ Mg 0.17343 s100 22.51 

LP O (14) 1.96938 s47.66p52.34 LP∗ Mg 0.17343 s100 22.37 

LP O (17) 1.96967 s47.74p52.25 LP∗ Mg 0.17343 s100 22.15 

Table 5. Result of second-order perturbation theory evaluation of Fock matrix within NBO 

of the complex [[Mg(H2O)6](H2O)2]2+. 

Donor 

NBOs 

Occupancy 

(e)  

Hybrid 

(%) 

Acceptor 

NBOs 

Occupancy 

(e) 

Hybrid 

(%) 

𝐸(2) 

(kcal/mol) 

LP O (2) 1.96371 s44.71p55.79 LP∗ Mg 0.17413 s99.99p0.01 24.64 

LP O (5) 1.97016 s46.32p53.67 LP∗ Mg 0.17413 s99.99p0.01 24.71 

LP O (8) 1.96726 s44.71p55.28 LP∗ Mg 0.17413 s99.99p0.01 22.82 

LP O (11) 1.97003 s46.70p53.29 LP∗ Mg 0.17413 s99.99p0.01 21.86 

LP O (14) 1.97015 s46.34p53.66 LP∗ Mg 0.17413 s99.99p0.01 21.74 

LP O (17) 1.96663 s45.22p54.77 LP∗ Mg 0.17413 s99.99p0.01 23.47 

Table 5 shows two strong E(2) that are near to one another. One is from the delocalization of 

electrons from non-bonding pairs of O (5) and another is from O (2) to the LP∗ Mg having occupancy 

0.17413e with stabilization energies of 24.71 kcal/mol and 24.64 kcal/mol respectively. 

In a complex [[Mg(H2O)6](H2O)3]2+, the most powerful engagement is because of the 

delocalization of the electrons from non-bonding pairs of O (2) to LP∗ Mg with occupancy 0.17514e 

that balanced this ion by 24.09 kcal/mol. Moreover, the other two nearly equal interactions are seen 

because of the delocalization of non-bonding pairs of O (8) and O (17) with LP∗ Mg having 

stabilization energy of 23.06 kcal/mol and 23.13 kcal/mol respectively. The powerful interactions are 

presented in Table 6. 
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Table 6. Result of second-order perturbation theory evaluation of Fock matrix within 

NBO of the complex [[Mg(H2O)6](H2O)3]2+. 

Donor 

NBOs 

Occupancy 

(e) 

Hybrid 

(%) 

Acceptor 

NBOs 

Occupancy 

(e) 

Hybrid 

(%) 

𝐸(2) 

(kcal/mol) 

LP O (2) 1.96511 s41.70p58.30d0.00 LP∗ Mg 0.17514 s99.99p0.01 24.09 

LP O (5) 1.96762 s43.30p56.70d0.01 LP∗ Mg 0.17514 s99.99p0.01 22.55 

LP O (8) 1.96754 s44.71p55.29d0.01 LP∗ Mg 0.17514 s99.99p0.01 23.06 

LPO (11) 1.97130 s46.77p53.23d0.01 LP∗ Mg 0.17514 s99.99p0.01 21.21 

LPO (14) 1.96764 s43.23p56.76d0.01 LP∗ Mg 0.17514 s99.99p0.01 22.57 

LP O (17) 1.96763 s45.06p54.94d0.00 LP∗ Mg 0.17514 s99.99p0.01 23.13 

Lastly, in Table 7, the greatest interactions among strong interactions are because of the 

delocalization of the electrons from the non-bonding pairs of O (8) with LP∗ Mg having occupancy of 

0.17653e by stabilization energies of 25.21 kcal/mol. The stabilization energies of the remaining three 

interactions, which are strong, are 23.13 kcal/mol, 22.92 kcal/mol, and 22.16 kcal/mol. 

Table 7. Result of second-order perturbation theory evaluation of Fock matrix within 

NBO of the complex [[Mg(H2O)6](H2O)4]2+. 

Donor 

NBOs 

Occupancy 

(e) 

Hybrid  

(%) 

Acceptor 

NBOs 

Occupancy 

(e) 

Hybrid  

(%) 

𝐸(2)  

(kcal/mol) 

LP O (2) 1.96618 s41.20p58.80d0.00 LP∗ Mg 0.17653 s99.99p0.00d0.01 23.17 

LP O (5) 1.96830 s43.07p56.93d0.02 LP∗ Mg 0.17653 s99.99p0.00d0.01 22.16 

LP O (8) 1.96308 s42.10p57.90d0.00 LP∗ Mg 0.17653 s99.99p0.00d0.01 25.21 

LP O (11) 1.97119 s47.02p52.97d0.01 LP∗ Mg 0.17653 s99.99p0.00d0.01 21.36 

LP O (14) 1.96838 s43.03p56.97d0.01 LP∗ Mg 0.17653 s99.99p0.00d0.01 22.06 

LP O (17) 1.96827 s44.77p55.23d0.00 LP∗ Mg 0.17653 s99.99p0.00d0.01 22.92 

4. Conclusions 

Natural charge transfer takes place between magnesium ion and the water ligands in complexes 

[Mg(H2O)6]2+ and [[Mg(H2O)6](H2O)n]2+; n=1-4 has been successfully studied by using NBO analysis. 

Among these five complexes, ligands to ion charge transfer were discovered to be greatest in complex 

[[Mg(H2O)6](H2O)4]2+ and smallest in complex [Mg(H2O)6]2+. The greatest stabilization energy 

associated with the delocalization of electrons from non-bonding pair of oxygen having LP∗ Mg was 

found to be 25.47 kcal/mol in complex [[Mg(H2O)6](H2O)2]2+. The number of stronger interactions 

was observed to increase with the introduction of ligands within 2nd coordination sphere. The 

delocalization of electrons from non-bonding pair of oxygen in the initial coordination sphere was 

greater on which ligand was attached within 2nd coordination sphere than in the other oxygen lone pair. 

By adding more ligands to the complex’s initial coordination sphere, it is possible to intensify the 

structures, and these intensified structures will lead to drug design.  
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