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Abstract: The use of Artificial Intelligence (AI) in combination with Internet of Things (IoT) 
drastically reduces the need to test the COVID samples manually, saving not only time but money and 
ultimately lives. In this paper, the authors have proposed a novel methodology to identify the COVID-
19 patients with an annotated stage to enable the medical staff to manually activate a geo-fence around 
the subject thus ensuring early detection and isolation. The use of radiography images with pathology 
data used for COVID-19 identification forms the first-ever contribution by any research group globally. 
The novelty lies in the correct stage classification of COVID-19 subjects as well. The present analysis 
would bring this AI Model on the edge to make the facility an IoT-enabled unit. The developed system 
has been compared and extensively verified thoroughly with those of clinical observations. The 
significance of radiography imaging for detecting and identification of COVID-19 subjects with 
severity score tag for stage classification is mathematically established. In a Nutshell, this entire 
algorithmic workflow can be used not only for predictive analytics but also for prescriptive analytics 
to complete the entire pipeline from the diagnostic viewpoint of a doctor. As a matter of fact, the 
authors have used a supervised based learning approach aided by a multiple hypothesis based decision 
fusion based technique to increase the overall system’s accuracy and prediction. The end to end value 
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chain has been put under an IoT based ecosystem to leverage the combined power of AI and IoT to 
not only detect but also to isolate the coronavirus affected individuals. To emphasize further, the 
developed AI model predicts the respective categories of a coronavirus affected patients and the IoT 
system helps the point of care facilities to isolate and prescribe the need of hospitalization for the 
COVID patients. 

Keywords: artificial intelligence; internet of things; deep learning; machine learning; fuzzy logic; 
COVID-19 detection; X-ray; pathology data; stage classification COVID-19; raspberry Pi; Intel® 
Movidius™ neural compute stick 
 

1. Introduction 

The COVID-19 pandemic keeps on devastatingly affecting the well-being and prosperity of the 
worldwide populace, brought about by the disease of people by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). A basic step in the battle against COVID-19 is the compelling screening 
of contaminated patients, with the end goal that those tainted can get prompt treatment and care, just 
as be secluded to alleviate the spread of the virus. COVID-19 has wreaked havoc and claimed 
thousands of lives across the globe. Every Government had issued public notices to maintain social 
distancing, wearing masks, use of sanitizers to combat the same. Sun et al. developed a model, that 
was trained using data from Heilongjiang province from January 23 to March 25, 2020. The model 
projected a smaller number of asymptomatic patients, indicating a large undiscovered asymptomatic 
pool. They also forecast the consequences of swift action to stop the COVID-19 spread in Heilongjiang 
and concluded that efforts to decrease mutual interaction could help Heilongjiang recover faster. It 
described the COVID-19 pandemic in Heilongjiang and recommended stringent controls for infected 
and asymptomatic people to decrease overall infections [1]. Melin et al. have used Self-Organizing 
Neural Networks (SNN) and fuzzy fractals to study COVID-19 time series data. Fuzzy fractals and 
self-organizing maps forecasted COVID-19 infections very accurately and developed pandemic 
protection methods [2]. Castillo et al. described a hybrid intelligent fuzzy fractal strategy for 
classifying countries based on fractal mathematical constructions which mathematically estimated the 
complexity of the non-linear dynamic behavior displayed by the country time series and fuzzy logic 
mathematical ideas. Fuzzy logic can represent and handle the categorization problem's inherent 
uncertainty. The hybrid intelligent technique uses a fuzzy system generated by a collection of fuzzy 
rules to classify countries based on their fractal dimensions. The COVID-19 data of confirmed and 
fatal cases are used in the hybrid technique. Using the COVID-19 time series data, the suggested hybrid 
technique uses fractal dimension definition and fuzzy logic concepts to accurately classify countries. 
The fuzzy system was built using public datasets from 11 nations, and the proposed categorization 
method was tested on 15 countries. The simulation results reveal a classification accuracy of over 93%, 
which is good for this challenging situation [3–5]. 

But it was extremely hard to spread awareness fully across especially in countries like India where 
the population happens to be from highly diversified backgrounds. Another issue that every 
Government faced was to conduct random tests, identify the patients & isolate. The principle screening 
strategy utilized for identifying COVID-19 cases in a reverse transcriptase-polymerase chain reaction (RT-
PCR) testing [6], which can recognize SARS-CoV-2 RNA from respiratory samples (gathered through 
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an assortment of means, for example, nasopharyngeal or oropharyngeal swabs). Needless to mention 
that the task in hand was a herculean one particularly given to believe the huge population that India 
has. The sample size also needs to be moderate across all the hotspot zones. The other important factor 
is to satisfy adequate infrastructure requirements is to take care of the affected individuals with proper 
medical care and support. While RT-PCR testing is the best quality level as it is profoundly explicit, it 
is a very tedious, relentless, and muddled manual procedure that is hard to come by. Besides, the 
affectability of RT-PCR testing is a profound factor and has not been accounted for reasonably and 
steadily to date [7], and introductory discoveries in China indicating moderately poor sensitivity [8].  

An elective screening technique that has additionally been used for COVID-19 screening has been 
radiography assessment, where chest radiography imaging (e.g., chest X-Ray (CXR) or computed 
tomography (CT) imaging) is led and broke down by radiologists to search for visual markers related 
with SARS-CoV-2 viral disease. The pivot around which the proposed mathematical model revolves 
to give a predictive response for detailed detection and diagnosis of COVID-19 is based on radiography 
image i.e. X-Ray & CT Scan. It was found in early investigations that there is a distinct difference 
between chest radiography pictures of normal patients with those tainted with COVID-19 [9–11], with 
some proposing that radiography assessment could be utilized as an essential instrument for COVID-19 
screening in plague areas [12]. For instance, Huang et al. [10] distinguished that most of the COVID-19 
positive cases in their examination introduced reciprocal radiographic variations from the norm in 
CXR pictures. Guan et al. [11] recognized COVID-19 positive cases in their investigation, introduced 
by studying the radiographic anomalies, for example, ground-glass opacity, respective irregularities, 
and interstitial variations from the norm in CXR and CT pictures. In addition to this conventional 
process, the novelty of the detection algorithm lies in correctly determining the stage of COVID with 
a severity score tag. It would thus offer valuable information in the screening process quickly. The 
technique would also act as an aid to the conventional PCR based method to isolate the affected 
individuals quickly and efficiently.  

In this article the proposed methodology involves a Deep Learning (DL) model in combination 
with a Classical Machine Learning (ML) Model to detect COVID-19 based on Chest Radiography & 
other medical & pathological vitals. The deep network architecture then acts on the radiography feed (X-
Ray) and predicts an outcome at the evaluation stage. With intrinsic viewpoint of medical practitioners, 
we identified three key pathological parameters namely, neutrophil count, lymphocyte count, 
leukocyte count and the value of C-Reactive Protein (CRP) which goes through abnormal levels when 
coronavirus is contracted. All these parameters are duly incorporated in the machine learning model to 
make the analysis more realistic. The structural and pathological details of the parameters of the 
patients are incorporated in the machine learning model for training purpose. 

All things considered, radiography assessment can be directed quicker and have more prominent 
accessibility in the chest radiology imaging frameworks in the present days [13]. It can be said that 
this imaging technique can be a decent supplement to RT-PCR testing especially since CXR imaging 
regularly proceeds as a major aspect of the standard method for patients with a respiratory complaint [14]. 
Moreover, it can be proposed that as the COVID-19 pandemic advances, there will be a more 
noteworthy dependence on versatile CXR due to the previously mentioned advantages [15]. 

2. Material and methods 

Inspired by the requirement for a quicker understanding of radiography pictures, various artificial 
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intelligence (AI) frameworks based on deep learning have been proposed [16]. The results have 
demonstrated to be very encouraging as far as precision in recognizing patients tainted with COVID-19 
employing radiography imaging, with the attention principally on HRCT imaging [17–20].  

Chest X-Ray is one of the common imaging modalities for envisioning and evaluating the basic 
results of thoracic illnesses, giving pictures of malady movement and treatment reaction. Magree et al. [21] 
recorded the rate of pneumonia affirmed with X-Ray imaging and exhibited a high occurrence, which 
guided the later anticipation and treatment of immunization. Jacobi et al. [15] depicted the most well-
known appearances and examples of lung variation from the norm on chest X-Ray in COVID-19 and 
recommended that clinical network can every time depend on versatile chest X-Ray than CT scan. 
Wong et al. [22] exhibited that discoveries at chest radiography in patients with coronavirus disease 2019 
habitually demonstrated bilateral lower zone consolidation, which crested at 10–12 days from the 
beginning of the symptoms. Borghesi et al. [23] introduced a test chest X-Ray scoring framework and 
applied it to hospitalized patients with COVID-19 to measure and screen the seriousness and 
movement of COVID-19. Distinctive from these considers the authors center around the viral 
pneumonia screening and expect to build up a quick and exact calculation to separate viral pneumonia 
from non-viral pneumonia and ordinary controls for the anticipation and control of a potential episode. 

Wang et al. [24] proposed a feebly directed order and limitation structure, Rajpurkar et al. [25] 
built a 121-layer thick convolutional neural system that can play out the undertaking at a level 
exceeding the expectations of the radiologists, and Wang et al. [26] acquainted a consideration model 
which gives a spotlight on the injury zone and along these lines additionally improved the detection 
capabilities. Besides, numerous endeavours [27,28] have been made to explore neural network-based 
grouping models for pneumonia recognition and the separation among viral and bacterial pneumonia, 
expecting to encourage fast referrals for kids who need immediate medications. Such arrangement 
models may be used to recognize viral and non-viral pneumonia since the classification of viral 
pneumonia depends on the cases with profoundly visual appearances in image data. The benefits of 
the medical Internet of Things (IoT) have been critical in the effort to avert a pandemic of COVID-19. 
Deep learning (DL) models may be developed in conjunction with IoT to free up medical staff and 
doctors to handle additional patients. According to coronavirus studies, various study publications have 
demonstrated that numerous probable cases of infection have been detected utilising DL models that 
are used to identify coronavirus using X-ray, CT scan, and ultrasound as input [29]. The authors of the 
mentioned article created a system for early stage detection of affected persons using IoT modalities. 
Previously, with 98 percent accuracy, ResNet101 in combination with Faster Region CNN (FRCR) 
was utilised to identify infected cases that were suspected positive [30]. Multiple ConvNet models 
were employed in this study framework, including CheXNet, SqueezeNet, ResNet18, ResNet101, 
VGG19, DenseNet201, Inceptionv3, and MobileNetv2. This methodology was validated using 423 
cases of COVID virus infection, 1485 cases of viral pneumonia, and 1579 patients with non-diagnostic 
chest X-ray (CXR) pictures. A 3D convolutional neural network (3DCNN) was used to identify 
COVID-19 from other illnesses [31]. On the basis of attention-based deep 3D multiple instance 
learning (AD3D-MIL), an approach for fully automated screening of COVID-19 was devised [32]. 
The AD3D-MIL learned from labels distributed according to the Bernoulli distribution, which makes 
the method extremely efficient. M3 Lung-sys CT screening system is a suggested multi-task multi-
slice deep learning system that aids in the detection of coronavirus-infected individuals [33]. The 
framework was inspired by the current advancements in deep learning models for automated 
identification of coronavirus illness. The suggested methodology based on ensemble learning (EL) will 
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benefit both doctors and healthcare professionals in determining whether patients have COVID-19 (+) 
or healthy circumstances. The automated diagnosis of suspected COVID-19 instances is handled by a 
custom-built deep ensemble learning model and IoT-based architecture. This ensemble model 
combines InceptionResNetV2, ResNet152V2, VGG16, and DenseNet201. With medical sensors that 
monitor chest X-ray methods, deep ensemble learning is utilised to identify an illness. This dataset was 
utilised experimentally and was divided into two classes (COVID-19 (+) and healthy. In comparison 
to existing models, the suggested model will demonstrate improved efficiency and expediency in 
detecting coronavirus suspected patients. AD3D-MIL was trained and tested on 460 CT images. The 
following article describes how DCNN was developed using a dual-sampling approach and online 
attention refinement. This network was used to locate infection sites and to evenly redistribute 
pneumonia-infected sites. According to our testing, the DCNN was applied to 2,757 CT scan pictures 
of 2,057 patients. As a result, it is safe to presume that the precision of the impacted region is still 
lacking. DL-CRC, or DL-based chest radio classification, was developed for identifying individuals 
with confirmed coronavirus infection using chest X-ray [34]. The DL-CRC uses data augmentation 
and a generative adversarial network to construct simulated coronavirus-infected X-ray pictures. DL-
CRC was used to evaluate multiple CXR datasets. The generative adversarial network (GAN) was 
designed as a support classifier model for the generation of synthetic CXR pictures. The created 
framework, CovidGAN, was invoked and used to distinguish other viral pneumonias from coronavirus 
infections [35]. CovidGAN was evaluated using 192 CXR pictures. It is uncertain whether any type of 
cross-validation was conducted on the CovidGAN design. VGG19 was utilised in the following article 
to construct an automatic technique for image classification. The image quality was enhanced by 
applying pre-processing techniques to eliminate sample bias. However, data fusion techniques can be 
used to improve classification accuracy. Using a ConvNet, a new transfer learning (TL) technique for 
categorising coronavirus suspected patients was introduced [31]. Varela-Santos et al. report a series of 
experiments utilising supervised learning models to accurately classify medical images from COVID-19 
coronavirus patients and other lung disorders. This work uses picture texture feature descriptors, 
convolutional neural networks and feed-forward on freshly constructed COVID-19 databases. An 
automated approach that can diagnose COVID-19 disease from chest X-rays and computed 
tomography images of lungs was developed [36]. 

The traditional approach, RT-PCR is a very good technique to identify the healthy individuals 
with a higher accuracy. In the process, the technique also successfully identifies COVID affected 
individuals as well with classification accuracy varies from 65% to 95% [37]. Most of the COVID 
related works have been centred around CT scan and X-ray images. Individually the radiology images 
and the pathology data can be combined to have higher prediction accuracy for both healthy individuals 
and coronavirus affected individuals [13]. From radiology view point the diagnosis has a high 
percentage of accuracy for detecting COVID patients correctly but it sometimes fails to identify the 
healthy individuals. To strike a balance the authors have introduced the pathological data in 
combination with radiology images with a decision fusion on top of them. This approach essentially 
makes the prediction for COVID patients and normal ones with high accuracy in an equally likely 
fashion. Hence, the authors have proposed a multi hypothesis-based situation where pathological data 
in addition with the X-ray images make the model a balanced one. Secondly, most of the research 
papers have stopped at the detection level, i.e. COVID patient or Healthy patient. But the authors have 
extended the work a little further to again categorize the COVID patients into mild, severe and critical 
classes. Last but not the least, they have tried to wrap the entire architecture into an embedded 
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architecture for easy deployment. More importantly, the activation of geo-fencing and the necessity 
for tracking, testing and isolating is emphasized in the finishing pipeline.  

In order to detect and isolate coronavirus infected persons, the entire value chain has been placed 
under an IoT based ecosystem. The IoT technology allows point of care facilities isolate and prescribe 
the necessity for hospitalisation for COVID patients. This type of model development is for the first 
time reported in this article as the best of author’s knowledge. 

The end to end solution pipeline for this deployable architecture is given in Figure 1.  

 

Figure 1. The complete solution pipeline for the deployable architecture. 

The inputs to this engine are radiography image and pathology data. Based on this a decision is 
made whether a person is COVID positive. Then the latter half of the pipeline is only for the COVID 
subjects. The stage classification would help in analysing the seriousness of the case. Moreover, the 
IoT enabled system would trigger an alarm, necessary for isolation of COVID subjects. 

2.1. Data set & pre-processing 

Chest X-Ray Images were collected from North Eastern Indira Gandhi Regional Institute of 
Health and Medical Sciences, India. The images obtained are first normalized and re-sized into [224 
X 224] and shuffled, and placed under the training & test sets, respectively. To address the class 
imbalance issue, the authors had performed a data augmentation technique for both the radiology and 
pathology samples. For the radiology set of images they used orientation related transformation 
technique viz-a-viz rotation, reflection, translation etc. to augment the present data samples. An 
identical technique is performed to augment the minority data in pathological type. The technique used 
is SMOTE (Synthetic Minority Oversampling Technique) [38]. The training set has pre-defined labels 
whereas the test set has no pre-defined labels associated. The number of images and their respective 
classes as divided under the training and test sections is given in Table 1.  
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Table 1. Number of training and test images for CNN model training & validation. 

Label Training Images Test Images 

COVID 1030 510 

NORMAL 2080 220 

The distribution of the patients of Indian origin only is shown in the following Figure 2, 

 

Figure 2. Description of patients corresponding to radiographic images and pathological data. 

The other pre-processing technique which the authors have applied to the training data is an 
augmentation technique. The different augmentation methods used are rotation, reflection, and shear 
as discussed earlier. The augmentation technique is especially important since the developed model 
would be used where the images would be captured from different X-ray machines.  

2.2. Proposed methodology 

Table 2. Machine learning model parameters. 

Model: Optimizable Tree Optimized Hyperparameters Optimizer Options 

Surrogate Decision Splits OFF      Max No of Splits 73   Bayesian Optimization

Accuracy 82% Training 

Time 

300 S 

Total Misclassification Cost 101 Iterations 30 

 

Prediction Speed ~17000 

observations/sec 

Split Max 

Deviance 

Reduction 

Training 

Time 

TRUE 

Training Time 58.164 sec     
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This mathematical model for COVID detection is based on machine learning and a deep learning-
driven algorithm. The machine learning algorithm takes pathological data as its input feed to identify 
the presence of COVID. The data set contained age, gender, leukocyte, lymphocyte & neutrophil count 
as parameters. The data was trained using the Classification Learner App in MATLAB, so the model 
with the highest accuracy could be achieved. The details of the trained model along with the different 
performance evaluation parameters are provided in Table 2 for better understanding. 

The other important aspect of this paper emphasizes the power of a combined hypothesis, based 
on the pathological study as explained above, and AI-enabled radiography assisted technique for 
COVID detection. This AI-enabled method is powered by a powerful multi-layer convolutional neural 
network, also known as a deep neural network in short. Many pre-trained networks are available, but 
the authors have chosen the networks which had been successfully used in the field of medical imaging 
and related works [39]. The authors have compared the performances of different network architectures 
for the same dataset and the result is given in Figure 3.  

 

Figure 3. Comparison test result for different architectures used in this research. 

So, the deep network used by the authors is ResNet50 for further analysis for its best performance 
and wide use in this field among others. For this research the authors have used pre-trained ResNet50 
DNN. The ResNet50 is a multi-layer Direct Acyclic Graph (DAG) Network, pre-trained to perform 1000 
Image Classifications, and has been previously trained on millions of images. The concept of Transfer 
Learning helps to re-use a pre-trained network as per the requirements by replacing the final few layers. 
The next important step is to tune the network to achieve the optimum most performance. The above 
steps are performed to obtain the most optimum model, to be used for classification. ResNet50 
architecture along with the residual units, size of the filters and the outputs of each convolutional layer 
is given in Figure 4. The figure also shows the extraction of deep residual features (DRF) from the last 
convolutional layer of this network. The representation kXk, n in the convolutional layer block 
describes a filter of size k and n channels. FC 1000 represents the fully connected layer with 1000 
neurons. The number on the top of the convolutional layer block denotes the repetition of each unit. 
nClasses denotes the number of output classes. 

By virtue of transfer learning, the authors have tuned the final hidden layers with respect to our 
data set. The weights earlier/initial hidden layers remain unaffected. The same approach was adopted 
since training DNN from the scratch is unrealistic in terms of time which can be in order of months 
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even. Hence this kind of a transfer learning based approach on a pretrained network helps to achieve 
the desired results within a finite time. The convolutional blocks of a ResNet are different from those 
of the traditional networks because of the existence of a shortcut connection between the input and 
output of each block. Identity mappings when used as shortcut connections in ResNets [40], can 
provide better optimization and reduced complexity of analysis. This also allows one to use deeper 
ResNets for its faster for training and computationally less expensive behaviour than the conventional 
networks i.e., VGGnet. The objective of this part is to distinguish between “COVID” class, and 
“NORMAL” class subjects based on radiography images using this model. Furthermore, the authors 
have tried to classify the different stages of “COVID” based on the CXR images. The same has been 
achieved by a severity score tag and a stage annotation.  

As mentioned earlier input to this system includes CXR images and pathological data. So, the 
authors have developed two separate models to act on those. A pre-trained ResNet50 DNN based 
architecture with transfer learning was used for the CXR images. An Optimized decision tree was used 
for the pathological data set. The individual prediction goes through a decision fusion (probabilistic 
approach) to make the final detection. Once this step is accomplished, the rest of the pipeline of our 
workflow is applicable only for COVID affected individuals. As the first step, they have trained a 24-
layer series DNN to predict ground glass opacity (GGO) and lung consolidation values. 

 

Figure 4. ResNet-50 architecture used in this research. 

Once the correct identification of COVID is achieved, the next algorithm classifies the stage of 
COVID based on a COVID score. The COVID score is determined by the combined effect of opacity 
and consolidation score, which are used to characterize the condition of the lungs. To determine the 
opacity & consolidation scores, the authors have proposed a deep network-enabled layer graph-based 
regression model. This proposed model predicts the opacity and consolidation score to determine the 
severity of the disease. This 24 layered deep network with the last layer conforming to a regression 
node, is used to calculate the respective severity scores. Based on this severity score, the authors have 
proposed a rule-based mathematical model to correctly determine the stage of COVID. The rule-based 
mathematical model is developed on a MAMDANI based fuzzy inference system (FIS) [41]. Even for 
medical experts, diagnosing certain disorders is tough. Data mining was invented to solve this issue. 
It finds information in a database. Data mining has several subfields. Fuzzy logic is a subfield. It is 
used in various domains including control theory, AI, and medicine. Gayathri et al. used fuzzy logic to 
predict the risk of breast cancer [42]. The goal of this suggested work is to diagnose breast cancer 
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faster by decreasing the factors. The features were retrieved using Linear Discriminant Analysis (LDA) 
and trained using the Mamdani Fuzzy Inference Model (MFIM). With the use of cardiovascular risk 
factors, A study intends to provide a medical diagnostic support system for early detection of heart 
disorders. This clinical data-based fuzzy cardiovascular diagnosis is validated with sensitivity and 
specificity [43]. 

The authors have developed the final module of the COVID-19 Detection and Isolation system 
based on the above studies. Based on the evaluated Ground Glass Opacities and Lung Consolidation 
Values in the previous step, a Fuzzy Inference System was developed by the authors to predict the final 
COVID score. The Final COVID Score led to the final categorization of stages for COVID affected 
individuals namely Mild, Severe, Critical. The authors have used such a model due to its popularity 
for medical diagnostic purposes. The fuzzy logic is a rule-based method used for classification without 
any learning. The methodology works around the concept of values and is very much applicable where 
the decision is based on the values of distribution from two or more variables as input and there could 
be one or more output classes. Each input or output class can be defined by a set of membership 
functions to determine the degree of belongingness to a group. 

The authors have classified the stages of COVID as mild, severe, and critical, respectively. The 
basic symptoms associated with the defined stages are as follows- 
(1) Mild: no symptoms, mild coughing, and fever. 
(2) Severe: dyspnea, hypoxia. 
(3) Critical: respiratory failure, shock, multi-organ failure. 

In this case, the input classes are opacity & consolidation scores. The two input classes are 
individually defined by three triangular membership functions, respectively. The output class is the 
COVID Score defined by three triangular membership functions conforming to ‘Mild’, ‘Severe’ & 
‘Critical’ Classes.  

In respect to the above symptoms, the lung condition can be explained in the following manner. 
In addition to this radiography classification problem, the novelty that the authors added in this method 
is to classify the set of COVID Images as per their stages. The metric used to determine the correct 
stage are Ground Glass Opacity (GGO) & Lung Consolidation. GGO is a hazy increased opacity in 
lung parenchyma without the obscuration of the underlying vessels. At the initial stage, the virus 
invades the alveolar epithelium, and replicates in the epithelial cells, causing the alveolar cavity to 
leak, and the alveolar wall or the alveolar space to become inflamed or thickened [44,45]. The 
consolidation is the increased lung opacification with the obscuration of the underlying vessels. As 
inflammation progresses, the body reacts and a strong inflammatory reaction that results in large 
exudation in the alveoli. 

The airspace opacities like ground-glass opacities and consolidations are the most frequent 
findings in COVID, often bilateral peripheral distribution particularly at the lower zone. The central 
parenchymal abnormalities, pleural involvement is rare (3%) [46–48]. The severity score is based on 
the involvement of bilateral bronchopulmonary segments [49]. The 18 segments of both lungs were 
divided into 20 regions. Each of the segment involvement carries scores of 0, 1, and 2 if parenchymal 
opacification involved 0%, less than 50%, or equal or more than 50% of each region. The optimal 
score of 19.5 is identified as severe COVID-19 with 83.3% sensitivity and 94% specificity. 
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2.3. Decision fusion algorithm 

Any decision fusion algorithm plays a crucial role in the multi-hypotheses situation and hence 
can be seamlessly used in clinical diagnostic procedures as well. The concept of multi-hypotheses will 
act as a valuable second opinion to doctors and hence will be an enabler for any diagnostic-based 
approach. The developed system involves data fusion for individual predictions conforming to 
different data. These individual predictions go through a decision fusion system or algorithm for the 
final prediction. A smart medical system based on the Internet of Things can be defined as a 
technological means of transmitting remote physiological data and medical signals to a monitoring 
centre for analysis and diagnosis over a communication network [50]. Generally, the system consists 
of three components: a monitoring centre, medical sensors, and a server-based data fusion algorithm. 
Data fusion is an efficient method for making the best use of enormous amounts of data from many 
sources. Multi-sensor data fusion aims to combine data from numerous sensors and sources in order 
to make inferences that would be impossible with a single sensor or source [51]. On one side, the 
medical IoT allows for the effective capture and integration of medical information, allowing for the 
promotion of health. Data fusion is a vital component of the medical IoT. It cannot avoid enormous 
multisource diverse data integration and data exchange challenges. In the network, audio, video, data 
and text are all captured. Personal health promotion reports are created and various tracking 
interventions are undertaken after intelligent processing of acquired data [52]. Moreover, the network 
involves many spatiotemporal data, such as health data geographical distribution, medical data, 
physical findings data, health monitoring and evaluation, equipment operation, and factors. They are 
dispersed in heterogeneous systems with varying data specification standards and analysis methods. 
Because of this, it must employ data fusion methods to combine medical and health resources. Thereby 
boosting the total worth of people's health assets [53]. Numerous medical Internet of things technology 
studies have been carried out abroad [54]. A data fusion tree is designed to improve data fusion 
efficiency and illustrate the technology's status. 

To elaborate the first of the two sub diagnostic measures in this screening processes is based on 
pathological data of subjects. In the second screening step, the authors have proposed the idea of 
combining the conventional radiography-based classification with a severity score tag to help the 
doctors to identify any presence of strain more correctly with an annotated stage.  

Since the authors have created a dual pool hypothesis scenario from two different algorithms 
hence, the authors are proposing an algorithm "Whoever Scores Most" in terms of a probabilistic 
metric to correctly recognize the affected subject concerned in decision conflict scenarios. The 
algorithm finally scans through the sets of inferences and finally returns the output of the class which 
has a higher probability score. The equation of the methodology is described below in Equation 1. Let 
say X represents the single output given two different output from different algorithms for all output 
classes. 

X= arg max (S1, S2)          (1) 

C1 represents the output class predicted by the machine learning algorithm for pathological data. 
S1 represents the probability score for class C1. 
C2 represents the output class predicted by the deep learning model for radiographic images. 
S2 represents the probability score for output class C2. 
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2.4. IoT enabled deployability for geo-fence activation 

To make this composite system available to the diagnostic facilities, the authors have used the 
concept of the internet of things (IoT), a technology extremely popular in telemediation. Internet of 
Things (IoT) has been a trusted friend of various medical facilities ever since its inception. The concept 
of telemedicine or remote patient monitoring system has evolved in many ways with the use of IoT 
based devices. The authors have used the concept of IoT to complement this AI-based patient 
diagnostic system to increase reliability and performance. The Intel® Movidius™ Neural Compute 
Stick (NCS) is a new piece of hardware used for enhancing the inference process of computer vision 
models on low-powered edge devices. The Intel Movidius™ product is a USB appliance that can be 
plugged into any device such as laptops, Raspberry Pi, or even tablets. The authors have deployed the 
trained models into the Intel Movidius™ Neural Compute Stick for a classification of COVID affected 
subjects. The power of the device lies in running parallel ML models, hence useful in the multi-
hypothesis scenario. The device is chosen by the authors for its popularity in different medical imaging 
activities by other peer groups. 

These models were initially designed and trained on a capable host machine (a development 
computer in this case). Then one of the supported Application Programming Interface (API) was used 
to profile, tune, and compile to convert the model to the format supported by the VPU hardware. With 
the newly formatted model, the model was validated, and the working prototype was generated on the 
same host machine. The hardware is physically connected to the machine and was accessed using 
available methods in the API. The development process using NCS is explained in Figure 5. 

 

Figure 5. The development process of the NCS is presented in the workflow diagram. 

The philosophy of the AI software architecture to be used for deployment is described in Figure 6. 

 

Figure 6. The philosophy of the AI software architecture to be used for deployment. 
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The steps followed for the inference on the edge are explained in Figure 7. 

 

Figure 7. The setting up the server to test a COVID-19 positive or normal sample. 

The basic steps for drawing inference from the developed models are as follows. 
 The server needs to be set to start up on the localhost. In this case, it is the ‘UP Squared Device’. 

‘UP Squared Device’ is a piece of hardware from intel with which the NCS is connected.  
 A set of encryptions was performed on the same to secure the files or folders from access to the 

outside world 
 The set of collected radiography images from the different subject or single individual was 

uploaded to the UP Squared for using it for the server. 
 The models running on the Intel® Movidius™ stick can be used for drawing inference on the set 

of Radiography Images. 
 It was observed that using the Intel® Movidius™ product on a ‘UP Squared device’, there is no 

difference in classification accuracy to the development machine; which in my case was a Windows 
10 Home with Intel Core™ i3 6006U with only a slight difference in the time the classification 
process took to complete. The platform was marginally faster than my computer. 

The authors have proposed a network architecture for making the medical facility an IoT enabled 
unit. The same is being proposed for faster detection and isolation of COVID-19 subjects. The network 
architecture is prototyped by an IoT enabled alarm system using a Raspberry Pi device. The Raspberry 
Pi is virtually connected with the server so that for any COVID-19 positive subject, the server can 
trigger specific actions on the IoT network for communicating with the Raspberry Pi device. The 
results that are captured from the classification of images in the server are sent to the Raspberry Pi 
device where the actions like turning on a red LED and a buzzer when COVID-19 is detected and turn 
on a blue LED when the classification results when “Normal” being detected have been programmed 
and activated. This is an amazingly simple Proof of Concept (POC) which shows a possibility of its 
powerful applications that can save time for medical staff and could help save lives through early and 
accurate detection. A flow diagram of the entire value chain of this intelligent framework is given in 
Figure 8. 
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Figure 8. A flow diagram of the entire value chain of this intelligent framework. 

3. Results 

 

Figure 9. Misclassification error plot of machine learning model on pathological data. 

The different performance evaluation criteria were used to validate the mathematical model based 
on pathological data is given in Figure 9 and Figure 10. 
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Figure 10. Receiver operating characteristics plot of machine learning model on pathological data. 

The model evaluation parameters have been given in Table 3. 

Table 3. Confusion matrix table. 

Evaluation Parameter Score 

Sensitivity (COVID) 95.89% 

Specificity (Normal) 0.0% 

Specificity (COVID) 98.72% 

The area under the curve (AUC) of ROC 0.77 

Misclassification Error 0.18 

From Table 3, the authors have deduced that the two main factors that play a pivotal role in 
selecting the correct model are sensitivity & specificity. In simple terms and as an explanation for the 
above observations the authors find that “COVID” (Target Class) detected as “COVID” (Output Class) 
defines the sensitivity. It is observed that the sensitivity test for “COVID” has a higher accuracy return. 
In addition to it, the false negatives concerning the candidate being predicted as “Normal” are '0'. The 
other false negative conforming to the pneumonia aspect is of little importance since the same requires 
addressable medical measures. 

The other part analogous to sensitivity is specificity. The authors have defined the same in two 
ways. One is defined by “Normal” (Target Class) detected as “Normal” (Output Class). The authors 
find that the sensor data are not overly specific in nature. The “Normal” detected as “COVID” ('0' in 
number) is important but not to a greater extent since they do not risk spreading the disease. The 
number of false positives may bring the accuracy of the model down but from medical criticality, it is 
of low severity over the false-negative aspect. 

The basic step that the authors have employed for the implementation of the AI-based radiography 
assisted technique is the concept of transfer learning. The concept is useful when the output classes do 
not match the classes in the pre-trained model. It also helps in the reduction of training time and does 
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not require the model to be developed from scratch. The entire flowchart of the process is explained 
in Figure 11. 

 

Figure 11. Basic workflow diagram for convolutional neural network (CNN) based deep 
learning model for radiographic image for COVID-19 identification. 

The following figures elaborately illustrate the method to choose the optimum model. The 
evaluation criterion that the authors have kept is the confusion matrix & validation accuracy. 

To choose the right methodology for data splitting, the authors have directly compared the hold-
out & one of the cross-validation training data and its performance on a new test set which was not a 
part of the training or validation samples. The test data was also previously labelled. The comparison 
between k-fold and hold-out for model validation is given in Table 4. 

Table 4. Comparison between K-fold and hold-out parameters. 

Validation Type Evaluation Parameter Scores in % 

K- fold Sensitivity 98.0 

Specificity 22.7 

Precision 74.6 

Accuracy 75.3 

Hold out Sensitivity 92.2 

Specificity 22.7 

Precision 73.4 

Accuracy 71.2 

To obtain the right model, the authors have framed the design methodology in the following 
manner: 

(1)  For the first type, the authors have divided the model in training & hold-out sets in the split 
percentage of 80 to 20. the authors have tuned the hyperparameters as well to make the most out 
of this method. 
(2) In the second type, the authors have used the K-fold cross-validation concept, to reduce the 
misclassification error and increase the model accuracy in return. The k-fold validation shuffles 
the training set randomly & iteratively and deploys K different algorithms to automatically return 
5 models which can individually be evaluated on some performance criteria to obtain the best out 
of the lot. the authors have chosen the value of K as ‘5’ in this case.  

Hence in this case, the authors find that the deep network model for K-fold validation exhibits 
higher accuracy in terms of detecting COVID for the test set. The other part analogous to it is 
Specificity being defined by “Normal” (target class) detected as “Normal” (output class). the authors 
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find that the radiography images are overly sensitive in nature and hence can be the ideal tool for 
detecting these kinds of cases. The other two important factors which help us to know the right model 
are false negatives & false positives. “COVID” Detected as “Normal” accounts for the false-negative 
part. The K-fold validation model again stands out for this case as well. The “Normal” detected as 
COVID is important but not to a greater extent since they do not risk spreading the disease. The 
precision rate then also is observed to be under reasonable limits of around 74.3%. 

Similarly, the immediate next objective was to choose the correct K-fold Validation model from 
the 5 Models as returned by the proposed methodology. The comparison table for the selection of the 
right model based on a performance evaluation metric is given below in Table 5. 

Table 5. Comparison between 5 different k folds of ResNet50. 

Different K Fold ResNet50 Models Evaluation Parameter Scores in % 

K = 1 type Sensitivity 98.0 

Specificity 22.7 

Precision 74.6 

Accuracy 75.3 

K = 2 type Sensitivity 82.4 

Specificity 31.8 

Precision 73.7 

Accuracy 67.1 

K = 3 type Sensitivity 82.4 

Specificity 18.2 

Precision 70.0 

Accuracy 63.9 

K = 4 type Sensitivity 84.3 

Specificity 45.5 

Precision 78.2 

Accuracy 72.6 

K = 5 type Sensitivity 82.4 

Specificity 18.2 

Precision 70.0 

Accuracy 63.0 

The indicative inference that the authors may draw from the above comparison chart is as follows: 
(1) ResNet with K= 1 Deep Network has outperformed the other models in terms of overall accuracy 

(75.3%). The sensitivity rate (~ 98%) is also higher in the case of ResNet-1. The false-negative 
rate (~2%) is also within acceptable limits. The only drawback of the model lies in the number of 
false positives & hence the specificity as well. A little compromise on this point is still acceptable 
since the true objective of the model is met. In line with this, the precision rate is hence considered 
to be under reasonable limits around 74.6%. 
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4. Discussion 

 

Figure 12. (a) Confusion matrix for the suggested multi-hypothesis based testing 
architecture on the training data (b) Confusion matrix for the suggested multi-hypothesis 
based testing architecture on the testing data. 

 

Figure 13. Classification of test subjects on radiography image with percentage score, 
followed by classification activation mapping (CAM): annotated results to show affected 
pulmonary area. 

The proposed multi-hypothesis based model was assessed using the test data and shown in Figure 
12. The COVID-19 class has an overall accuracy of 99.31 percent. Precision 99.80 percent, specificity 
99.54 percent, sensitivity or recall 99.18 percent, and F-1 score 0.99 were demonstrated for the 
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suggested architecture for test dataset. Further validation of the model's performance is accomplished 
through the use of a indicative visualisation technique called Class Activation Mapping (CAM). Using 
a gradient map or score, this method enables us to visualise the reason behind a classification. The red-
colored zones in our example enabled the model to classify the image as belonging to any class. Some 
sample observations/ classifications on images along with the CAM zones are given in the following 
Figure 13. 

One of the novelties of the proposed methodology lies in the calculation of the opacity & 
consolidation to identify the severity of the disease. The data set was split into training and hold-out 
validation set for model development.  

The deep neural network-based regression learning algorithm that the authors have selected is 
done iteratively. the authors had initially developed two machine learning model based on statistical 
features from the Regression Learner App and then compared the same with the deep learning. 
Needless to mention that the deep learning model for calculation of opacity & consolidation 
outperformed the machine learning model. 

The machine learning model was developed on Statistical Features like skewness, kurtosis, 
variance, smoothness, energy, entropy, homogeneity, contrast, etc. The model was obtained by training 
on these features. The machine learning models obtained for both consolidation & opacity are of 
compact regression tree type where ‘Bayesian Optimization’ was employed to get the best model from 
the entire set. The root means square error (RMSE) obtained for both opacity and consolidation are 
1.5023 and 2.4975, respectively. The deep network that the authors have proposed to perform such 
regression related tasks was compared to the machine learning models and the observations are framed below:  

(1) Firstly, the deep network for both opacity & consolidation has a considerable low RMSE of around 
1.7416 and 2.1394, respectively.  

(2) The severity degree for both opacity & consolidation is given in terms of a score. Based on the 
score, the criticality condition for the subject is determined. 
The fuzzy inference system, rules, and surface viewer to visualize the system architecture, the 

output decision on different input set & the output score distribution is defined as follows in Figure 14, 
15 and 16. The detailed mathematics corresponding to the membership functions and fuzzy rules, 
which can be found in the refereed research article [43]. 

 

Figure 14. The MAMDANI based fuzzy inference system (FIS) architecture for input to 
output relationship. 
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Figure 15. The MAMDANI based fuzzy inference system (FIS) rule viewer diagram. 

 

Figure 16. The output surface viewer for MAMDANI based fuzzy inference system (FIS). 

Table 6. Severity score tag for images. 

The observations related to the severity scores (in %) with respective classes or COVID stages 
related to different X-Rays and the two model comparisons are given in Table 6. The observations as 
tabulated the authors find that how the deep learning model outperforms the machine learning one. 
The class prediction is done using the fuzzy inference system as explained in the previous part and 
explained in Table 7 and Figure 17. 

Image Name Opacity Consolidation COVID Score Class 

Image 1 49 45 43 Severity 

Image 2 48 45 43 Severity 

Image 3 58 47 80 Critical 

Image 4 30 46 43 Severity 

Image 5 37  35 42 Severity 
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Figure 17. Classification of different COVID images. 

Table 7. Classification of different COVID images. 

The suggested model's validation analysis is depicted in Figure 18. The proposed framework 
outperforms existing deep learning models, according to the results. The suggested framework 
surpasses existing models in terms of sensitivity, area under the curve (AUC), specificity, F-measure, 
and accuracy.  

 

Figure 18. The performance of proposed multi-hypothesis based model is compared to 
comparable deep learning models. 

Moreover, from existing literature survey on CXR images, FRCR has demonstrated a 98 percent 
accuracy rate. The classification accuracy of the DL-CRC was 93.94 percent. 3DCNN had an accuracy 

Image 
Actual 

Machine Learning 

Predicted 
Deep Learning Predicted 

Results 

Opacity Consolidation Opacity Consolidation Opacity Consolidation 

Image 1 55 50 37 34 49 45 Severe 

Image 2 50 50 37 35 48 45 Severe 

Image 3 34 62 37 37 37 58 Critical 

Image 4 54 47 35 35 47 46 Severe 

Image 5 29 34 35 37 35 30 Severe 
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of 87.5 percent, a sensitivity of 86.9 percent, a specificity of 90.1 percent, and a sensitivity of 86.9 
percent. CheXNet attained a classification accuracy of 97.9 percent, a specificity of 97.9 percent, and 
a sensitivity of 98.8 percent, respectively. Another architecture, VGG19, achieved a sensitivity of 93 
percent in total. CovidGAN had a 95 percent accuracy rate. The categorization accuracy of the ACCA 
was 91.1 percent. AD3D-MIL had a classification accuracy of 97.9 percent, an AUC of 99 percent, and 
a kappa score of 95.7 percent. As a result, the developed framework beats these methodologies, with 
an accuracy of 99.31 percent and an F-measure of 0.99. Additionally, the suggested model obtains 
sensitivity, specificity, and AUC values of 99.18 percent, 99.54 percent, and 0.9921, respectively. Thus, 
when compared to existing coronavirus diagnosis methods, the proposed model exhibits a better degree 
of performance reliability. 

Our present set-up is a deployed solution based on Intel® Neural Compute stick and Intel® AI 
Dev cloud. The presence of cloud is of utmost importance in any IoT ecosystem-based implementation. 
We mainly address two objectives-(i) Raising an alarm inside the point of care facility to isolate 
COVID affected individuals, (ii) Requirement for hospitalization. The present set-up is piloted using 
Intel® AI dev cloud which is a free cloud. No other free cloud can give us the benefits in comparison 
to this one. The commercial versions are expensive to be used for research purpose. 

 The reasons we have chosen Intel AI computing stick as our embedded deployment option are 
as follows, the Intel® neural Compute stick platform provides reduced computational and time 
complexity when compared with the Raspberry pi 4 GB module, NVIDIA Jetson Nano and NVIDIA 
Xavier CUDA. The Figure 19 and 20 elucidates the learning time and prediction time complexity in 
different Single-Board Computer (SBC) platforms. 

 

Figure 19. The learning time of different SBCs. 
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Figure 20. The prediction time of different SBCs. 

This paper for the first time reports the development of an AI enabled smart software framework 
based on IoT for the stage specific detection of COVID-19 patients. The solution pipeline as discussed 
here is a more composite and robust one since it includes a two-step screening process. The algorithm 
is developed into a deployable form and hence would act as an aid to the health practitioners & other 
medical staffs that can provide a valuable second opinion in the existing diagnostic process. The state-
of-the-art system is currently deployed in an intel-based computing platform and uses intel AI dev 
cloud (free). This algorithm is not intended to replace the more acceptable PCR process but act as an 
aid to the same. In addition to being an aid, it is also a highly cost-effective solution for the Prediction 
of COVID-19 Cases. The developed system has been verified through a large-scale clinical testing as 
well. The PCR-test is specific but has a lower sensitivity of 65–95%, which means that the test can be 
negative even when the patient is infected. The duration of such an examination is also long. The 
reported method is a more effective one economically and technically as well. As part of the future 
scope a stand-alone application with only the models can be integrated with enterprise systems such 
as Hospital Information system for healthcare institutes, radiology information system and laboratory 
information systems for diagnostic centers or point of care facilities. 
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