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Abstract: Unfolding of a coarse-grained COVN protein from its native configuration shows a linear 

response with increasing temperature followed by non-monotonic double peaks in its radius of 

gyration. The protein conforms to a random coil of folded segments in native state with increasingly 

tenuous and globular structures in specific temperature regimes where the effective dimensions of 

corresponding structures D  1.6–2.4. Thermal agitation alone is not sufficient to fully eradicate its 

segmental folding as few local folds are found to persist around such residues as 
65

L, 
110

Y, 
224

L, 
374

P 

even at high temperatures. 
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1. Introduction 

CoVID-19 pandemic is attracting unprecedented attention [1–5] in investigating the corona 

virus and its constituents. Corona virus involves a number of proteins, RNA and a huge list of 

crowded inter- and intra-cellular constituents in its assembly and replication. In an initial 

investigation even with a coarse-grained computer simulation model it is not feasible to consider all 

constituents that are involved in its assembly and replication. We examine the structural dynamics of 

a nucleocapsid (COVN) protein [6] consisting of 422 residues which plays a critical role in 

packaging the viral genome RNA into ribonucleocapsid and virion assembly [7–9]. For the sake of 

simplicity and to develop a clear understanding of the basic nature of the conformational evolution, it 

would be interesting to examine the structural response of a free COVN as a function of temperature 
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before systematically including different types of proteins, solute, solvent etc. of the underlying host 

space.  

2. Materials and method 

‘Protein folding’ [10,11] remains an open problem despite enormous efforts for over half a 

century. Because of the enormity of challenges (e.g. time scale for huge degrees of freedom with 

all-atom approaches), coarse-graining [12–17] remains a viable choice to gain insight into the 

fundamental mechanism of conformational dynamics. Using a simplified yet efficient and effective 

coarse-grained model [18,19], a large-scale Monte Carlo simulation is performed to study the 

thermal response of COVN. Our coarse-grained model has already been used to investigate structural 

dynamics of such proteins as histones critical in assembly of chromatin [20], lysozyme [21] and 

alpha-synuclein [22] key in amyloid, protein (VP40) in ebola virus [23], membrane proteins [18,19] 

for selective transports, etc. COVN is represented by a chain of 422 residues in a specific sequence 

in a cubic lattice [18,19]. Each residue interacts with surrounding residues within a range (rc) with a 

generalized Lennard-Jones potential, 

, rij < rc        (1) 

where rij is the distance between the residues at site i and j; rc=8 and  = 1 in units of lattice 

constant. A knowledge-based [12–17] residue-residue contact matrix (based on a large ensemble of 

protein structures in PDB) is used as input for the potential strength ij [14] in phenomenological 

interaction (1). With the implementation of excluded volume and limits on the covalent bond length 

constraints, each residue performs its stochastic movement with the Metropolis algorithm, i.e. with 

the Boltzmann probability exp(−E/T) where E is the change in energy between new and old 

position. Attempts to move each residue once defines unit Monte Carlo time step. All quantities are 

measured in arbitrary unit (i.e. spatial length in unit of lattice constant) including the temperature T 

which is in reduced units of the Boltzmann constant.  

Simulations are performed on a 550
3
 lattice for a sufficiently long time (10

7
) steps with a 

number of independent samples (100–1000) over a wide range of temperatures. Different sample 

sizes are also used to verify the reliability of the qualitative trends from our data presented here. A 

number of local and global physical quantities such as radius of gyration, root mean square 

displacement of the center of mass, structure factor, contact map, etc. are examined as a function of 

temperature. The conformation of the protein exhibits a monotonous response from a random-coil of 

folded (globular) segments in native phase to tenuous fibrous conformations on raising the 

temperature; it exhibits a non-monotonic response with a re-entrant conformation involving 

enhanced globularity before reaching a steady-state conformation on further heating. While most 

segmental folds disappear in denatured phase while some persist even at a very high temperature (see 

below). 

Before presenting our data, it is worth pointing out the justification of our model in context to 

investigation of proteins associated with the Corona virus which has only four structural proteins of 

which the envelope protein CoVE is the smallest with 76 residues. The primary and secondary 

structures of CoVE have shown to have three domains (see Figure 1 of Schoeman and Filelding [24] 
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and references therein) with N- and C-terminals separated by the transmembrane segment. These 

domains are faithfully identified and reproduced from the contact profiles [25] generated by the 

coarse-grained model used here. COVN is a relatively large protein as pointed above. Chang et al. [7] 

have identified N- (residues 45–181) and C-terminal (residues 248–365) domains of COVN that can 

bind to nucleic acids i.e. RNA. Thermal modulation of the contact profiles of COVN generated by 

the same coarse-grained model exhibits the evolution in segmental assembly that may be consistent 

with the responsiveness of the two regions (see below). Although it would be difficult to guaranty the 

results of a model for a quantitative comparison with laboratory observations, it appears that our 

coarse-grained model does capture some of the basic features of the proteins we have investigated so 

far. 

3. Results and discussion 

 

Figure 1. Variation of the average radius of gyration (Rg) with the temperature. Some 

snapshots (at the time step t = 10
7
) are included at representative temperatures: (i) 

T=0.0100, (ii) T=0.0140, (iii) T=0.0150, (iv) T = 0.0200, (v) T = 0.0230 (first 

maximum), (vi) T= 0.0240 (minimum), (vii) T = 0.0268 (second maximum), (viii) T= 

0.0320. Size of the self-organized segmental assembly represents the degree of 

globularization. In snapshots, gold spheres represent residues in contact, the large black 

sphere is the first residue 
1
M and large grey sphere is the last 

422
A (see Figure S1). 

Figure 1 shows the variation of the average radius of gyration (Rg) with the temperature. At low 

temperatures (T = 0.010–0.015), the radius of gyration remains almost constant with its lowest 

magnitude (Rg  22.5) in its native phase. Unlike many proteins (globular in native phase), COVN 

appears to be expanded into a random coil (see below) signature of an intrinsically disordered [7] 

protein. Raising the temperature (T = 0.015–0.023) leads to a monotonic increase to its maximum 

Rg  54.64 ± 2.60 at T = 0.0230. On further heating, the radius of gyration decreases sharply in a 

narrow range of temperature (T = 0.023–0.025) to a minimum value (Rg  38.17 ± 1.72) at T = 0.0246 

before it begins to increase with the temperature (T = 0.0250–0.0268) again until it reaches a second 
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maximum (Rg  51.00 ± 2.24) at T = 0.0268. Beyond the second peak, the radius of gyration continues to 

decay slowly towards its saturation with the temperature in denatured phase (Rg  41.4 ± 2.17 at T = 0.032, 

Rg  38.23 ± 1.96 at T = 0.050). Note that this trend is clear despite a relatively large fluctuation in 

data. To our knowledge, we are not aware of such a non-linear thermal response of such proteins. We 

believe this is due to unique structure of COVN.  

Representative snapshots (Figure 1, see also Figure S1) of the protein at selected temperatures 

shows the variations in nature of the self-organizing structures over the range of temperature. For 

example, in native phase (T = 0.010, 0.014) we see local segmental folding with a chain of folded 

blobs in a random-coil-like conformation (see below) in contrast to a global folding one generally 

expects. Local folds begin to disappear at high temperatures but still persist in smaller sizes. 

Segmental folds appear to be distributed along the entire protein backbone at both maxima and at 

high temperatures in denature phase while the segmental folds at the minimum and in native phase 

are localized. 

 

Figure 2. Structure factor S(q) versus wavelength (lambda ()) comparable to radius of 

gyration of COVN on a log-log scale at representative temperatures.  

How to quantify the distribution of residues over length scales ? To assess the mass (distribution), we 

have analyzed the structure factor S(q) defined as, 
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where rj is the position of each residue and |q| = 2/ is the wave vector of wavelength . Using a 

power-law scaling S(q)  q
-1/

, one may be able to evaluate the power-law exponent  and estimate 

the spread of residues over the length scale . Overall size of the protein chain is described by its 

radius of gyration (Rg). Therefore, the structure factor over the length scale comparable to protein 

size (Rg) can provide an estimate of the effective dimension D of the protein conformation via 

scaling the number of residues (N) N  D
 where D = 1/. Variations of S(q) with the wavelength  

comparable to radius of gyration of the protein over the entire range of representative temperatures 

are presented in Figure 2. 

In the native phase (T = 0.0150) where the radius of gyration is minimum (Rg  22.5), the 

effective dimension D  2.053 of the protein shows that the overall spread is not globular. It is rather 

random-coil, a chain of segmental globules (see Figure 1). In unfolding-transition regime (T = 0.020), 

the effective dimension D  1.726 decreases while retaining its partial folding towards C-terminal (see 

below). Continuous increasing the temperature leads to maximum unfolding (T = 0.0230) where the 

protein chain stretches to its maximum gyration radius (Rg  55) with lowest effective dimension 

D  1.579 with a couple of unfolded segments (see below). Further heating leads to contraction with 

a lower radius of gyration (Rg  22.5, T = 0.0246) with a higher effective dimension D  2.389, 

which indicates more compact conformation than that in its native phase, a thermal-induced folding. 

The effective dimension begin to reduce with increasing the temperature further as the protein 

conformation approaches a tenuous structure, i.e. D  1.579 at T = 0.036.  

 

Figure 3. Average number (Nr) of residues in contact along the backbone of COVN as a 

function of temperature. Top Figure shows the contacts at representative temperatures in 

a native phase (T = 0.015), at the first (maximum) peak of the radius of gyration (T = 

0.0230), and in a highly denatured phase (T = 0.0320). These regions of marked in the 

center three dimensional Figure with the scale at the upper right corner. Right Figure 

shows the thermal response of the contact profile of specific centers of folding.  
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Let us look closer into the local structures by examining the contact map in depth as presented 

in Figure 3 (see also Figure S2). First, we notice that the number of residues (Nr) within the range of 

interaction of each residues along the backbone, is higher at lower temperatures. However, the 

distribution of Nr is highly heterogenous and concentrated towards specific segments (
65

L, 
110

Y, 
224

L, 
257

K, 
370

K, 
374

K). The degree of folds appears to be significant at these globularization centers (in 

particular segment 
367

T-
380

A) even at higher temperatures although it is highest in native to denature 

transition region (see also Figure 1). In general, the modulation of the contact profiles shows the 

evolution in segmental assembly [Figure S2] that may be consistent with the responsiveness of N- 

and C- terminal domains [7]. Thermal response of contact profiles of each center of folding appears 

similar except 
65

L which exhibits a non-linear (somewhat oscillatory) response (see the right section 

of Figure 3). However, it is worth pointing out the the response of the contact profile of 
65

L 

resembles the thermal response of the radius of gyration. Despite the lowest magnitude of contacts (Nr) 

of 
65

L with respect to other globularization centers i.e. 
224

L, its unusual variations with the 

temperature (Figure 3) may induce global response in radius of gyration (Figure 1). 

4. Conclusion 

Thus, the thermal response of COVN protein is non-linear with a random coil of folded blobs in 

native phase to a systematic unfolding, refolding, and unfolding as the protein denatures on 

increasing the temperature. The radius of gyration increases on raising the temperature, first 

monotonically from a minimum in its native state to a maximum value. Further heating leads to a 

sharp decline (the protein contracts) in a narrow temperature range followed by increase (protein 

expands) again to a second maximum with a local minimum in between. The radius of gyration at the 

local minimum is larger than that in its native state but the segmental globularization is localized 

towards the second half (C-terminal) while the first half (N-terminal) of the protein acquire a fibrous 

configuration. Continued heating causes COVN to approach a steady-state value with a small 

contraction rate. 

Scaling analysis of the structure factor is critical in quantifying the overall spread of COVN 

by evaluating its effective dimension D. In native phase, D  2.053 (T = 0.0150, native phase), 

D  1.716 (T = 0.0200, intermediate denature phase), D  1.579 (T = 0.0230, first maximum), D  2.389 

(T = 0.0246, local minimum), D  1.651 (T = 0.0268, second maximum), D  1.726 (T = 0.0360, 

denatured). These estimated are consistent with the thermal response of the radius of gyration. Active 

zones of folded segments are identified from a detailed analysis of the contact map profile where the 

degree of folding can be quantified from the average contact measures. Segmental denaturing around 

residues such as 
65

W, 
110

Y, 
224

L, and 
374

P by technique other than thermal agitations may eradicate 

the specific functionality of COVN. 
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