
http://www.aimspress.com/journal/biophysics/

AIMS Biophysics, 10(1): 67–89.
DOI: 10.3934/biophy.2023006
Received: 26 September 2022
Revised: 02 February 2023
Accepted: 08 February 2023
Published: 17 February 2023

Research article

Predicting factors and top gene identification for survival data of breast
cancer

Sarada Ghosh1, Guruprasad Samanta2 and Manuel De la Sen3,∗

1 Department of Statistics, Gurudas College, Phool Bagan, Kolkata-700054, India
2 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur,

Howrah-711103, India
3 Institute of Research and Development of Processes, University of the Basque Country, 48940

Leioa, Bizkaia, Spain

* Correspondence: Email: manuel.delasen@ehu.eus.

Abstract: For high-throughput research with biological data-sets generated sequentially or by tran-
scriptional micro-arrays, proteomics or other means, analytic techniques that address their high di-
mensional aspects remain desirable. The computation part basically predicts the tendency towards
mortality due to breast cancer (BC) by using several classification methods, i.e., Logistic Regression
(LR), Random Forest (RF), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and
Decision Tree (DT), and compared the models’ performances. We proceed with the RF method since
it provides better results than any other underlying models based on accuracy. We have also demon-
strated some traditional and competing risk models, illustrated the models with real data analysis,
depicted their curves’ natures and also compared their fits using prediction error curves and the con-
cordance index. Furthermore, two different survival splitting rules are used by using separate Random
Survival Forest (RSF) methods and also constructing the ranking of risk factors due to breast cancer.
The results show that high-level grade and diameter are the most important predictors for mortality
progression in the presence of competing events of death, and lymph nodes, age and angiography are
other vital criteria for this purpose. We have also implemented RSF backward selection criteria, which
enables top gene selection related to mortality progression due to breast cancer. This method identifies
c-MYB, CDCA7, NUSAP1, BIRC5, ANGPTL4, JAG1, IL6ST, and remaining genes that are mainly
responsible for mortality progression due to breast cancer. In this work, R software is used to obtain
and evaluate the results.

Keywords: breast cancer; random forest; accuracy; brier score; minimal depth; variable importance

http://www.aimspress.com/journal/biophysics/
http://dx.doi.org/10.3934/biophy.2023006


68

1. Introduction

Cancer is a disease that arises from cells that leave the cell cycle, start to proliferate in an uncon-
trolled manner and spread into surrounding tissues. This proliferation could be induced by hormones
that are impinging on the breast. Generally, most breast cancers begin in the ducts or lobules. The main
factors that influence the risk include being a woman and getting older. Most breast cancers are found
in women who are 50 years old or older. Genetic micro-array analysis of the genetic transcriptional
difference between normal and malignant cells is provided in gene expression profiling (GEP), which
has come into clinical use in recent years and is beneficial from the therapeutic point of view. It gives
detailed information about the expression levels of thousands of genes in BC and depicts molecular
portraits of BC. A high risk of getting breast cancer may depend on a family history of breast cancer or
inherited changes in BRCA1 and BRCA2 genes. There are several applications of a recently developed
mathematical field called topological data analysis (TDA). The two most important methods of TDA
are (i) the Progression Analysis of Disease and (ii) the analysis of Betti numbers [1]. These techniques
are applied to a set of microarrays from tissue donated by women undergoing mammoplasty surgery.
The results are obtained from breast cancer research, under varying experimental conditions. Progres-
sion Analysis of Disease (PAD) highlights genes that are significantly differentially expressed, even if
it is just for a small number of patients. PAD helps to identify Estrogen Receptor-positive (ER+) cells,
which form a unique subgroup. This subgroup can demonstrate high levels of c-MYB and low levels of
IIG (innate inflammatory genes). So, 100% survival is exhibited by patients, and there is no negative
evolution. There is no other way to distinguish between healthy and victimized people who belong
to this group. This group has an understandable, distinct and also statistically significant molecular
signature. It can reveal coherent biology but conceal for cluster analysis and fail for fitting into the
classification (which is accepted) of Normal-like subtypes of Estrogen Receptor-positive BC and also
in the case of Luminal A/B. This group is known as c-MYB+ BC [1]. When high dimensional data has
been considered, gene expression data gives various proposals and aspects [2]. Based on the sequential
forward selection, an algorithm is developed which is used for regression and several classification
purposes for selecting DNA methylation probes that are very important with respect to the expression
of their corresponding genes [2].

In the previous few years, BC has been analyzed substantially, so the prognosis rate is increasing,
and the death rate is decreasing. However, more research is still required for a full understanding of its
mechanism and corresponding systematic treatment. Conventionally, doctors mainly rely on biological
techniques for diagnosing cancer, which are as follows: (i) Ultrasonography, (ii) B-Scan, and (iii) Fine
Needle Aspiration Cytology (FNAC) [3].

Our purpose is to gain significant potential information for breast cancer transcriptional genomic
data which have a great influence on gene expression and have a significant role in mortality due to
breast cancer. So, we make comparisons, we have demonstrated by approaching logistic regression
(LR), random forests (RF) and support vector machine (SVM), along with linear discriminant analysis
(LDA) and decision tree (DT). Among all, the random forests (RF) method performs best in this work
based on accuracy. So, we proceed with the RSF method for clinical data purposes and the backward
RSF method for gene selection purposes. This study seeks to investigate the most appropriate model
to examine the most important risk factors of clinical data and genes that significantly influence the
mortality rate. In section 2, we have mentioned materials and basic statistical tools. Then, the com-

AIMS Biophysics Volume 10, Issue 1, 67–89.



69

parison of the performances of the underlying models is discussed in section 3. Next, in section 4,
some traditional and competing risk models have been demonstrated. In section 5, we have applied
the proposed models with real data examples and depicted their curves’ natures, and we also compared
their fits using prediction error curves and the concordance index. Additionally, two different survival
splitting rules are used by using separate RSF methods in section 6, and we also find the ranking of risk
factors due to BC. In section 7, we have implemented RSF backward selection criteria, which enables
top gene selection related to breast cancer progression. Finally, the last section consists of the general
discussions and conclusions of this work.

2. Methods and materials

2.1. Data description

The data on Breast Cancer was provided by NKI Breast Cancer [4]. The data had a sample of 272
breast cancer patients (as rows), with 1570 columns. The data set consists of 272 breast cancer patients
and 1567 attributes (1554 gene attributes, 10 clinical attributes, and 3 patient general attributes).

2.2. Preliminaries of logistic regression

Logistic regression (LR), applied on a binary dependent variable, is uttermost important for ordered
categorical response [5]. Binomial regression is a regression analysis procedure where the dependent
variable (sometimes referred to as Y) is a series of Bernoulli trials, or it may be the result of a series
of one of two possible disjoint outcomes (conventionally with “success” denoted as 1 and “failure”
denoted as 0) in statistics. The log-binomial model is a model of the binomial generalized linear model
(i.e., GLM) together with a log link function, which is widespread in epidemiological and bio-statistical
fields. For a binary regression, the dependent variable is denoted as Y . Let X be the independent
variable, and let Φ(x) = P(Y = 1|X = x). The logistic regression is as follows:

Φ(x) =
exp(α + βx)

1 + exp(α + βx)
(2.1)

The log odds is said to be a logit function, which is as follows:

logit[Φ(x)] = log
Φ(x)

1 − Φ(x)
= α + βx (2.2)

The expression (2.2) equates the logit function to a linear predictor, where the intercept α is biased.
Y is independent of X if β = 0, and since logistic density is symmetric, the function Φ(x) approaches
1 at the same rate that it approaches 0. The odds become an exponential function of x whenever we
exponentiate both sides of (2.2), which gives a basic interpretation for the magnitude of β. In this work,
we have taken the alive condition as response variables whose values are 1 and 0, according to alive
and dead, respectively.

2.3. Random forests (RF) algorithm

Random forests (RF), a decision tree, is a classification approach, suitable for both (i) paramet-
ric and (ii) non-parametric purposes. This method also establishes a multitude of decision trees using
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Bootstrap. In this work, we have performed RF classification for feature selection and then also pointed
out the top features for constructing the classification model. Then, Bootstrap validation is also exe-
cuted to measure the accuracy. RF algorithm reduces both (i) test error and (ii) out-of-bag (OOB) error.
Random forests overcome several problems which are generated by another tree-based method [6, 7].

2.4. Feature selection using support vector machine (SVM)

Support vector machine (SVM) algorithm is constructed specifically for binary classification, and
also it can be extended to multi-class classification. Sometimes data are obtained from more than two
classes, and then it is known as multi-class. For classification purposes, SVM deposits data points into
n dimensional space (where n is the number of attributes). It makes two regions by separating the space
with the help of hyperplanes. The formula is as follows:

min
w,b

||ω||

2
+ ζ

N∑
i=1

η(i) (2.3)

subject to: y(i)
(
ωT Φ(x(i)) + b

)
≥ 1 − η(i) (2.4)

where η(i) ≥ 0 for all i ∈ {1, 2, . . . ,N} be a slack variable, and ζ is the penalty of the error term and
where ω is the normal vector to the hyperplane. The kernel function Φ is involved in transforming
the data set from the input space to a higher dimensional output space (where the data can be linearly
separated) whenever the data set is not linearly separable in the input space.

2.5. Linear discriminant analysis (LDA) for feature selection

Discriminant analysis is very useful and well-known to select features, and it can be used success-
fully for many classification purposes. Linear discriminant analysis (LDA) is based on the covariance
matrix of training data. At first, this approach was described in the case of two-class, and then it can
be swiftly extended to multi-class cases via multiple discriminant analysis. This analysis is very useful
for multi-class classification purposes. In the case of LDA, the assumption is P(x|y = 0) and P(x|y = 1)
(i.e., conditional probability density function) both are normally distributed, with (µ0,Σ0) and (µ1,Σ1)
respectively, where µ0 and µ1 are the corresponding means, and Σ0 and Σ1 are the corresponding covari-
ance matrices. In this work, we have classified one point as distinct from another one if the following
condition is satisfied:

(x − µ0)T Σ−1
0 (x − µ0) + ln |Σ0| + (x − µ1)T Σ−1

1 (x − µ1) + ln |Σ1| > τ (2.5)

where τ (two classes without specified weights) is 0.5 in this work.

2.6. Decision tree (DT)

Decision tree (DT), a tree-based approach for representing every decision, leads to the last regres-
sion or classification result. A decision tree is a predictive model which is a mapping from observa-
tions about an item to conclusions about its target value. It is used as an iterative logarithm in decision
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analysis where the data is continuously split according to a certain parameter. The tree-based meth-
ods generally handle high-dimension datasets. Decision trees can be drawn by hand or created with
a graphics program or specialized software. Informally, decision trees are very useful for focusing
discussion when a group must make a decision.

3. Comparison for models’ performances based on accuracy

3.1. Fundamental evaluation measures

For classification purposes, generally, the classifier is evaluated by a confusion matrix. For a binary
classification problem, a matrix is a square of 2 × 2, as shown in Table 1. In this table, the column
represents the classifier prediction, while the row is the real value of the class labels. Accuracy, the
most common metric for classifier evaluation, assesses the overall effectiveness of the algorithm by
estimating the probability of the true value of the class label. Accuracy is defined as:

T P + T N
T P + T N + FP + FN

(31)

The abbreviations TP, FN, FP and TN of the confusion matrix cells are defined as follows:

TP: true positive (the number of positive cases that are correctly identified as positive),
FN: false negative (the number of positive cases that are misclassified as negative cases),
FP: false positive (the number of negative cases that are incorrectly identified as positive cases),
TN: true negative (the number of negative cases that are correctly identified as negative cases).

Table 1. 2 × 2 Contingency Table for Accuracy.

Predicted Positive Predicted Negative

Actual positive TP FN
Actual negative FP TN

For comparing the importance of features that are chosen by LR, RF, SVM, etc., firstly, we have
to construct the model of classification for every feature and make a comparison among the predicting
accuracies. In this work, the underlying models are fitted for mortality due to BC, and every classifica-
tion is used with only clinical data, only gene data and a combination of both. In terms of accuracy for
the clinical-based, gene-based and combine models, there is a clear vision that the overall percentage
of RF is the best among all except in the case of model performance. When we predict clinical-based
modeling in terms of accuracy, the method RF is the best model among all underlying models. In this
work, DT is the second best among all. The method LDA is the worst among all the performing models
(from Table 2). Next, the results have been provided for gene-based models in terms of accuracy, and it
is predicted that the RF method is also the best among all. Whenever we are predicting genes, there is
not present any clear view for choosing the second best among the rest of the underlying models. Here,
DT provides the worst results, shown in Table 2. In combined-based modeling, the best performing
method is RF, along with SVM (though it is never the best in clinical-based and gene-based modeling).
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Finally, it is noted that LDA is worst among all in combined cases with respect to accuracy, shown in
Table 2. As per the obtained results, RF is the best among all, since its accuracy is higher than any other
classification shown in Table 2. So, we proceed with an improved random forest-based rule extraction
method for breast cancer diagnosis for mortality rate due to BC and demonstrate various analyses, and
we also depict several methods from statistical points of view.

Table 2. Accuracy results based on several classifications.

Classification Overall Gene Clinical

Logistic 68.276 68.276 72.069
RF 73.931 71.379 72.759
SVM 73.483 68.704 72.062
LDA 67.241 67.241 71.034
DT 70.345 70.000 70.690

4. Models

4.1. Cox proportional-hazards model

The most popular regression model for event time data is the proportional hazards model introduced
by Cox (CPH) [8]. In this model, it is assumed that hazard ratios are constant over time and that each
covariate under consideration has a linear effect on the logarithm of the hazard rate, whenever the other
covariates are given. The Cox regression model is as follows:

λ(t|x) = λ0(t) exp(βtx) (4.1)

with the unspecified baseline hazard rate λ0(t) for a (possibly fictitious) individual with a covariate
vector of zeros, the P-dimensional vector of covariates x and the vector of regression coefficients β.
The hazard ratio between two individuals i and j can be computed as follows:

λ(t|xj)
λ(t|xi)

=
λ0(t) exp(βtxj)
λ0(t) exp(βtxi)

= exp(βt(xi − xj)) (4.2)

Generally, survival analysis examines the relationship of the survival distribution to covariates. Cox
proportional hazard regression can investigate the effect of different variables on the time (a specified
event takes to happen). This model has established an association between the survival time of patients
and one or more predictor variables.

4.2. Competing risk forests

4.2.1. Competing risk

In this section, the breast cancer clinical-based dataset process is modeled by the statistical model
developed for competing risk data. When an individual is at risk of failing from K distinct types
of events, these different event types are called competing risks, which are broadly covered in the
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statistical literature. An alternative approach to competing risks is the consideration of a bivariate
random variable (T,D), where T is a random variable for the event time, and D is a random variable
for the event type. For each individual i = 1, ..., n, a couple of event times or last time is known to be
free of any event; ti and a status variable indicating the type of event di ∈ {1, . . . ,K} or a censored event
time (di = 0) are observed.

4.2.2. Splitting rule

The splitting rule is used to grow competing risk trees. For notational convenience, the rules for
the root node are described properly, but the idea extends obviously to any tree node and to bootstrap
data [9]. Let us consider (Ti, δi)1≤i≤n to be the survival times and event indicators, where n is the
number of individuals within a node, and let t1 < t2 < ... < tm be the distinct and ordered event times
from (T1≤i≤n). Suppose that the proposed split for the root node is of the form x ≤ c and x > c for
a continuous predictor x; c is a split value for predictor x. Such a split forms two daughter nodes
containing two new sets of competing risk data. At first, B bootstrap samples are drawn from the
original data, and a survival tree on each of the b = 1, ..., B bootstrap samples is grown. At every node,
p (where p is equal to the square root of the total number of predictor variables) predictor variables
will be randomly selected to be split in such a way that the splitting value maximizes the difference in
the objective function. In other words, the best split for node h is the one in which the predictor and
split value maximize the difference in survival between the two daughter nodes for all x and c.

4.2.3. Random survival forests

Definition: A random survival forest (RSF) is an assembly of trees method for analysis of right-
censored time-to-event data. It is an extension of Breiman’s random forest method [9].

RSF is introduced for extending RF to the setting of right-censored survival data [10]. Imple-
mentation of RSF follows the same general principles as RF: (a) Survival trees are grown by using
bootstrapped data. (b) Random feature selection is used when splitting tree nodes. (c) Trees are
generally grown deeply. (d) The survival forest ensemble is calculated by averaging terminal node
statistics (TNS). In this work, we have approached the competing risks which build on the framework
of random survival forests (RSF). The performance of these models has been confirmed in different
areas [9]. Among them, random survival forests (RSF), a non-parametric tree-based ensemble method,
can automatically handle the difficulties of the Cox model [11]. It can be also used effectively in
high-dimensional datasets. Generally, the RF method has been used for classification and regression
purposes, but it can be extended to censored lifetime datasets. An advantage of this approach is that
it is fully non-parametric, including the effects of the treatments and predictor variables. In traditional
methods, the assumption was a distribution for the lifetimes or, in the case of the Cox regression, a
linear-exponential form for the treatment effects. In the RSF method, the splitting rules are used to
grow the tree, and the estimated values calculated within the terminal nodes are used to define the
ensemble procedure. Currently, RSF has four distinct methods that can be used to maximize a splitting
value c for a variable x. The first method, the one that is used in the survival analysis below, is the
log-rank splitting method, which, as the name suggests, uses a multitude of log-rank tests to measure
the severity of node separation at a value c for a predictor x. The value of the log-rank test is given by
the following formula:
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L(x, c) =

∑N
i=1(di,1 − Yi,1

di
Yi

)√∑N
i=1

Yi,1

Yi
(1 − Yi,1

Yi
)Yi−di

Yi−1 di

(4.3)

where Yi, j is the individuals who are at risk (alive) or who had an event (death), and di, j is the number
of events at time ti in daughter node j, where j ∈ {1, 2}. The second method is an approximation to
the previous one and is therefore named approximate log-rank splitting. The goal is to find the x and
c which give the largest magnitude of the log-rank test. That is, we wish to find a predictor x and split
value c such that |L(x, c)| ≥ |L(x, c)| for every x and c. This process is repeated at every node until the
terminal node is reached. In order to approximate the numerator of L(x, c), a revision is done using the
Nelson-Aalen cumulative hazard estimator for the parent node. The Nelson-Aalen estimator [12] is as
follows:

Ĥ(t) =
∑
ti≤t

di

Yi
(4.4)

So, we can rewrite the current numerator of the L(x, c) as follows:

N∑
i=1

(
di,1 − Yi,1

di

Yi

)
= D j −

n∑
l=1

I{xl ≤ c}Ĥ(Tl) (4.5)

where D j =
∑N

i=1 di, j; j = 1, 2. Furthermore, it can be simplified by considering D =
∑N

i=1 di, and
therefore the log-rank test is as follows:

D
1
2 (D j −

∑n
l=1 I{xl ≤ c}Ĥ(Tl))√

{
∑n

l=1I{xl ≤ c}Ĥ(Tl)}{D −
∑n

l=1I{xl ≤ c}Ĥ(Tl)}
(4.6)

4.3. Conditional inference forests

Conditional inference forests (CIForests) for another fully non-parametric (tree-based) method used
in survival analysis like random survival forests. It is based on Breiman’s random forests. A condi-
tional inference tree is constructed as follows [13]:
(I) For each predictor variable, test the null hypothesis that there is independence between the response
variable(s) and the predictor variable. If we fail to reject the null, stop; otherwise, choose the predictor
variable which has the strongest association with the response. The association strength is assessed
using the p-values from all partial null hypotheses of a single predictor and the response(s). A split
only occurs when the p-value is smaller than a specified value.
(II) Divide the observations of the selected predictor variable using a binary split. This splitting cri-
terion is based on multiplicity-adjusted p-values (Bonferroni or Monte Carlo), univariate p-values
(Univariate), or, on values of the test statistic. When the criterion, specified by the option min crite-
rion, is exceeded, a split is made. This method allows a tree to be grown to the correct size without the
need for pruning.
(III) Repeat the previous steps until a terminal node is reached (no additional predictor variables can
be split). The ensemble survival function is:
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Ŝ CIForests(t | xi) =
∏
tl,h≤t

(
1 −

∑B
b=1 dl,h∑B
b=1 Yl,h

)
(4.7)

4.4. Prediction error curves

4.4.1. Definition

Integrated Brier Score: Integrated Brier Score (IBS) is an overall measure for the prediction of the
model at all times.

Prediction error curves are increasingly used to assess and compare predictions in survival analysis.
These curves are obtained when the Brier score is followed over time. The technique based on bootstrap
re-sampling or bootstrap sub-sampling can be applied to assess and compare the predictive power of
various regression modeling strategies on the same set of data. Instead, the three models have been
compared using two newer methods, namely, prediction error curves and the concordance index (c-
index). The prediction error is accessed by an expected time-dependent Brier score. For right censored
data, the squared residual of a subject at t time point is weighted by using the inverse probability of
censoring weights. This censoring weight is as follows:

Ŵi(t) =
(1 − Y i(t))∆i

Ĝ(T | Xi)
+

Y i(t)
Ĝ(t | Xi)

(4.8)

where Y i(t) = I(T > t) is the observed status of an individual i at time t, and Ĝ(t | x) ≈ P(Ci > t | Xi =

x) is the estimate of the conditional survival function of the censoring times. For a new observation,
or, if a test dataset DM is available, the expected Brier score is estimated by

BS (t, Ŝ ) =
1
M

∑
i∈DM

Ŵi(t)(Y i(t) − Ŝ (t | xi)) (4.9)

where M is the number of subjects in DM, and Ŝ is the predicted survival probability for a subject i
at time t based on a training dataset. In order to protect against overfitting, ten-fold cross-validation
iterated five times was used for each of the three survival methods on each of the three datasets.

4.5. Concordance index

Unlike prediction error curves and other measures of survival performance, the c-index, is not de-
pendent on a fixed time point for the evaluation of a model and takes into account the censoring status
of an individual. Two observations are said to be concordant if the observation that fails first is pre-
dicted to have a worse outcome. The process of obtaining the c-index is as follows:
I. Over the entire data, form all possible pairs of observations.
II. If, within a pair, the observation with the shorter survival time is censored, or both observations
have the same survival time, but at least one is not an event, omit the pair. All of the remaining pairs
are considered permissible.
III. Scoring
(i) A permissible pair receives a value of 1 if any of the followings holds: (a) Their survival times are
not equal, and the shorter survival time is predicted to have a worse outcome. (b) Their survival times
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are equal, and their predicted outcomes are also equal. (c) Their survival times are equal, not both
events, and the predicted outcome is worse for the observation with the observed event.
(ii) A permissible pair receives a value of 0.5 if any of the followings holds: (a) Their survival times are
not equal, but their predicted outcomes are equal. (b) Their survival times are equal, but their predicted
outcomes are not equal. (c) Their survival times are equal, not both events, and the predicted outcome
is not worse for the observation with the observed event.
IV. The c-index, C, is given by C = Concordance/Permissible. V. The error rate is given by Error =

1 − C, where 0 ≤ Error ≤ 1. C = 1 or Error = 0 indicates perfect prediction, whereas C = Error= 0.5
indicates doing no better than guessing.

5. Analysis

Table 3. Comparison with integrated brier scores of the models.

Model IBS

CPH 0.195
RSF 0.161
CIForests 0.165

For evaluating the performance of RSF in this work, we have used the method of comparing the RSF
with Cox proportional hazard regression (CPH) and conditional inference forests or CIForests mod-
els. The underlying models are compared by applying the Integrated Brier score (IBS) criterion. For
comparing the performance of the used RSF methods with traditional counterparts of CPH, CIForests
method is used. The data set is randomly divided into a training set (i.e., 70%) and a test set (i.e.,
30%), and the process is repeated 100 times. The result of such a computation is shown in Table 3.
In both cases of CPH and CIForests, the RSF counterpart provides better performance than the others.
In the case of RSF, it gives 0.161 IBS, which is lower than any other model (shown in Table 3). The
first technique for comparing survival analysis models makes use of the concordance index (c-index)
of each model over time. The c-index gives the probability of concordance between the predicted and
the observed survivals. A c-index of 1 refers to the model making a perfect predictions and a c-index
of 0.5 means the model did no better than guessing. In Figure 1, it is shown that RSF performs better
than other underlying models in the prediction performance of survival. Conditional inference forests
tend to be better than Cox proportional hazards but still far inferior to RSF. It is also very interesting
that at first Cox seems to be slightly convex. Then, it becomes almost parallel to the x-axis. RSF and
CIForests are almost parallel to each other, but RSF performs better than any other underlying model.
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Figure 1. Comparison of c-indexes for breast cancer data.

Table 4. Comparison for prediction of error rates of the models in different times.

Time Risk Reference CPH RSF CF

3.121 151 0.180 0.158 0.137 0.143
6.319 101 0.221 0.188 0.163 0.167
9.982 49 0.236 0.221 0.189 0.190
18.341 0 0.140 0.129 0.109 0.110

Figure 2. Comparison of prediction error curves for breast cancer data.

For comparison purposes, it is shown in Table 4 how prediction errors for each model purpose
fluctuate as time goes on. At first, for the initial purpose, the prediction error for each model is zero
whenever the number of subjects at risk at time t0 (where t0 is the initial time) is 201. As time goes on,
the error rate is gradually increasing, and after a certain time, it falls. However, for each case, Table
4 provides that the errors for the RSF model are consistently lower than other underlying models, so
the RSF model is the best among all. The prediction error is accessed by an expected time-dependent
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Brier score which is already shown in Table 3. The second technique for comparing models is shown
by how prediction error for each model purpose fluctuates as time goes on. For the underlying dataset
of interest, the prediction error curves for reference, CPH, RSF and CIForests are plotted and compared
for finding a suitable model. The approach for comparing models is to see how the prediction error of
each model fluctuates with a time period. For the underlying dataset, the prediction error curves for
various models have been plotted in Figure 2. Random survival forests seem to consistently have a
lower prediction error than the other models over time, as shown in Figure 2.

6. Methodological issues

6.1. Measure of variable importance: Ranking

Random forests can contribute a swiftly computable internal measure of variable importance (i.e.,
VIMP) that is used for ranking variables. This method is especially very beneficial in the case of high-
dimensional genomic data. Permutation importance (which measures the predictive value of a feature)
and node impurity indices (example: Gini index, abbreviated G.I.) are two important measures for
evaluation [9]. Permutation importance has been applied to the measurement in the case of RF. For the
tree data purpose, the underlying covariates are permuted randomly in the out-of-bag (OOB) data (i.e.,
the original data left out from the bootstrap sample which is used for growing the tree, approximately
1 − 0.632 = 0.368 of the original sample) for calculating a permutation, and then permuted out-of-bag
data are dropped down the tree. Then, prediction error is calculated using the estimation of out-of-bag,
i.e., OOB (i.e., the average error for each calculated using predictions from the trees that do not contain
the respective bootstrap sample). The difference between the out-of-bag error without permutation and
the estimate is known as the VIMP of the variable.

In this work, for measurement purposes, modified VIMP has been used for high-dimensional ge-
nomic data. For example, the use of sub-sampling without replacement in place of bootstrapping is
suggested by [14] in the case where variables vary in their numbers of categories or scales of mea-
surement. They have also constructed a conditional permutation VIMP that can correct the bias in the
case of correlated variables. There exist many valuable applications using permutation importance.
However, a ranked based method is harder than the problem of variable selection that simply seeks
to select a group of variables without imposing a ranking structure. Due to the complexity of several
biological systems, lists of the ranked genes, based on random forests or random survival forests (con-
sidering correlation and interaction effects), are more beneficial than univariate ranked gene lists which
are based on Cox proportional model by using one variable at a time.

6.2. Minimal depth (MD) to select variable

Ishwaran [15] proposed a new approach to select tree-based forest variables known as minimal depth
(MD). With forests, the splitting variables (which are close to the root node) have a very strong effect on
the case prediction accuracy. So, such an effect on the VIMP method can be used without any problems.
To calculate VIMP, noising up test data leads to poor prediction and large VIMP for this purpose since
terminal node assignments maintain distance from their original values for such purpose. The variables
which can split higher in the tree have much less impact, since terminal node assignments are not so
perturbed. Many advantages are present whenever we have considered minimal depth. This method

AIMS Biophysics Volume 10, Issue 1, 67–89.



79

(MD) is not dependent on the prediction error. This measurement is used for assessing performance
in the case of the MD method for avoiding controversial issues. In the case of survival analysis, a
controversy is present regarding whether the concordance index (which is a ranked-based method) is
preferable for measurement based on the Brier score. For classification purposes, it is conceded that
error due to misclassification may be sub-optimal in the case of RF algorithm with analyses involving
unbalanced samples [16], shown in a case of common occurrence for many genomic data purposes. For
comparing the performance of the model, [17] has described a comprehensive review of approaches.
Apart from this, there exists another advantage (unlike VIMP), that the MD method can be worked
out in the closed form. So, a rigorous threshold value can be calculated efficiently in the case of high-
dimension chosen variables. Especially, the mean of the MD method under the null of no association
with the outcome can be easily computed. Table 5 shows the variable importance (VIMP) and minimal
depth (MD) values for all used covariates due to mortality for BC that can be used to rank variables
for the underlying method. In this work, the assumptions are as follows: (i) If the value of VIMP
is greater than −0.0022, treat it as an effective variable, and (ii) less than −0.0022 values provide
treatment effects. Such underlying treatment effects (i.e., chemotherapy, hormonal, amputation) can
almost cure breast cancer and cease the mortality rate due to BC. Furthermore, the smaller values of the
MD method point out better predictiveness of the underlying variables. In this work, we demonstrate
two different procedures viz. VIMP and MD to rank all included variables. Larger values of the VIMP
are related to the variables with a better rank. Using the generalized log-rank splitting rule, the variables
used in RSF for mortality purposes due to BC are ranked here as displayed in the VIMP column. The
largest VIMP value for the event of interest belongs to the cancer-grade criterion, according to Table 5.
So, it is the first top-rank variable in mortality progression due to BC. Angiography, age at diagnosis,
diameter, and nodes of the cancer tissue have also VIMP greater than −0.0022. So, these underlying
factors lead an important role in predicting death progression in BC. Lymph and hist-type criteria are
the other risk factors due to BC. Additionally, based on the MD values, the first most important variable
is the diameter of the cancer cell, while the second most important variable for death progression by
age and then nodes, grade, angiography, etc, respectively, which are responsible factors for mortality
progression due to breast cancer.

Table 5. VIMP and MD of the variables used in RSF for breast cancer data.

Variable VIMP Variable’s rank Minimal depth Variable’s rank
Chemo -0.0115 3 0.91 3
Hormonal -0.0022 2 0.96 1
Amputation -0.0031 1 0.92 2
Posnodes -0.0010 4 0.69 8
Grade 0.0764 10 0.76 7
Angioniv 0.0211 9 0.84 6
Lymphinfill 0.0008 5 0.65 10
Age 0.0187 8 0.89 5
Histtype 0.0001 6 0.90 4
Diam 0.0161 7 0.68 9
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7. Gene selection

7.1. Stepwise procedures for variable selection

In this work, at first we used the RF method for choosing the top genes selected with the help of
stepwise procedures. RF is capable of modeling for a large number of predictors and also can achieve
good performance for prediction purposes. However, we have to find a small number of variables with
equivalent or better prediction ability, which is required not only for interpretation purposes but also
for use in practical situations. Optimal parameters for a random forests model are already found for
all response variables. Since RF is the best among all the underlying models, as shown in section 3,
we have proceeded with the improved random forest-based rule extraction method for breast cancer
diagnosis method and fitted using the entire data. [18] have demonstrated a backward elimination
method by using RF to select genes from microarray data. This procedure consists of the following
steps: (i) First, we have to fit data using the RF method, and then, according to permutation VIMP, rank
all genes responsible for BC. (ii) Then, we have to fit RF iteratively, and at every iteration, we have
to discard a proportion of genes from the bottom of the list of genes ranked according to importance
(default 10%). (iii) Next, we have to choose a group of genes whenever RF technique reaches the
smallest OOB error-rate. (iv) Lastly, the error rate of prediction has been estimated to mitigate selection
bias by using the bootstrap method. Then, the RSF backward method is used on the data consisting
of all genes to calculate a final RSF with the smallest prediction error rate. With RSF there is no need
for standardization of data [19]. So, the crude data set is used for simulation purpose. In this work,
the RF method provides insight for selecting top genes. Generally, trees are built from root to leaves,
and the closer a variable is to the root. By choosing ‘important’ parameters with the help of stepwise
selection criteria, top genes can be discovered for every dependent variable. In this work, next, we
systematically removed noise genes by implementing the stepwise RSF backward method, which is as
follows: (i) First we have to calculate an RSF by using a dataset of genes to be tested. (ii) Then, we
have to rank the genes by MD method and also discard the gene with the worst MD method from the
dataset. (iii) Next, with the remaining data, we have to calculate a new RSF. (iv) Repeat the underlying
steps (ii) and (iii) until only one gene remains. Lastly, (v) select the set of genes with the smallest
prediction error rate.

7.2. Interpretations of the results related to breast cancer

In this work, the RF method points out some features of gene expressions. It can be concluded that
the corresponding genes of these features are correlated with breast cancer disease, whose dysregu-
lation (abnormality) may be assisted in the progression of mortality. RF method chooses the top 40
genes, and next, the implemented RSF backward selection algorithm enables gene selection for respon-
sibility for BC. The application of this process provides the result that almost 10 genes associated with
breast cancer disease have slightly improved risk prediction compared with RSF on all genes (Shown
in Figure 3). The analysis has revealed that some of the genes are expressed only in breast cancer, and
we have explained the significance of such genes. We have found in this work that the high expression
of c-MYB is related to breast tumors in humans. This gene persisted to function as a tumor suppressor
in different types of cancers, and an association with atrial fibrillation is also created by the sequence
variants of this gene. Multiple transcript variants expressed from alternate promoters and encoding
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different isoforms have been found for this. It inhibits ESR1 function by selectively competing with
coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells. Thus, the gene expres-
sion of the c-MYB is correlated with estrogen receptors (ERs) expression in the case of breast tumors,
i.e., a c-MYB gene can increase the mortality rate due to breast cancer [1]. Apart from this, in this
work, RF classification is uniquely identified for the CDCA7, NUSAP1, BIRC5, ANGPTL4, JAG1 and
IL6ST genes, which are mainly responsible for breast cancer development and progression purpose.
CDCA7 (cell division cycle associated family of genes) are involved in embryonic development and
dysregulated in various types of human cancer. However, the biological role and molecular mechanism
of CDCA7 in Triple-negative breast cancer (TNBC) have not been defined. This gene is preferentially
and markedly expressed in TNBC cell lines and tissues. High expression of CDCA7 is associated with
metastatic relapse status and predicted poorer disease-free survival in patients with TNBC. CDCA7
silencing in TNBC cell lines effectively impairs cell proliferation, invasion, and migration in vitro.
Importantly, depletion of CDCA7 strongly reduces the tumorigenicity and distant colonization capac-
ities of TNBC cells in vivo. Additionally, CDCA7 can increase the expression of EZH2, a marker
of aggressive breast cancer which is involved in tumor progression, by enhancing the transcriptional
activity of its promoter. This increase in EZH2 expression is essential for the CDCA7-mediated effects
on TNBC progression. It is revealed by immunohistochemical analysis that the CDCA7/EZH2 axis
is clinically relevant, which suggests that CDCA7 plays an important role in TNBC progression by
transcriptionally upregulating EZH2 and might be a potential prognostic factor and therapeutic target
in TNBC [20].

Figure 3. Gene selection by backward RSF method, responsible for breast cancer.

NUSAP1 has been implicated in an elevated risk of breast cancer. It has been reported to function
in mitotic spindle assembly, chromosome segregation, and regulation of cytokinesis. It has hitherto
unknown functions in the key BRCA1-regulated pathways of double-strand DNA break repair and
centrosome duplication. Depletion of NUSAP1 from cells led to the suppression of double-strand DNA
break repair via the homologous recombination and single-strand annealing pathways. This gene plays
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a most important role in these processes through the regulation of BRCA1 protein levels, and BRCA1
over-expression from a plasmid mitigates the defective phenotypes seen upon NUSAP1 depletion. It
is revealed that there exists a novel association between BRCA1 and NUSAP1 [21]. The BRCA1
gene instructs for making a protein that acts as a tumor suppressor. Tumor suppressor proteins help
prevent cells from growing and dividing rapidly or in an uncontrolled manner. The BRCA1 protein is
involved in repairing damaged DNA. If estrogen receptors, progesterone receptors, or large amounts
of HER2/neu protein are not present in the cells of breast cancer, then the mutation of harmful BRCA1
increases the level. In the general population, sometimes about 12% of women will develop BC in
their lifetime. In contrast, recent work has concluded that at age of 80, around 72% of women (who
inherit a harmful BRCA1 mutation) will develop breast cancer. The harmful BRCA1 mutations also
have a high risk of developing a new primary cancer in the opposite breast in the years following a
breast cancer diagnosis in the case of women. It has been disclosed that by 20 years after a first breast
cancer diagnosis, about 40% of women (who inherit a harmful BRCA1 mutation) will develop cancer
in their other breast [22]. BIRC5 (also known as Survivin) is a member of the inhibitor of apoptosis
(IAP) gene family, which encodes negative regulatory proteins that prevent apoptotic cell death. It
plays dual roles in promoting cell proliferation and preventing apoptosis. It is recognized to act as an
important regulator of the localization of the chromosome passage protein complex during mitosis and
cytokinesis. BIRC5 has potential involvement in the case of breast cancer. This gene is also associated
with the age of onset in patients of breast cancer [23]. The copy number of BIRC5 has been pointed out
to high progress in tumor tissues, and it has the potential to be a marker for the detection and prognosis
of BC at an early age. There exists a great association between the expression levels of ANGPTL4 and
the prognosis of breast cancer. ANGPTL4 serves an important role in tumor-associated activities, such
as tumor cell motility and invasiveness, cell migration, endothelial cell function, vascular leakage,
neoangiogenesis and cell adhesion and motility, by interacting with matrix proteins in a variety of
solid tumors. Its expression is higher in invasive ductal carcinoma (IDC) (near about 63.4%) compared
with normal breast tissues, and the levels of ANGPTL4 mRNA are higher in human breast cancer
and in breast cancer cell lines. ANGPTL4 is an independent prognostic factor for BC [24]. It is
positively associated with malignant progression and poor prognosis of BC. Next, JAG1 seems to play a
central role in linking various pathways, involving well-established cancer-related molecules. In breast
cancer, high levels of JAG1 promote stem cell self-renewal and potentiate mammosphere formation
in vitro. The involvement of this gene in breast cancer stem cells (CSC) has also been confirmed by
mouse models in which mammary-specific deletion of Lfng. An N-acetylglucosamine transferase that
prevents Notch activation (a procedure to connect cells and cells that line patent stable blood vessels
through direct interaction with the Notch ligand) by Jagged ligands, induces basal-like BC with higher
JAG1 activity and enhanced CSC proliferation. It has also been involved in CSC biology in other
tumor types. For example, JAG1 can be expressed by both tumor and endothelial cells and play a most
important role in glioma/glioblastoma-initiating cells. NOTCH promotes breast CSC survival and
self-renewal, and over-expression of NOTCH1 and the NOTCH ligand JAG1 predicts poor outcomes.
Approximately 15%–20% of breast cancers are HER2-positive [25]. In HER2-positive breast cancer
tissue, higher Jagged1 membrane staining, but not cytoplasmic or perinuclear Jagged1 expression,
predicts poor overall survival for women with primary, invasive HER2-positive breast cancer. IL6ST
gene is also responsible and plays a central role in TNBC, which is already mentioned in the case of
CDCA7 gene purpose. Higher expression of IL6ST shows a significant association with longer overall
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survival in TNBC patients. IL6ST is the signal transducer for interleukin 6 (IL6), ciliary neurotrophic
factor (CNTF), leukemia inhibitory factor (LIF) and oncostatin M (OSM). In general, IL6ST is lower
in TNBC when compared to non-TNBCs. It is shown by (name) that high expression of IL6ST has
been shown to be a good prognostic factor in breast cancer, as it increases patients’ overall survival,
which supports our finding in TNBC where higher expression of IL6ST is shown to be associated with
significantly increased survival. Multiple studies identified IL6ST as being positively associated with
estrogen receptor alpha (ER-α) expression in breast cancer, which confirms the decreased levels of this
gene in TNBC patients [26]. Additionally, the presence of elevated levels of ER-α in benign breast
epithelium appears to point out an increased risk of BC. Worldwide, 60-70% BC patients are estrogen
receptor alpha positive. Apart from this, some genes are also responsible for breast cancer disease.
High expression of Sperm-associated antigen 5 (SPAG5) has been detected in BC. The biological
function and regulatory mechanism of SPAG5 in breast cancer remain unclear. [27] have revealed the
potential biological function of SPAG5 in BC cells. The mRNA and protein expression of SPAG5 both
are significantly up-regulated in BC cell lines. The silencing of SPAG5 inhibited the proliferation and
invasion of breast cancer cells, as has been shown by functional experiments, while the overexpression
of SPAG5 promoted the proliferation and invasion of BC cells. In addition, SPAG5 promoted the
expression of Wnt3 and β-catenin and increased the activation of β-catenin transcriptional activity
investigated by the mechanistic procedure. The gene SPAG5, which promotes the proliferation and
invasion of breast cancer cells by activating β-catenin, has a familiar role in the progression of BC.
The THBS gene is a member of the thrombospondin family. It is a disulfide-linked homotrimeric
glycoprotein that mediates cell-to-cell and cell-to-matrix interactions. It is correlated with a potent
inhibitor of tumor growth and angiogenesis. It is a multi-domain matrix glycoprotein that has been
shown to be a natural inhibitor of neovascularization and tumorigenesis in healthy tissue. The TSP-
1 3TSR which is a recombinant version of the THBS1 antiangiogenic domain containing all three
thrombospondin-1 type 1 repeats that can activate transforming growth factor beta 1 (TGFβ1 which
play a major role in breast cancer progression [28]. TK1, Tubulin-1-alpha and TYMP genes (TYMP
genes are identified only by LR and SVM) are majorly correlated with the activity of breast cancer. The
TK1 gene (i.e., thymidine kinase 1), which is highly associated with breast cancer disease, catalyzes
the addition of a gamma-phosphate group to thymidine, and the TK1 gene plays a significant role in
breast cancer [29]. A common genetic spectrum for breast cancer at any age is supported by the PFKM
gene, which is also known as a novel breast cancer gene [30]. The association between the gene
expression of PFKM and a high risk of breast cancer disease is plausible for several reasons, which are
given below:

(i) The PFKM gene is expressed in cell lines of BC [31].
(ii) There is an association between the variants in the gene with the post-translational modifications

which have been depicted to alter the metabolism and the growth of cancer cells have been promoted
[32].

(iii) A relationship between gene expression of PFKM and the risk of BC is consistent, with ob-
servations that suggest that due to aberrant glucose metabolism, a large amount of glucose can be
consumed by tumor cells, through a glycolytic pathway which produces lactate [32].
Since the biology of gene expression of PFKM and its modulators together with inhibitors is well
characterized, finally, TP53 (known as tumor suppressor protein) has been shown for suppress the
gene expression of PFKM in the system of model [33]. For breast cancer prevention and treatment
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purposes, the identification of the PFKM gene region has potential translational implications as a breast
cancer susceptibility locus. There exists a great and potential role for the GNG4 (G protein gamma-4
subunit/guanine nucleotide-binding protein-4) gene for BC tumorigenesis and metastasis. Apart from
this, ARF1 (ADP-ribosylation factor 1) is another gene in the ARF gene family that leads an important
role in breast cancer progression, and high-level amplification of ARF1 is associated with increased
mRNA expression and poor outcomes in patients with breast cancer. In this work, some other genes,
TOX3, TYMP, DSC2, PNLIP and RGS17, are also responsible for breast cancer progression [21, 34].
Moreover, we also attempt to improve the interpretation of backward RSF analyses by increasing the
number of trees. In this work, we have considered n = 100 and 1000, where n denotes the number
of trees of the underlying method (shown in Figure 4). These results show that the error rate is stable
whenever the number of trees is increasing.

(1.a) n = 100 (left) (1.b) n = 1000 (right)

Figure 4. Error rate vs number of trees.

The RSF method is beneficial to identify the variables which are associated with disease in the case
of a complex data set considering time to event as an outcome. The analysis of the RSF method also
is providing comparable findings which are used in Cox regression in general. It also can address the
problem of having multicollinearity, and the method is very useful whenever the data set is highly
dimensional.

8. Concluding remarks

Classical treatment selection due to cancers mostly depends on the judgment of doctors and clin-
ical observations, but in general, it is very hard to predict most outcomes. This work has shown its
comprehensive understanding of a cancer genomic data-set. The results not only help to predict BC
survivability but also predict the genes which are mainly responsible for breast cancer progression.
The approach which is used in this work can be also applied in disease learning, especially in the case
of high-dimensional data such as genomics. This methodology not only achieves better prediction for
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clinical purpose but also points out the significant attributes of the patients, which is beneficial in the
epidemiological field. This work demonstrates a useful application of the fundamental idea of high-
dimensional data in epidemiological research. Furthermore, in the case of several diseases (even those
beyond cancer scope), such methodology of modeling and exploration can be appealed for treatment
optimization and gene selection systems.

In recent years, similar efforts have been made for developing customized cancer treatments. The
idea is based on the gene of a breast cancer patient and also predicts how it is correlated with breast
cancer. Also, some therapies are used and target the genes specific to certain patients. Nevertheless,
some limitations are present in this technique. The scheme mainly requires investigation and metic-
ulous lab work, which faces difficulties due to time consumption and expense. Although we have
analyzed pathways related to BC, cancer genomics is not fully understandable in many difficult cases.

In this work, we have demonstrated several classification methods, i.e., Logistic Regression, Ran-
dom Forest, Support Vector Machine, Linear Discriminant Analysis and Decision Tree, to predict
basically the tendency towards mortality due to breast cancer and also compared their performances.
In previous work, some classifications had been evaluated using the features selected method in the
case of breast cancer [35]. However, we have not only evaluated and compared the performances of
different algorithms but also proceeded with the Random Forest method since it provides better results
than any other underlying models based on accuracy. Many different machine learning methods [36]
have already been applied for microarray data analysis, like Support Vector Machines [37, 38] or Ran-
dom forest [39]. Furthermore, in the last few years, these Algorithms have been used for solving both
problems of feature selection and classification in gene expression data analysis. Genetic Algorithms
[40] have been employed for building selectors where each allele of the representation corresponds to
one gene. However, we have demonstrated some traditional and competing risk models, illustrated the
models with real data analysis, depicted their curves’ nature and also compared their fits using predic-
tion error curves and the concordance index. Furthermore, two different survival splitting rules have
been implemented by using separate Random Survival Forest (RSF) methods and also constructing
the rank of risk factors due to breast cancer. The results show that high-level grade and diameter are
the most important predictors for mortality progression in the presence of competing events of death.
Lymph nodes, age, and angiography are other vital criteria for this purpose. We have also implemented
RSF backward selection criterion, which enables us to make top gene selection related to mortality pro-
gression due to breast cancer and identifies some important genes responsible for mortality progression
due to breast cancer.

The classification performance of each model is shown in Table 2 and compared among all based
on accuracy. For classification purposes, the best model is associated with the random forests method
on each data group: clinical, gene and combined. SVM technique stands in the second position for
gene data, and combining data and logistic regression is the second most important method for clin-
ical data purposes. Since RF is the best among all for individual data, we proceed with mainly two
different approaches: the RSF method for clinical data purposes and the backward RSF method for
gene selection purposes. The focus of the present work is to identify the important prognostic factors
which affect the duration of time from breast cancer infection for mortality progression in the presence
of a competing event of death. This RSF method benefits from many useful properties and has various
important features. RSF points out that high-level grade and diameter are the most important predictors
for mortality progression in the presence of competing events of death providing results. Meanwhile,
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the second most important variables are angiography and age, respectively. The criterion “high-level
grade” is also statistically significant in Cox-regression and CIForests method of mortality progression
due to BC using traditional models.

Nevertheless, using classical models, age is the only significant variable for the use of the Cox
proportional-hazards model and CIForests model. These comparisons (shown in Figure 1 and 2) show
a relative consistency between the results of the traditional model strategies and the RSF. We have also
compared the performances of the methods in this work. According to the results, RSF outperforms
classical models in terms of lower prediction error (shown in Table 4). This can be attributed to the
property of considering all complex relationships between variables by the RSF model. Ishwaran et
al. [9] in their study also showed that their proposed RSF model outperformed traditional models in
competing risk cases. Epidemiologists are motivated for considering the underlying RSF backward
selection as a sensible complement to conventional regression-based selection methods for selecting
suitable variables whenever analyzing complex survival data which are highly correlated. RSF method
has various advantages, compared with regression approaches. This method is completely data-set
driven so it is independent of hypothesis testing. This technique does not test the goodness-of-fit of
the data set in the case of hypothesis but seeks a model that provides the best explanation of the data
set. It is a very suitable and useful technique for exploratory analysis of survival data where previous
knowledge is still limited. The RSF backward technique is particularly suitable for selecting variables
whenever complex survival data are highly correlated. The underlying method has been demonstrated
to point out the unknown covariates related to BC. RSF backward method can be easily implemented
and applied for reducing the dimension of the data set and also can improve the interpretability. At
the current stage in the case of cancer research, this technique inevitably establishes optimization of
error rate. For investigating the direction and potential non-linearity of individual gene associations,
partial plots are the first step. “The translation and verification of RSF technique findings into clinically
understandable relation measures” can be extended for future research purposes.
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