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Abstract: The idea of this study is to present the mathematical model of two-dimensional biofluid 

flow having variable viscosity along the height of the channel (proximal renal tube of artificial 

kidney). This research describes that flow resistance is dependent on the height of the channel 

(proximal renal tube of artificial kidney) which makes the high flow near the centre and slow near 

the wall. The goal of this research is to provide the formulas to find the flow speed, average pressure, 

outflow flux and filtration rate of the viscous fluid having variable viscosity. The complex 

mathematical problem is solved by the Inverse method and results for axial velocity are plotted at the 

opening, central and departure region of the conduit. The numerical values for constant reabsorption 

and mean pressure are calculated against the filtration rate for the constant and variable viscosity. 

The numerical results of pressure rise show that when the viscosity of biofluid varies from centre to 

the boundary, then high change in pressure is required as compared with the biofluid having constant 

viscosity along the height of the slit. These mathematical formulas are very useful for the 

bioengineers to design the portable artificial kidney which works as a mechanical tool to filter the 

biofluid. 

Keywords: variable viscosity; artificial kidney; inverse method; uniform reabsorption; two-

dimensional biofluid flow 
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1. Introduction  

The microstructure of portable artificial kidneys is responsible for the blood filtration and urine 

formation (mechanical process of biofluid) which acts as a micromachine due to very small size but 

do the complex process of reabsorption, filtration, excretion and secretion in its different parts. 

Kidneys contain renal speck and renal tubule; renal speck is further split into glomerulus and 

Bowman's capsule where blood is filtered through the glomerulus circulates and filtered blood then 

comes to the renal tubule where reabsorption takes place. Within the nephron, glomerular 

purification comprises on reflexive movement of blood plasma from glomerulus capillaries to the 

Bowman’s capsule that is easily permeable to H2O, small solutes like urea, sodium ion, and glucose 

but not porous to hemoglobin and platelets. The next part of the renal tubule is the proximal 

convoluted tubule (PCT) where effective and reactive transport take place to reabsorb glucose, 

sodium chloride, and water from the glomerular filtrate. The current model describes biomechanics 

of plasma having variable viscosity depending upon the distance from centre to the proximal tube 

wall that is the main segment of kidneys where constant reabsorption and filtration take place.  

Different studies of viscous flow through renal tubule having permeable wall property with 

constant, linear and nonlinear rate of reabsorption have been discussed. Burgen et. al. [1] introduced 

a study of viscous flow through kidney with glucose reabsorption and developed mathematical 

equations for solute reabsorption and used the results to check the high affinity of glucose. The 

dynamics of biofluid through renal tubule and flow behavior in the presence of constant reabsorption 

on the wall has been discussed by Macey et. al. [2]. He analysed the viscous flow through infinite 

cylinder using the Navier Stokes equations with constant and linear reabsorption on the walls of 

cylinder and noticed the Poiseuille flow for constant reabsorption and for the linear reabsorption the 

flow lines become flattens instead of curve lines. The dynamical properties of the viscous flow 

through a permeable tube had been examined by Marshall et. al. [3] and found the exact solution 

with the help of Navier-Stokes equation for velocity and pressure using the Darcy’s law also, the 

approximate solution for the leakage flux has calculated for the proximal renal tubule. Berkstresser et. 

al. [4], Tewarson et. al. [5] and Gupta et. al. [6] introduced the numerical and analytic techniques for 

the solution of mathematical model of viscous flow through renal tubule. Ahmad et al. [7] discussed 

the exact solution of viscous flow through the renal tube and showed the periodic flow in radial 

direction of the tube. Muthu et al. [8] presented the finite difference method to find the viscous flow 

through the cross section of tube with permeable boundary, he found the axial velocity and mean 

pressure generated by the reabsorption on the wall and flux on the axial direction. Koplik et al. [9], 

Pozrikidis et al. [10], Kropinski et al. [11] and Haroon et al [12] obtained the results for volume flow 

rate, glucose reabsorption, velocity and shear stress for Newtonian flow through permeable tube and 

slit by different methods. They found the slip and no slip effect on the velocity, leakage flux, flow 

rate and used the resulting formulas to find the reabsorption rate and mean pressure against the 

fractional reabsorption.   

The viscosity of plasma filtered in kidney is not a fixed quantity, but it changes according to the 

diameter of proximal tubule, also flow resistance in renal tube decreases strongly with reduced 

diameter of the tube which is less than 0.3mm as mentioned in the study of Gilmer et. al. [13]. The 

flow resistance of the fluid to be filtered in proximal tube is considerably the case of Poiseuille flow 

because of pressure gradient which describes that resistance in the flow is low at the centre of tube 

and high near the tube wall. Few studies have been presented the effect of viscosity on the blood 
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flow through kidney (Lamport et. al. [14,15], Gaylor et. al. [16] and Omori et. al. [17], Halfenstein et. 

al. [18], Mukhopadhyay et. al. [19,20]) but in all these studies only theoretical and experimental data 

has been used. Recently, Mehboob et. al. [21] presented the effect of variable viscosity and constant 

reabsorption on the slow viscous flow through narrow straight tubule and found the formulas for the 

leakage flux, mean pressure drop and flow rate but this problem was formulated in cylindrical 

coordinate system. There is not a single study available in literature which describes the 

mathematical formulas of creeping flow having varying viscosity across the height of channel with 

uniform absorption on the permeable walls of the channel in rectangular coordinate system.   

Keeping above studies in mind, it has been assumed that the viscosity is an exponential function 

of distance from the centre to the boundary and reabsorption on the wall is constant. In this paper to 

study the effect of exponential type of viscosity for the viscous flow through a kidney, authors have 

considered the uniform reabsorption on the wall and discussed the problem formulation in section 2, 

methodology of complex system is included in section 3, mathematical results are presented in fourth 

section, application of the problem is in section 5, discussion is in section 6 and conclusion is 

included in section 7.  

2. Materials and methods 

The present mathematical model suggests that a viscous fluid across a rectangular cross section 

is flowing under the effect of constant flux applied at the entrance of slit. The -axis locating at the 

middle of rectangular slit and -axis in the vertical direction of centre line as mentioned in Figure 1, 

due to symmetric behaviour, the upper half of a rectangular slit has considered to reduce the 

calculations. 

Since the kidney contains the proximal renal tube and movement in this tube is of Poiseuille 

type Layton et al [22] which requires that axial velocity is highest at the middle of slit that is stated in 

Eq (7). Since boundaries of renal tubule are permeable and reabsorption takes place through these 

boundaries at a constant rate which is stated in Eq (8). These hypotheses support to assume that 

thickness is a decreasing function of distance from base to the boundary, therefore in the current 

research authors have assumed the Navier-Stokes equation with non-constant viscosity. The current 

problem of two-dimension, incompressible steady state creeping flow through slit become 

complicated due to non-constant viscosity. 

 

Figure 1. Schematic diagram of the problem. 
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The suggested model recommends that movement of fluid through a slit satisfy the following 

flow field. 

𝐕 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦), 0], 
(1) 

where 𝑢 and 𝑣 represents horizontal and transverse velocity components. 

The fluid flow through the nephron is incompressible i.e density is constant throughout the flow field 

and satisfy the following continuity equation  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0. 

(2) 

The creeping viscous flow across a slit suggests that in the absence of inertia term NSE's with 

variable viscosity satisfy the following set of equations. 

𝜕𝑝

𝜕𝑥
=

𝜕

𝜕𝑥
(2𝜇(𝑦)

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
{𝜇(𝑦) (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)}, 

(3) 

𝜕𝑝

𝜕𝑦
=

𝜕

𝜕𝑥
{𝜇(𝑦) (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)} +

𝜕

𝜕𝑦
(2𝜇(𝑦)

𝜕𝑣

𝜕𝑦
). 

(4) 

2.1. Exponential viscosity 

Case I: 𝜇(𝑦) = 𝑒−𝛽𝑦  

Since the viscosity is a decreasing function of radius of tube which is mentioned in Ref. (Gilmer et al 

[13]& Tripathi et al [23]) therefore, the variable viscosity in the following form has chosen 

𝜇(𝑦) = 𝑒−𝛽𝑦,      𝛽 > 0. 
(5) 

The assumptions of plasma flow through renal proximal tube and constant reabsorption on the 

permeable boundary satisfy the following boundary conditions 

𝜕𝑢

𝜕𝑦
= 0,      𝑣 = 0,    𝑎𝑡    𝑦 = 0, 

(6) 

𝑢 = 0,       𝑣 = 𝑉0,     𝑎𝑡    𝑦 = 𝐻, 
(7) 

𝑄0 = 2𝑊 ∫ 𝑢(0, 𝑦)𝑑𝑦.

𝐻

0

 

 

(8) 

Stream function and velocity profile are associated by the following expressions 

𝑢 =
𝜕𝜓

𝜕𝑦
,          𝑣 = −

𝜕𝜓

𝜕𝑥 
. 

(9) 

The above expressions of stream function and Eqs (3,4) give the following form 

𝜕𝑝

𝜕𝑥
= 2𝑒−𝛽𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+

𝜕

𝜕𝑦
{𝑒−𝛽𝑦 (

𝜕2𝜓

𝜕𝑦2
−

𝜕2𝜓

𝜕𝑥2
)}, 

(10) 
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𝜕𝑝

𝜕𝑦
= 𝑒−𝛽𝑦

𝜕

𝜕𝑥
(

𝜕2𝜓

𝜕𝑦2
−

𝜕2𝜓

𝜕𝑥2
) + 2

𝜕

𝜕𝑦
{𝑒−𝛽𝑦 (−

𝜕2𝜓

𝜕𝑥𝜕𝑦
)}. 

(11) 

Eliminating pressure gradient from Eqs (10,11), one can write the following expression. 

∇4𝜓 − 𝛽2𝑬2𝜓 − 2𝛽
𝜕

𝜕𝑦
(∇2𝜓) = 0, 

(12) 

where ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 a and 𝑬2 =
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑦2. 

Boundary conditions in terms of stream function are given as follows 

𝜕2𝜓

𝜕𝑦2
= 0,     

𝜕𝜓

𝜕𝑥
= 0,     𝑎𝑡    𝑦 = 0,   

(13) 

𝜕𝜓

𝜕𝑦
= 0,       

𝜕𝜓

𝜕𝑥
= −𝑉0,      𝑎𝑡     𝑦 = 𝐻,      

(14) 

𝜓(0,0) = 0,    𝑎𝑛𝑑    𝜓(0, 𝐻) =
𝑄0

2𝑊
. 

(15) 

The non-dimensional quantities are chosen from Ref. [12]  

𝑥∗ =
𝑥

𝐿
,       𝑦∗ =

𝑦

𝐿
,       𝑉0

∗ =
𝑉0

𝑈0
,       𝜓∗ =

𝜓

𝑈0𝐿
,        𝛽∗ = 𝛽𝐿, 

𝑄0
∗ =

𝑄0

𝑈0𝑊𝐿
,      𝜏𝑤

∗ =
𝜏𝑤

𝜇(𝑦)𝑈0 𝐿⁄
,     𝑢∗ =

𝑢

𝑈0
,     𝑣∗ =

𝑣

𝑈0
,    𝐻∗ =

𝐻

𝐿
, 

 

 

(16) 

where 𝑈0 is reference velocity, L is the length of slit, H is the height and W is the width of slit. 

Nondimensional form of Eqs (12-15) after releasing “∗” take the following form 

∇4𝜓 − 𝛽2𝑬2𝜓 − 2𝛽
𝜕

𝜕𝑦
(∇2𝜓) = 0, 

(17) 

𝜕2𝜓

𝜕𝑦2
= 0,     

𝜕𝜓

𝜕𝑥
= 0,     𝑎𝑡     𝑦 = 0, 

(18) 

𝜕𝜓

𝜕𝑦
= 0,       

𝜕𝜓

𝜕𝑥
= −𝑉0,      𝑎𝑡     𝑦 = 𝐻, 

(19) 

𝜓(0,0) = 0,    𝑎𝑛𝑑    𝜓(0, 𝐻) =
𝑄0

2𝑊
. 

(20) 

2.1.1. Solution of the problem 

To get the solution of problem given in Eqs (17-20), Inverse method [12] is used which requires the 

following function. 

𝜓(𝑥, 𝑦) = 𝑥𝑅(𝑦) + 𝑇(𝑦), 
(21) 
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where 𝑅(𝑦) and 𝑇(𝑦) represent unknown functions. 

Invoking Eq (21) in Eqs (17-20), one can obtain the following set of equations 

𝑑4𝑅

𝑑𝑦4
− 2𝛽

𝑑3𝑅

𝑑𝑦3
+ 𝛽2

𝑑2𝑅

𝑑𝑦2
= 0, 

(22) 

𝑑4𝑇

𝑑𝑦4
− 2𝛽

𝑑3𝑇

𝑑𝑦3
+ 𝛽2

𝑑2𝑇

𝑑𝑦2
= 0, 

(23) 

and boundary conditions are 

𝑅(0) = 0,       
𝑑2𝑅(0)

𝑑𝑦2
= 0, 

(24) 

𝑅(𝐻) = −𝑉0 ,      
𝑑𝑅(𝐻)

𝑑𝑦
= 0, 

(25) 

𝑇(0) = 0,         
𝑑2𝑇(0)

𝑑𝑦2
= 0, 

(26) 

𝑇(𝐻) =
𝑄0

2
,        

𝑑𝑇(𝐻)

𝑑𝑦
= 0. 

(27) 

Solving Eqs (22,23) under the boundary conditions (24-27), one can obtained the following 

expressions for 𝑅(𝑦) and 𝑇(𝑦) 

(𝑦) =
𝑉0(2 + 𝑒𝐻𝛽𝑦𝛽(1 − 𝐻𝛽) − 𝑒𝑦𝛽(2 − 𝑦𝛽))

−2 + 𝑒𝐻𝛽(2 − 𝐻𝛽(2 − 𝐻𝛽))
, 

(28) 

and 

(𝑦) =
𝑄0(−2 − 𝑒𝐻𝛽𝑦𝛽(1 − 𝐻𝛽) + 𝑒𝑦𝛽(2 − 𝑦𝛽))

−4 + 𝑒𝐻𝛽(4 − 2𝐻𝛽(2 − 𝐻𝛽))
. 

(29) 

Following stream function can be found after using 𝑅(𝑦) and T(𝑦) in Eq. (21) 

𝜓(𝑥, 𝑦) =
(𝑄0 − 2𝑉0𝑥)(−2 − 𝑒𝐻𝛽𝑦𝛽(1 − 𝐻𝛽) + 𝑒𝑦𝛽(2 − 𝑦𝛽))

−4 + 𝑒𝐻𝛽(4 − 2𝐻𝛽(2 − 𝐻𝛽))
 

(30) 

2.1.2. Velocity distribution 

With the aid of above stream function and Eq (9), one can get the next components of velocity  

𝑢(𝑥, 𝑦) =
−(𝑄0 − 2𝑉0𝑥)𝛽(1 − 𝐻𝛽 − 𝑒−(𝐻−𝑦)𝛽(1 − 𝑦𝛽))

4 − 4𝑒−𝐻𝛽 − 2𝐻𝛽(2 − 𝐻𝛽)
, 

(31) 

and 

𝑣(𝑥, 𝑦) =
𝑉0(−2 − 𝑒𝐻𝛽𝑦𝛽(1 − 𝐻𝛽) + 𝑒𝑦𝛽(2 − 𝑦𝛽))

−2 + 𝑒𝐻𝛽(2 − 𝐻𝛽(2 − 𝐻𝛽))
. 

(32) 
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Above equations show that horizontal velocity 𝑢(𝑥, 𝑦)  depends upon 𝑥  and 𝑦 , also horizontal 

velocity is maximum at 𝑦 = 0 i.e. 

𝑢𝑚𝑎𝑥 =
−(𝑄0 − 2𝑉0𝑥)𝛽(1 − 𝐻𝛽 − 𝑒−𝐻𝛽)

4 − 4𝑒−𝐻𝛽 − 2𝐻𝛽(2 − 𝐻𝛽)
, 

(33) 

and 𝑣(𝑥, 𝑦) is maximum at 𝑦 = 𝐻. 

𝑣𝑚𝑎𝑥 = 𝑉0. 
(34) 

Flow rate across the slit can be calculated by the following formula 

𝑄(𝑥) = 2 ∫ 𝑢(𝑥, 𝑦)𝑑𝑦,

𝐻

0

 

(35) 

or 

𝑄(𝑥) = 𝑄0 − 2𝑉0𝑥, 
(36) 

which results from the inlet to the outlet of rectangular cross section. 

2.1.3. Pressure 

In biological movements pressure performs an important role therefore to find the pressure, Eqs. (9-

10) with the help of Eq (31) and Eq (32) are reduced into the following form  

𝜕𝑝

𝜕𝑥
= −𝛽𝑒−𝛽𝑦 (𝑥

𝑑2𝑅

𝑑𝑦2
+

𝑑2𝑇

𝑑𝑦2
) + 𝑒−𝛽𝑦 (𝑥

𝑑3𝑅

𝑑𝑦3
+

𝑑3𝑇

𝑑𝑦3
), 

(37) 

𝜕𝑝

𝜕𝑦
= −𝑒−𝛽𝑦 (

𝑑2𝑅

𝑑𝑦2
− 2𝛽

𝑑𝑅

𝑑𝑦
). 

(38) 

Using 𝑅(𝑦) and 𝑇(𝑦), Eqs (37,38) take the following form 

𝜕𝑝

𝜕𝑥
=

−(𝑄0 − 2𝑉0𝑥)𝛽3

−4 + 𝑒𝐻𝛽(4 − 2𝐻𝛽(2 − 𝐻𝛽))
, 

(39) 

𝜕𝑝

𝜕𝑦
=

𝑉0𝛽2(2𝑒−𝑦𝛽(1 − 𝐻𝛽) − 𝑒−𝐻𝛽(2 − 𝑦𝛽))

2 − 2𝑒−𝐻𝛽 − 𝐻𝛽(2 − 𝐻𝛽)
. 

(40) 

Integration of above expressions yield the following form 

𝑝(𝑥, 𝑦) =
−𝑉0𝛽(4𝑒−𝑦𝛽(1 − 𝐻𝛽) + 𝑒−𝐻𝛽𝑦𝛽(4 − 𝑦𝛽))

4 − 4𝑒−𝐻𝛽 − 2𝐻𝛽(2 − 𝐻𝛽)
+ 𝑓(𝑥), 

(41) 

where 𝑓(𝑥) i is given by as follows 

𝑓(𝑥) =
−𝑥(𝑄0 − 𝑉0𝑥)𝛽3

−4 + 𝑒𝐻𝛽(4 − 2𝐻𝛽(2 − 𝐻𝛽))
+ 𝐶, 

(42) 

where 𝐶 is an arbitrary factor. Inserting Eq (42) in Eq (41), we can compose the subsequent form of 
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pressure 

𝑝(𝑥, 𝑦) − 𝑝(0,0) =
−𝛽(4(−1 + 𝑒−𝑦𝛽)𝑉0(1 − 𝐻𝛽) + 𝑒−𝐻𝛽𝛽(4𝑉0𝑦 + 𝑄0𝑥𝛽 − 𝑉0(𝑥2 + 𝑦2)𝛽))

4 − 4𝑒−𝐻𝛽 − 2𝐻𝛽(2 − 𝐻𝛽)
, 

 

(43) 

where 𝑝(0,0) shows pressure at creek of rectangular cross section. 

The average pressure drop is defined as follows  

𝑝̅(𝑥) =
1

𝐻
∫(𝑝(𝑥, 𝑦) − 𝑝(0,0))𝑑𝑦.

𝐻

0

 

 

(44) 

After inserting value of 𝑝(𝑥, 𝑦) − 𝑝(0,0) from Eq (43), the above equation takes the following form. 

𝑝̅(𝑥) =
12𝑉0(1 − 𝐻𝛽)2 + 𝑒−𝐻𝛽(3𝐻𝑄0𝑥𝛽3 + 𝑉0(−12 − 𝐻𝛽(−12 − 6𝐻𝛽 + (𝐻2 + 3𝑥2)𝛽2)))

12𝑒−𝐻𝛽 − 6(2 − 𝐻𝛽(2 − 𝐻𝛽))
. 

(45) 

Pressure drops over the length of rectangular cross section is given by the following formula 

∆𝑝̅(𝐿) = 𝑝̅(0) − 𝑝̅(𝐿), 
(46) 

which reduces to 

∆𝑝̅(𝐿) =
−𝑒−𝐻𝛽𝐿(−𝑄0 + 𝐿𝑉0)𝛽3

4 − 4𝑒−𝐻𝛽 − 2𝐻𝛽(2 − 𝐻𝛽)
. 

(47) 

2.1.4. Wall shear stress 

Shear forces are very crucial in the viscous flow with variable viscosity and support to find the 

resistance on plane which are penned as follows 

𝜏𝑤|𝑦=𝐻 = −𝜇(𝑦) (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

𝑦=𝐻

, 
(48) 

Invoking Eqs (31,32) in above equation, we attained 

𝜏𝑤|𝑦=𝐻 =
𝐻(𝑄0 − 2𝑉0𝑥)𝛽3

4 − 4𝑒−𝐻𝛽 − 2𝐻𝛽(2 − 𝐻𝛽)
. 

(49) 

2.1.5. Fractional reabsorption and leakage flux 

The ratio of reabsorption to filtration rate can be measured by the following formula 

𝐹𝐴 =
𝑄(0) − 𝑄(𝐿)

𝑄(0)
=

2𝑉0𝐿

𝑄0
 

(50) 

Leakage flux is given by the following formula 

𝑞(𝑥) = −
𝑑𝑄(𝑥)

𝑑𝑥
= 2𝑉0. 

(51) 
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2.2. Linear viscosity 

Case II: 𝜇(𝑦) = 1 − 𝛽𝑦  

In this case we will take the following viscosity 

𝜇(𝑦) = 1 − 𝛽𝑦,     𝛽 > 0, 
(52) 

After injecting Eq (52) and Eq (9) in Eqs (2,3), we get 

𝜕𝑝

𝜕𝑥
= 2(1 − 𝛽𝑦)

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+

𝜕

𝜕𝑦
{(1 − 𝛽𝑦) (

𝜕2𝜓

𝜕𝑦2
−

𝜕2𝜓

𝜕𝑥2
)}, 

(53) 

𝜕𝑝

𝜕𝑦
= (1 − 𝛽𝑦)

𝜕

𝜕𝑥
(

𝜕2𝜓

𝜕𝑦2
−

𝜕2𝜓

𝜕𝑥2
) + 2

𝜕

𝜕𝑦
{(1 − 𝛽𝑦) (−

𝜕2𝜓

𝜕𝑥𝜕𝑦
)}. 

(54) 

Reducing pressure gradient from Eqs (53,54), one can obtain the compatibility equation in terms of 

stream function 

(1 − 𝛽𝑦)∇4𝜓 − 2𝛽
𝜕

𝜕𝑦
(∇2𝜓) = 0, 

(55) 

where ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2. 

There will be no change in Eq (55) after using non-dimensional quantities given in Eq (16) 

2.2.1. Solution of the problem 

Substituting Eq (21) into the Eq (55) to get 

(1 − 𝛽𝑦)
𝑑4𝑅

𝑑𝑦4
− 2𝛽

𝑑3𝑅

𝑑𝑦3
= 0, 

(56) 

(1 − 𝛽𝑦)
𝑑4𝑇

𝑑𝑦4
− 2𝛽

𝑑3𝑇

𝑑𝑦3
= 0. 

(57) 

On solving Eqs (56,57) under the boundary conditions (24-27), we get the solution 

𝑅(𝑦) =
𝑉0(−2𝑦𝛽 ln(−𝛽 + 𝐻𝛽2) − 2 ln(1 − 𝑦𝛽) − 𝑦𝛽(2 + 2𝐻𝛽 − 𝑦𝛽 − 2 ln(−𝛽 + 𝑦𝛽2)))

−𝐻𝛽(−2 − 𝐻𝛽) + 2 ln(1 − 𝐻𝛽)
, 

 (58) 

and 

𝑇(𝑦) =
𝑄0(2𝑦𝛽 ln(−𝛽 + 𝐻𝛽2) + 2 ln(1 − 𝑦𝛽) − 𝑦𝛽(−2 − 2𝐻𝛽 + 𝑦𝛽 + 2 ln(−𝛽 + 𝑦𝛽2)))

−2𝐻𝛽(−2 − 𝐻𝛽) + 4 ln(1 − 𝐻𝛽)
, 

(59) 

Invoking 𝑅(𝑦) and 𝑇(𝑦) into Eq. (21) to get the following stream function 

𝜓(𝑥, 𝑦) =
(2𝑦𝛽 ln(−𝛽 + 𝐻𝛽2) + 2 ln(1 − 𝑦𝛽) − 𝑦𝛽(−2 − 2𝐻𝛽 + 𝑦𝛽 + 2 ln(−𝛽 + 𝑦𝛽2)))

2𝐻𝛽(2 + 𝐻𝛽) + 4 ln(1 − 𝐻𝛽)
(𝑄0 − 2𝑉0𝑥). 

 

(60) 
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2.2.2. Velocity field 

With the aid of Eq (9) and Eq (60), flow field in axial and vertical direction are found as follows 

𝑢(𝑥, 𝑦) =
−(𝑄0 − 2𝑉0𝑥)𝛽(−(𝐻 − 𝑦)𝛽 − ln(−𝛽 + 𝐻𝛽2) + ln(−𝛽 + 𝑦𝛽2))

𝐻𝛽(2 + 𝐻𝛽) + 2ln (1 − 𝐻𝛽)
, 

(61) 

and 

𝑣(𝑥, 𝑦) =
𝑉0(2𝑦𝛽 ln(−𝛽 + 𝐻𝛽2) + 2 ln(1 − 𝑦𝛽) − 𝑦𝛽(−2 − 2𝐻𝛽 + 𝑦𝛽 + 2 ln(−𝛽 + 𝑦𝛽2)))

𝐻𝛽(2 + 𝐻𝛽) + 2ln (1 − 𝐻𝛽)
. 

(62) 

Horizontal velocity is maximum at 𝑦 = 0. 

𝑢𝑚𝑎𝑥 =
−(𝑄0 − 2𝑉0𝑥)𝛽(−𝐻𝛽 + ln (−𝛽) − ln(−𝛽 + 𝐻𝛽2))

𝐻𝛽(2 + 𝐻𝛽) + 2ln (1 − 𝐻𝛽)
, 

(63) 

and 𝑣(𝑥, 𝑦) is maximum at 𝑦 = 𝐻. 

𝑣𝑚𝑎𝑥 = 𝑉0. 
(64) 

Flow rate within the four-sided slit is attained by using Eq (61) in Eq (35).  

𝑄(𝑥) = 𝑄0 − 2𝑉0𝑥. 
(65) 

2.2.3. Pressure distribution 

To find pressure, Eqs (53,54) can be composed in following manner 

𝜕𝑝

𝜕𝑥
= −𝛽 (𝑥

𝑑2𝑅

𝑑𝑦2
+

𝑑2𝑇

𝑑𝑦2
) + (1 − 𝛽𝑦) (𝑥

𝑑3𝑅

𝑑𝑦3
+

𝑑3𝑇

𝑑𝑦3
), 

(66) 

𝜕𝑝

𝜕𝑦
= −(1 − 𝛽𝑦)

𝑑2𝑅

𝑑𝑦2
+ 2𝛽

𝑑𝑅

𝑑𝑦
. 

(67) 

By using Eqs (58,59) in Eqs (66,67) to get 

𝜕𝑝

𝜕𝑥
=

(𝑄0 − 2𝑉0𝑥)𝛽3

𝐻𝛽(2 + 𝐻𝛽) + 2 ln(1 − 𝐻𝛽)
, 

(68) 

𝜕𝑝

𝜕𝑦
=

2𝑉0𝛽2(−2𝐻𝛽 + 3𝑦𝛽 − 2 ln(−𝛽 + 𝐻𝛽2) + 2 ln(−𝛽 + 𝑦𝛽2))

𝐻𝛽(2 + 𝐻𝛽) + 2 ln(1 − 𝐻𝛽)
. 

(69) 

Integrating Eq (69) yields 

𝑝(𝑥, 𝑦) =
(𝑄0 − 𝑉0𝑥)𝑥𝛽3

𝐻𝛽(2 + 𝐻𝛽) + 2 ln(1 − 𝐻𝛽)
+ 𝐻(𝑦), 

(70) 

where 𝐻(𝑦) is given by as follows 

𝐻(𝑦) =
−𝑉0𝛽(4𝑦𝛽 ln(−𝛽 + 𝐻𝛽2) + 4 ln(1 − 𝑦𝛽) − 𝑦𝛽(−4 − 4𝐻𝛽 + 3𝑦𝛽 + 4 ln(−𝛽 + 𝑦𝛽2)))

𝐻𝛽(2 + 𝐻𝛽) + 2 ln(1 − 𝐻𝛽)
+ 𝐶, 

 

(71) 

where 𝐶 is an arbitrary factor. Using Eq (71) in Eq (70), we can write the subsequent form of pressure  
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𝑝(𝑥, 𝑦) − 𝑝(0,0) = −𝛽(−𝛽(𝑄0𝑥𝛽 + 𝑉0(−𝑥2𝛽 + 𝑦(−4 − 4𝐻𝛽 + 3𝑦𝛽))) + 4𝑉0(ln(1 − 𝑦𝛽)

− 𝑦𝛽(− ln(−𝛽 + 𝐻𝛽2) + ln(−𝛽 + 𝑦𝛽2))))/𝐻𝛽(2 + 𝐻𝛽) + 2ln (1 − 𝐻𝛽), 

 

(72) 

where 𝑝(0,0) shows the pressure at entrance of the slit. 

Mean pressure drop can be find by substituting the value of 𝑝(𝑥, 𝑦) − 𝑝(0,0) in Eq (44) as follows 

𝑝̅(𝑥) = 𝑉0 (
1

𝐻
− 2𝛽) +

(𝐻2𝑉0 + 𝑥(𝑄0 − 𝑉0𝑥))𝛽3

𝐻𝛽(2 + 𝐻𝛽) + 2 ln(1 − 𝐻𝛽)
. 

(73) 

To get the pressure drop over the length 𝐿, , invoke the values of 𝑝̅(0) and 𝑝̅(𝐿) in Eq (47). 

∆𝑝̅(𝐿) = −
𝐿(𝑄0 − 𝐿𝑉0)𝛽3

𝐻𝛽(2 + 𝐻𝛽) + 2ln (1 − 𝐻𝛽)
. 

(74) 

2.2.4. Wall shear stress 

Invoking Eqs (61,62) in Eq (48) to attain wall shear stress 

𝜏𝑤|𝑦=𝐻 = −
𝐻(𝑄0 − 2𝑉0𝑥)𝛽3

(1 − 𝐻𝛽)(𝐻𝛽(2 + 𝐻𝛽) + 2 ln(1 − 𝐻𝛽))
. 

(75) 

3. Constant viscosity 

Case III: If we apply the limit 𝛽 → 0 on Eq 31, 32 and 43 and solving the resulting expressions 

by the L’ Hospital rule, one can attain the results of constant viscosity 𝜇 which are same as mentioned 

in Ref. [12]. 

𝜓(𝑥, 𝑦) =
1

2
(

𝑄0

2
− 𝑉0𝑥)

𝑦

𝐻
(3 − (

𝑦

𝐻
)

2

), 
(76) 

𝑢(𝑥, 𝑦) =
3(𝑄0 − 2𝑉0𝑥)

4𝐻
 (1 − (

𝑦

𝐻
)

2

), 
(77) 

𝑣(𝑥, 𝑦) =
𝑉0

2

𝑦

𝐻
(3 − (

𝑦

𝐻
)

2

), 
(78) 

𝑝(𝑥, 𝑦) − 𝑝(0,0) = −
3𝜇(𝑄0 − 𝑉0𝑥)𝑥

2𝐻3
−

3𝜇𝑉0𝑦2

2𝐻3
. 

(79) 

4. Application to kidneys flow 

We have utilized biological data of mammalian kidneys to find the values of 𝑉0  and ∆𝑝̅ in 

artificial renal tubule which is assumed to be the permeable channel. In this study length of artificial 

renal tubule (slit) is chosen to be 𝐿 = 0.12𝑐𝑚 and height of slit has considered as 𝐻 = 0.0005𝑐𝑚, 

average viscosity 𝜇 = 6.9 × 10−3𝑑𝑦𝑛𝑠𝑒𝑐/𝑐𝑚2 , 𝑄0 = 1.25 × 10−4𝑐𝑚3/𝑠𝑒𝑐 , 𝛽 = 2.5 × 10−3/𝑐𝑚 

and  𝑊 = 0.1 𝑐𝑚 (as 𝐻 ≪ 𝑊) from Zhang et al [24]. Table 1 shows the calculated values of mean 

pressure and reabsorption rate for the constant and variable viscosity. As cited in Refs. (Mehboob et. 
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al. [21], Layton et al [22], Korkmaz et al [25], Herranz et al [26] and Tortora et al [27] in usual 

conditions glomerulus pressure is assumed to be about 45𝑚𝑚𝐻𝑔 (59995.07433675𝑑𝑦𝑛/𝑐𝑚2) 

which is above the average pressure than that observed in tubes elsewhere in the body. It has stated 

in Table 1 the reducing values of reabsorption rate causes to lower the fractional reabsorption, but 

the average pressure drop in the renal tubule enhances with the falling values of reabsorption rate, 

also the assumption of variable viscosity indicate that average pressure drop is elevated as matched 

with the case of constant viscosity. 

The results of this study are beneficial to measure the change in pressure compared to the 

fractional reabsorption because the viscosity of the liquid decay near the boundary which is the 

consequence of lubricating nature of permeable wall. The numerical values given in table 1 indicate 

that the various rate of reabsorption requires the different mean pressure which may be supportive for 

the patients of nephrotic disorder. The present data from table 1 also support the person that how 

much intake of fluid is needed to generate the mean pressure next to the filtration rate which has 

examined by the blood CP and urine test. 

Table 1. Fractional reabsorption, reabsorption rate of fluid and pressure variation for 

persistent (constant) viscosity and variable viscosity in a renal tubule. 

Viscosity 𝐹𝐴 90% 80% 70% 60% 

 𝑉0𝑐𝑚/𝑠𝑒𝑐 4.7 × 10−3 4.2 × 10−3 3.6 × 10−3 3.1 × 10−3 

Constant ∆𝑝̅(0.12)𝑑𝑦𝑛/𝑐𝑚2 1212.19 2404.51 3835.3 5027.62 

Variable ∆𝑝̅(0.12)𝑑𝑦𝑛/𝑐𝑚2 6460.62 7025.69 7703.78 8268.84 

5. Results 

 

Figure 2. Effect of 𝑉0 at entrance region (𝑥 = 0.1). 
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Figure 3. Effect of 𝛽 at entrance region (𝑥 = 0.1). 

 

Figure 4. Effect of 𝑉0 at middle region (𝒙 = 𝟎. 𝟓). 

 

Figure 5. Effect of 𝛽 at middle region (𝒙 = 𝟎. 𝟓). 
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Figure 6. Effect of 𝑉0 at exit region (𝑥 = 0.9). 

 

Figure 7. Effect of 𝛽 at exit region (𝑥 = 0.9). 

 

Figure 8. Effect of 𝑉0 in the tranverse direction of flow. 
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Figure 9. Effect of 𝛽 in the transverse direction of flow. 

 

Figure 10. Effect of 𝑉0 on pressure difference. 

 

Figure 11. Effect of 𝛽 on pressure difference. 
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Figure 12. Effect of 𝑉0 on wall shear stress. 

 

Figure 13. Effect of 𝛽 on wall shear stress. 
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Figure 14. (a) 𝑉0 = 0.4, (b) 𝑉0 = 1.2, (c) 𝑉0 = 1.5. 
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Figure 15. (a) 𝛽 = 0.1, (b) 𝛽 = 0.2, (c) 𝛽 = 0.65. 

6. Discussion 

In this research the mathematical results of flow speed, flow pattern, pressure and shearing force 
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are presented by the graphs which are plotted in software Mathematica under the effect of different 

values of reabsorption velocity  𝑉0 and viscosity parameter 𝛽 at 𝑥 = 0.1, 𝑥 = 0.5, 𝑥 = 0.9, which are entry, 

central and leaving points of the rectangular cross section respectively. 

Figures (2), (4) and (6) show the decaying effect of reabsorption rate 𝑉0 on axial velocity at the 

points 𝑥 = 0.1, 0.5, 0.9 on the slit and observe that decay is swifter near the center region (𝑥 = 0.5) 

but near the departure region (𝑥 = 0.9) back flow has been examined. It has been noted that near the 

centre of slit drift is highest due to change in pressure and near the borders of slit (𝑦 = ℎ) the fluid 

movement become motionless due to deposition of the particles (reabsorption 𝑉0).  

Figures (3), (5) and (7) explain the decelerating impact of viscosity parameter 𝛽 on axial rate 

near the center of the slit at the points 𝑥 = 0.1, 0.5, 0.9 of the slit. The axial flow rises away from the 

centre (𝑦 = ℎ)  and decays near the centre line (𝑦 = 0)  due to the growing values of viscosity 

parameter 𝛽 , because resistance at the boundary wall (𝑦 = ℎ) makes the motionless flow at the 

boundary but the resistive forces become stronger near the centre of slit (𝑦 = 0)due to pressure 

gradient 
𝑑𝑝

𝑑𝑥
 which helps to make the decreasing effect on axial velocity.  

Figure 8 illustrates the variation of reabsorption rate 𝑉0 at the vertical direction of flow field, 

which displays the symmetry about the centre line (𝑦 = 0). The presence of reabsorption 𝑉0 indicates 

the growing effect on the transverse flow near the permeable membrane of renal tube. Decaying 

effect of viscosity parameter 𝛽 on the vertical flow is displayed through the Figure 9, it is observed 

that the resistive force retards the movement of the fluid molecules in vertical direction. 

The pressure 𝑝 plays a vital role for the flow of viscous fluid, therefore graphical results for 

pressure 𝑝 are displayed in Figure 10 and Figure 11. The decreasing effect of reabsorption velocity 𝑉0 

on pressure difference is displayed in Figure 10 which shows that presence of reabsorption 𝑉0  on the 

membrane require the low change in pressure for the viscous flow through permeable channel and 

the pressure at the entrance 𝑥 = 0.1  is high as compared with the other region 𝑥 = 0.9 of the slit. 

Figure 11 indicates that rising values of 𝛽 help to reduce the pressure difference from entry point 𝑥 =

0.1 to the centre line 𝑦 = 0. , which is evidenced that decreasing viscosity 𝛽  help to reduce the 

pressure for the viscous fluid flow. 

When the fluid is in contact with the surface then wall shear stress is an important phenomenon 

on the boundary surface. The variation in wall shear stress against 𝑉0 is described in Figure 12 which 

shows the reduction in the shear stress on the wall with the mounting values of reabsorption 𝑉0. The 

constant reabsorption 𝑉0 on the wall helps to reduce the shearing forces on the permeable wall, which 

indicates that flow across the tube move easily without the large load. The rising values of parameter 

𝛽 results to improve the shearing forces on the wall because the growing values of 𝛽 increases the 

resistance near the boundary wall which requires the high load for the fluid flow near the boundary.  

The pattern of the flow field can be observed by the streamlines which are plotted in Figure 14 

(a-c) and Figure 15 (a-c). It is examined that addition in reabsorption velocity 𝑉0 triggers the number 

of lines which indicates that the fluid is becoming thin in the presence of reabsorption 𝑉0, but the 

number of streamlines reduces with the mounting values of viscosity parameter 𝛽 which indicates 

that fluid is going to be thin, and it contains more resistance for the fluid flow. 

7. Conclusions 

This research presents the mathematical modelling of plasma flow through the renal tube, the 
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two-dimensional slit in rectangular coordinate is considered in the analogy of proximal renal tube 

and viscous fluid is assumed as a plasma with variable viscosity from centre line to the boundary 

surface due to reabsorption on the permeable wall. The complex mathematical model is solved by the 

inverse method and exact expression for flow speed, load, shear force and filtration are calculated. 

The application of the present study is presented with the numerical data present in the literature. The 

special cases for the linear and constant reabsorption are also obtained and observed that results of 

constant reabsorptions match with the existing results (Haroon et al. [12]) which validates the current 

research. The impact of reabsorption and viscosity parameter on the physical quantities of the flow 

field are observed through graphs. The numerical results of mean pressure and constant reabsorption 

against filtration rate show that constant viscosity of the plasma in slit requires less amount of 

average pressure but the biofluid having variable viscosity along the slit requires high average 

pressure for the fluid flow. 
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