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Abstract: The hydrodynamical problem of flow in proximal renal tubule is investigated. 

Axisymmetric flow of viscous, incompressible fluid through the proximal renal tubule that 

undergoes linear reabsorption with slip at the wall is considered. The stream function is used to 

transform the governing equations to system of ordinary differential equations. The analytical 

solutions for velocity components, pressure distribution, fractional reabsorption and the shear stress 

are found. The effect of slip parameter and reabsorption rate on the flow have been investigated. The 

points of extreme values for the axial and radial velocity components are identified. The solution is 

applied to physiological data from human and rat kidney, and the results are presented in tables and 

graphs. 
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1. Introduction  

The importance of kidneys in controlling body water and salt content through filtration process 

has triggered interest among renal physiologists and mathematicians to better understand the 

hydrodynamics in the smaller parts of a kidney. The functional component of a kidney is called 

nephron or renal tubule, and each human kidney contains one million nephrons. This functional unit 

plays the vital role in the process of filtration and regulation. The two kidneys receive over a liter of 

blood every minute and eliminate nearly 1.5 liter of excess water and waste product in the form of 

urine every day, if the kidneys function is not normal that would cause health problem. Once the 
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blood is supplied to the kidney, the filtration process passes through two different steps in the 

nephron: glomerulus and renal tubule. In the first step, glomerulus creates an ultra-filtrate of body by 

sieving out blood cells and large plasma proteins and in the second step, part of the filtrate 

reabsorbed back to our body in the renal tubule, otherwise the body would lose valuable materials 

and water. As described in [1], 80% of the original filtrate is reabsorbed back to the system at the end 

of the tubule. 

The study of viscous flow in a permeable tube has wide application in medical and biological 

problems. Different mechanisms such as, membrane filtration, blood flow through arteries and veins, 

urine flow through proximal tubule of a kidney and process of artificial dialysis depend upon the 

modelling of permeable narrow tubes. Different researchers [2,3,4,5] proposed experimental and 

theoretical models of narrow permeable conduit. In the last couple of decades extensive research 

have been done on the study of hydrodynamics flow through a renal tubule. Macey [1], [6] was the 

pioneer who did research in this area. Macey in [1] found the solution to the radial and axial velocity 

component and mean pressure drop for axially symmetric flow in a tube with linear wall 

reabsorption. Macey [6] also studied the physiological quantities when the wall reabsorption is 

exponential function of the axial length. Gilmer [7] with his coauthors has discussed the resistance 

property of the fluid through the renal tubule of rat. Achala and Shreenivas in [8] found the estimate 

for extreme values of the axial velocity components. The hydrodynamics of viscous fluid flow 

through a porous slit with linear absorption was studied by Haroon et.al [9]. In this work the authors 

converted the system of partial differential equations (PDEs) to a single ordinary differential 

equation (ODE) with the help of stream function, and they found the explicit expression for velocity 

components, pressure, and wall shear stress in rectangular coordinate geometry. 

The behavior of fluid flow can be observed by the viscosity or shear stress that are related by 

the stress strain relationship. The viscosity and shear stress can be measured in viscous flow if fluid 

adheres no-slip condition on the wall. Many fluids like polymers and solutions do not satisfy the 

no-slip boundary condition on the wall, these fluids slip with different slip velocity at wall depending 

upon the magnitude of shear stress. First time Navier [10] presented the slip boundary condition and 

Helmholtz [11] improved the slip boundary condition by introducing the slip coefficient occurring 

due to slip on the wall. Mooney [12] further improved the assumption of Navier, and he concluded 

that slip velocity depends more generally on the shear stress at the wall and validated his research on 

experimental technique. Different researchers [13,14,15,16,17] used the power law equation to relate 

the slip velocity and shear stress at the wall. In this study we have focused on the slip velocity which 

is linearly proportional to the shear stress on the wall. Rao et al. [18] study the slip effect of fluids in 

a channel, later Elshahed [19] extended his research for blood flow with slip boundary condition. 

Few studies [20,21,22] have been seen in literature for the different flow geometries with slip 

boundary conditions. As indicated in the work of Priezjev et al. [23], the value of effective 

slip-length affects hydrodynamic quantities. For highly lubricated tube the non-vanishing axial 

profile is expected. Palatt et al. [24] studied the velocity and pressure of the flow. Extending this 

work, A. M. Siddiqui et al. [25] added the slip effect to the problems and found expressions for 

velocity components, pressure drop, shear stress and fractional reabsorption. 

The purpose of this paper is to study the effect of slip condition on a flow through proximal 

tubule that undergoes linear reabsorption. For this study, we have considered an incompressible 

viscous filtrate that passes through a proximal tubule. This work is important to understand 

physiological quantities of a filtrate flow through proximal tubule when slip is observed near the wall. 
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To the best knowledge of the authors, no work has been reported so far that combines slip condition 

and linear reabsorption to a flow through proximal tubule. 

This paper is organized in five sections. Section 2 formulates the problem and underlying 

assumptions considered in this study. In section 3 the coupled PDEs are converted into a single ODE 

and analytical solutions to axial velocity, radial velocity, and average pressure drop and wall shear 

stress are discussed. Sections 4 discusses application of the result by taking physiological data of 

human kidney for linear and uniform reabsorption with slip and no slip boundary condition. 

Numerical results are presented through graphs. Finally, in section 5 conclusion of the present 

research is made through the main observations. 

2. Problem formulation 

Consider an incompressible viscous proximal fluid that passes through a permeable proximal 

tubule of radius R and length L. Cylindrical coordinates are used to describe the dynamics, because 

the fluid has velocities both in the radial and axial direction, which is described by axisymmetric 

geometry in Figure 1. We choose z−axis through the center of the tubule, and r is chosen normal to it. 

The radial and axial velocities are denoted by vr (r,z) and vz (r,z), respectively. 

 

Figure 1. Geometry of the tube with linear reabsorption. 

The filtrate is supplied to the proximal tubule at a constant flow rate of Q0 in the axial direction. 

As the fluid passes through the tubule, it becomes under the influence of linear reabsorption that 

varies in the axial direction. The reabsorption is assumed to be a linear function of z, and has form of 

a0 + a1z, where a1 < 0 and a0 > 0. 

Neglecting the inertial effects, the continuity and momentum equations of the flow in 

cylindrical coordinate become 
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(3) 

where         and        are radial and axial velocities, respectively; p(r,z) pressure in the tube 

and µ is the coefficient of viscosity. On the axis of the tubule, at r = 0, 

 

               
   

  
                

(4) 

The filtrate that becomes in contact with the tubule wall undergoes linear reabsorption and slip. 

The slip-length, which we denote it by η, can be interpreted as the extrapolated distance from the 

wall of the tubule where the axial velocity becomes zero. The axial velocity profile of such flow 

from the axis of the tubule to the point where vz = 0 is shown in Figure 2.  

 

Figure 2. Slip length. 

Consequently, 

at r = R, 

 

                          
   

  
  

(5) 

The boundary conditions at the entrance and exit of the tube are given below. 
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Introducing vorticity        
   

  
 

   

  
, the system of equations in (1) can be written as 

   

  
 

  

 
 

   

  
   

  

  
   

  

  
 

  

  
   

  

  
 

 

 
  

 

   (8) 

   (9) 

  (10) 



84 

AIMS Biophysics  Volume 8, Issue 1, 80–102. 

Introducing stream function Ψ(r,z) such that 
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equation (8) is satisfied identically by this function. Moreover, equations (9) and (10) have the 

following forms. 
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where    
  

    
 

 

 

  
 

  

   .. The pressure term can be eliminated from (12) to get a single fourth 

order partial differential equation, which becomes the governing equation of our problem together 

with the boundary condition defined below. 

E4Ψ = 0,  (13) 

where               The boundary conditions can be described in terms of the stream function as 

follows. 

 

    At r = 0, 
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At z = 0, the flow rate at the entrance, is 
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Boundary conditions on the pressure are 
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At r = R  
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3. Solution of the problem 

The homogeneous equation in (13) can be solved using separation of variables by choosing the 

stream function have the form of 

where          
 

 
   

 ,, and F(r) and G(r) are arbitrary functions, and a0 and a1 are the same 

parameters defined in the problem formulation. One can see that the choice of      is made in such 

a way that its derivative becomes vz(R,z), which is the reabsorption on the wall. Substitution of 

equation (19) in the governing equation (13) gives the following system of homogeneous equations. 

                   

    
                    (20) 

The boundary conditions for the functions F(r) and G(r) are obtained with the help of equation (19) 

and the boundary conditions in equations (14), (15) and (17). 

Boundary conditions on F(r), 

Boundary conditions on G(r), 
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Since F(r) and G(r) are both functions of r, equation (20) results in 
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(26) 

At this stage, the above system of ODEs is similar to the one found in [26], but the solution 

turns out to be different as we enforce the slip boundary condition. In solving equation (25) we find 

the general solution 

                ln             (27) 

where A, B, C and D are arbitrary constants. Applying the boundary conditions in equation (21) 

                      (19) 

 

 
            

 

  
 
 

 
                                 

   (21) 

                                               (22) 



86 

AIMS Biophysics  Volume 8, Issue 1, 80–102. 

we get C = D = 0. Moreover, the boundary conditions in equation (22) gives    
 

        
 and 

  
     

       
. Therefore, substituting these values back in equation (27) we arrive at 

      
 

        
                   

(28) 

Similarly, we integrate equation (26) to get 
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where K, L, M and N are arbitrary constants, and they are obtained by applying boundary conditions 

in equations (23) and (24). Consequently, we get 

        

  
 

    
     

  

    
  

  

       
   

 

 
    

 

   
  

   
 
    

    
  

   
 

    
 
 

  
 

  

 
   

 

Therefore, the explicit solution to G(r), 
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Alternatively, G(r) can be written in terms of F(r) as 

      
  

   
     

   
        

        
 
  

  
 

    

    
   

(31) 

The functions F(r) and G(r) described in the stream function of (19) have been found as described in 

equations (28) and (30). This completes the process of finding the solution to the stream function, 

Ψ(r,z). Using (19) together with (28) and (30) we get the explicit form of Ψ(r,z) as 

            
  

 
   

 

        
                

   
 

    
 

  

    
    

 

 
 

  

    
  

     
 
 

  

    
 

  

 
    

      
  

   
       

   
 

    
 

 

  
  

 

 
       

 

 

 

 

(32) 

Alternatively, the stream function in (32) can be written in compact form as 
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(33) 

3.1. Velocity components 

The radial and axial velocities are obtained using the relation in (19) and the stream function in 

(32). The radial component of the velocity is 
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The axial component of the velocity is 

        
 

    
     

 

 
 
 

  
   

   
 

 

 
     

  

 
     

       

 
 

     

       
  

 

 
 
 

  

     

 
 
   

   
 

 

 
     

  

 
    

    
 

       
   

 

 

 

(35) 

which can also be expressed in a compact form as 

         
  

  
          

    
    

  
 

  

        
 

   
  

       
         

   

  
 

     

    
  

    

    
  

 

 

(36) 

We note that in the absence of the slip parameter η the velocity components we found here are 

equivalent to the works reported in [1,8,26]. 

 

3.2. Extreme values of velocity components 

Extreme values and the points at which they occur are obtained using basic calculus by finding 

the first and second order derivatives. 

Extreme values of the radial velocity 

Differentiating equation (34) with respect to r, we get 
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The critical numbers, the point where first order derivative vanishes, for (37) become 
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Now, differentiating equation (37) and using the result in (38) we get 
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. 

The second order derivative test ensures that there exist extreme values for vr. The maximum radial 

velocity occurs at 
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(39) 

From the above results one can observe that the effect of slip parameter is significant on the 

maximum radial velocity and on the point where it occurs. Absence of slip condition in the above 

equations gives the critical number and the extreme values that are discussed in Macey [1]. 

Extreme values of the axial velocity 

Differentiating equation (35) with respect to z, we get 

From the above equation 
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. Since z ∈ [0,L] which is valid when    
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Differentiating the same equation one more time 

    

   
  

   

    
   

  

 
 

  

  
   

(41) 

Extreme values of vz have the following forms. 

1. Let   
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a. When     , then 
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b. When     , then 
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a. When     , then 
    

     . Thus Thus    has maximum at    
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b. When     , then 
    

     . Thus    has minimum at    
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For various scenario, the axial velocity attains its extreme values at    
  

  
. Specifically, for a 

decreasing linear reabsorption,     , the axial velocity attains its minimum value inside the tubule 

when    
  

  
. If one removes the slip coefficient  , the extreme values of the axial and radial 

velocities found above become equivalent with their counterpart that was found in [8]. 
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3.3. Pressure distribution 

Pressure has an important effect both in glomerular filtration as well as proximal tubule 

reabsorption process. This pressure is analytically solved from equation (12) and the stream function 

by substituting velocity components (34) and (35) in equation (9) and (10) we get 

  

  
 

 

    
  

   

   
 

       
  
 

   

  
     

     

       
 

    

 
 

   

  
    

 

 

  

  
  

           

        
  

(42) 

By integrating the above two equations, the following expression to the pressure difference is 

obtained. 

              
 

        
 
     

  
     

       
  

  

 
   

       
   

     

       
 

    

 
 

   

  
   

 

 

(43) 

When η = 0, the above equation agrees with the pressure difference given in the work of Macey in [1]. 

3.3.1. The mean pressure distribution 

The average pressure distribution is defined as 
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Using equation (43), the average pressure is obtained as 

      
 

        
  

    

  
     

       
  

  

 
    

        
   

  

      
 

    

 
   

 

 

(45) 

3.3.2. The mean pressure drop 

The mean pressure drop between the entrance,    , and exit,    , of a proximal tubule is 

expressed as                   . This pressure drop is obtained from equation (45). This pressure 

drop is expressed as 

       
  

        
 
   

  
       

  

 
       

  
  

       
 

    

 
    

(46) 

The average pressure drop obtained by Macey [1] and Achala [8] can be obtained from the 

above equation when η = 0, i.e with the absence of slip condition. 
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3.4. Fractional reabsorption 

The axial flow rate inside a tube is obtained from the following relation 

         
 

 

         
 

 

   
  

  
    

 

 

The above integral gives the flow rate at a point z as 

                        (47) 

The fractional reabsorption is the amount of original filtrate that has been reabsorbed through the 

tubule wall. If α represents the fraction of original fluid that has been reabsorbed when the fluid 

reaches the exit, at z = L, then 

  
     

  
                            

(48) 

The axial flow rate at the exit of tubule, QL, is computed from equation (48) and (33). 

              
  

 
     

(49) 

The above equation shows that the axial flow rate is independent of the slip parameter η. Inserting 

equation (48) in the above equation, we get 

              
  

 
     

(50) 

If      in the above equation, this result matches with the one obtained by Macey . If the 

reabsorption starts at the entrance of the tubule, then the rate,   , of linear reabsorption,       , 

has a minimum value of  
   

 
. 

The mean pressure drop in the tubule can be expressed in terms of the average flow rate between the 

entrance and exist. 

       
  

        
 

 

  
 
     

 
  

       
   

      
          

   

 
   

 

 

(52) 

Moreover, the mean pressure drop have the following upper and lower limits. 

    
   

 
  

(51) 
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The above relation agrees with the work done by Macey [1] when a1 and η are set to be zero. 

3.5. Wall shear stress 

Shear stress is defined as 
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Differentiating equations (34) and (35) according to the above relation, we get the shear stress as 
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3.6. Some special cases 

Special cases of the solution to the stream function, axial and radial velocities are discussed and 

compared to results obtained by other researchers. 

Case 1: Slip flow with constant reabsorption 

In this case parameters      and    , thus equations, thus equations (32), (34) and (35) 

become 
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Case 2: No-slip flow with linear reabsorption 

In this case parameters η = 0 and a1 6= 0, thus equations (32), (34) and (35) become 

          
  

   
      

  

 
         

   
         

    
  

                  
  

 
 

  

  
   

          
  

  
          

    
    

  
 

  

  
  

  

   
                 

       
 

  
  

    

  
      

       
   

 
             

        
  

    
  

   

   
 

 

 
     

  

 
    

   

 
   

 

 

 

 

 

(56) 

This axial velocity matches with the result reported by Macey [1] and Achala [8]. 

Case 3: No-slip flow with constant reabsorption 

In this case parameters η = 0 and a1 = 0. This is a special case of case 2, where a1 = 0. The three 

equations under case 2 become 

 

4. Results and discussion 

All physical quantities discussed in the previous sections are made to be dimensionless, so that 

the new, but equivalent non-dimensional parameters, are used in computations and graphing. 
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In previous sections we have found physiological quantities velocity components, pressure 

distribution, fractional reabsorption and shear stress of the flow. In order to evaluate performance of 

our result, we consider proximal tubule of rat kidney using the data given in [1,8,9] by: 

µ = 7 × 10
−3 

dyn.sec/cm
2
, Q0 = 4 × 10

−7 
cm

3
/sec, 

 R = 10
−3 

cm and L = 1 cm. 

According to Curthoys et al. [27] the proximal tubule is a part of the renal tubule next to the 

glomerulus, contributes for fluid, electrolyte, and nutrient homeostasis by reabsorbing 60–70% of 

water and sodium chloride. The remaining part of the filtrate pass through the tubule to be excreted 

in the form of urine. 

 

Figure 3. Effect of η on axial velocity. 

Under normal condition the fractional filtrate that has been absorbed in the proximal tubule 

would approximately be α = 0.8. The simpler case of constant reabsorption, (51) gives   
   

     
. 

Moreover, equation (52) is used to estimate the lower limit of a1. In the problem formulation, we 



94 

AIMS Biophysics  Volume 8, Issue 1, 80–102. 

have defined the linear reabsorption as a0 + a1z, and it is assumed to be a decreasing function with 

a1 < 0. Since the velocity components, average pressure drop and the wall shear stress are all depend 

on the linear reabsorption rate, it is understood that the parameter a1 affects their profile. 

The radial velocity component is observed to be very sensitive to changes in a1 that results in 

back flow either in radial or axial direction. 

In Figure 3, the effect on axial velocity is shown at various locations in the tubule. This axial 

velocity is observed to increase with η increases at every location we have selected for analysis. We 

also observe that the effect from η on vz is minimal near the axis and the entrance of the tubule. This 

effect gradually grows as we go further from the axis to the wall and from the entrance to the exit of 

the tubule. Moreover, vz is higher for a well lubricated proximal tubule than the tubule that is not 

lubricated. This is because the smoothness of the wall gives rise to a non-vanishing axial velocity 

near the wall, and hence results in a longer slip-length. 

 

Figure 4. Effect of a1 on axial velocity. 

Figure 4 indicates that there is a strong relationship between a1 and the axial velocity at various 

locations in the tubule. Both along the radial and axial directions, vz increases as |a1| increases. This 

is interpreted as smaller reabsorption gives rise to greater axial velocity. Near the mouth of the tubule, 

Figure 4d–4f, the change in a1 is not that significant, but as we go further along the tubule this goes 

up so that the effect becomes very high at the exit. Furthermore, the effect of a1 is very small near 

the axis of the tubule, and as we go further to the wall this effect becomes very significant. 
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Figure 5. Effect of η on radial velocity. 

When the slip-length is extended, the radial velocity is observed to decrease as shown in 

Figure 5. Near the axis and close to the wall of the tubule, the effect of η on vr is not significant. On 

the other hand, at the entrance the effect of η is very significant, and this effect diminishes as we go 

along the tubule. 
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Figure 6. Effect of a1 on radial velocity. 

In Figure 6 we choose                 and      to observe how vr changes at 

various locations in the tubule.  xcept when a1 = −10
−5

, the radial velocity is negative for most of 

the locations chosen. This negative velocity indicates the back flow both in the axial and radial 

directions. The reason for back flow is that when |a1| gets bigger, the reabsorption, a0+a1z, becomes 

smaller and goes to negative which gives rise to accumulation of filtrate in the tubule. The 

reabsorption vanishes at    
  

  
, beyond this point the inward flow starts to develop in the radial 

direction. For example, if    
  

      
    , the reabsorption will stop early at a point      , 

and from this point on ward the filtrate will flow back into the tubule. In Figures 6d–6f, one can see 

that the back flow is initiated from the end of the tubule towards it mouth. This is because, as shown 

in Figure 6c magnitude of radial velocity is greater at z = 0.9, which results in higher accumulation 

of filtrates that have flown back in radial direction. 
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Figure 7. Average pressure drop at z. 

As plotted in Figure 7a the average pressure drop decreases with η increases at every point in 

the tubule. This is because, as η is further away from the wall it increases the axial velocity near the 

wall, which in turn reduces the pressure drop. The pressure drop between the entrance and exit of the 

tubule also shows similar dependence on η. In Figure 7b, the average pressure drop increases with 

|a1|. Even though, the effect of a1 is not much significant on the average pressure drop at the 

beginning, but it gradually grows as we go to the exit. 

 

Figure 8. Wall shear stress at z. 

In addition to these, the wall shear stress is also influenced by the change in η. Figure 8a shows 

that the higher slip-length gives the lowers shear stress on the wall. When η = 0.001, which is ten 

times the radius of the tubule, the shear stress is nearly constant. Another physiological quantity that 

is affected by changing a1 is the wall shear stress. As shown in Figure 8b it is inversely related with 

|a1|. Specifically, near the end of the tubule the effect is very significant. 

From Table 1, it is noted that the decreasing value of reabsorption velocity causes to reduce the 

fractional reabsorption but the mean pressure drop in the lubricated proximal tubule increases with 

the decreasing value of reabsorption velocity. The increasing values of slip parameter show that 
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pressure rise decreases and decrease in pressure rise is high when fractional reabsorption is 90%. 

Table 2 indicate that ∆p is inversely proportional to reabsorption velocity, fractional reabsorption and 

slip parameter. It is noted through Table 3 and Table 4 that pressure difference increases with the 

decreasing values of linear reabsorption velocity and fractional reabsorption but decreases with the 

increasing values of slip parameter. 

Table 1. Fractional reabsorption, pressure difference and reabsorption velocity of fluid 

for slip flow with constant reabsorption (a1 = 0, η ≠0). 

η α a0 cm/sec       (0.21) dyn/cm2 

0.2 

90% 1.08 

15994.5 

0.4 7999.74 

0.6 5333.71 

0.8 4000.49 

1.0 3200.49 

0.2 

80% 0.96 

17454.2 

0.4 8729.8 

0.6 5820.48 

0.8 4365.58 

1.0 3492.58 

0.2 

70% 0.84 

18913.8 

0.4 9459.87 

0.6 6307.24 

0.8 4730.68 

1.0 3784.66 

0.2 

50% 0.59 

21954.8 

0.4 10980.8 

0.6 7321.33 

0.8 5491.28 

1.0 4393.16 

It is noted through Table 3 and Table 4 that pressure difference increases with the decreasing 

values of linear reabsorption velocity and fractional reabsorption but decreases with the increasing 

values of slip parameter. It is observed that pressure difference increases with the decreasing values 

of fractional reabsorption, uniform reabsorption and linear reabsorption velocity. The analysis shows 

that urine flow through lubricated proximal tubule requires the less amount of pressure difference 

when the lubrication on the wall and fractional reabsorption on the wall is high whereas the pressure 

difference is high for the linear reabsorption as compared to the uniform reabsorption. 
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Table 2. Fractional reabsorption, pressure difference and reabsorption velocity of fluid 

for slip flow with linear reabsorption. (a1 ≠ 0, η ≠ 0). 

η α a0 cm/sec a1 cm/sec       (0.21) dyn/cm2 

0.2 

90% 1.08 −10.29 

24696.6 

0.4 12322.3 

0.6 8195.86 

0.8 6132.31 

1.0 4894.08 

0.2 

80% 0.96 −9.14 

25183.7 

0.4 12569.3 

0.6 8362.76 

0.8 6259.15 

1.0 4996.88 

0.2 

70% 0.84 −8 

25679.3 

0.4 12820.5 

0.6 8532.43 

0.8 6388.06 

1.0 5101.34 

0.2 

50% 0.59 −5.61 

26699.1 

0.4 13337.5 

0.6 8881.74 

0.8 6653.53 

1.0 5316.48 

Table 3. Fractional reabsorption, pressure difference and reabsorption velocity of fluid 

for no slip flow with linear reabsorption (a1 ≠ 0, η = 0). 

α a0 cm/sec a1 cm/sec       (0.21) dyn/cm2 

90% 1.08 −10.29 3.96346 × 107 

80% 0.96 −9.14 4.04038 × 107 

70% 0.84 −8 4.11867 × 107 

50% 0.59 −5.61 4.27973 × 107 

Table 4. Fractional reabsorption, pressure difference and reabsorption velocity of fluid 

for no slip flow with constant reabsorption (a1 = 0, η = 0). 

α 90% 80% 70% 50% 

a0 cm/sec 1.08 0.96 0.84 0.59 

      (.21) dyn/cm
2
 2.56072 × 10

7
 2.79441 × 10

7
 3.02811 × 10

7
 3.51497 × 10

7
 

4.1. Application to the lubricated proximal renal tubule 

We have used physiological data of human kidneys to get the values of reabsorption velocity 
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and average pressure difference (∆p). Since length of proximal renal tubule in human body varies 

from 0.12 cm−0.21 cm. Therefore, we have chosen L = 0.21 cm. Radius of proximal renal tubule in 

human body varies between 0.00025 cm−0.0005 cm, therefore radius of proximal renal tubule is 

considered as R = 0.0005 cm. The present model suggests that the viscosity of urine in proximal 

renal tubule is µ = 6.9 × 10
−3 

dynsec/cm
2
 and flow rate of urine is Q0 = 7.9 × 10

−4 
cm

3
/sec. In Table (1–4) 

we have calculated reabsorption velocity and mean pressure drop (∆p) with the help of mathematical 

expression given in Eq. 52 and Eq. 53. In normal circumstances glomerulus pressure is believed to 

be about 45 mmHg which is a higher pressure than that found in capillaries elsewhere in the body. 

5. Conclusion 

In this paper, we obtain exact solution for two-dimensional flow through a proximal tubule with 

linear reabsorption and slip in cylindrical coordinate. The coupled partial differential equations are 

converted into a single equation in terms of the stream function. The exact expressions for velocity 

components, pressure distribution, average pressure drop, the wall shear stress, and fractional 

reabsorption are explicitly obtained. 

It is found that extreme values for the radial velocity exist at r =    
 

 
 

  

  
; for the axial 

velocity, the same occur at    
  

  
. For the fractional reabsorption  , it is also found that 

   
   

 
 

   

    
. In addition to this, for a reabsorption to occur     

   

 
, otherwise back flow 

would occur in the radial direction. Furthermore, from this work the following are also be observed. 

The physiological quantities discussed above depends on the slip-length and the reabsorption 

rate. There is direct relationship between the axial velocity and η, which is minimum at the beginning, 

but it gradually grows along the tubule. On the other hand, the radial velocity component decreases 

when η is increased. The average pressure drop and shear stress decrease as η is reduced. 

The axial velocity increases with increase in the value of |a1|. This relationship is interpreted as 

a smaller reabsorption gives rise to greater axial velocity. It is found that the radial velocity to be 

very sensitive to changes in the reabsorption rate, a1. When the value of  
  

  
 is very small, the 

reabsorption stops at early stage and it is followed by a back flow. The average pressure drop 

increases with |a1|, which gradually grows from the entrance to exit of the proximal tubule. The wall 

shear stress is inversely related with |a1|, and this relationship is very significant as one goes to the 

exit. 

The mathematical formulations and the analysis in this work are theoretical; assumptions were 

taken when the exact solutions are obtained. The smoothness or lubrication of the proximal tubule 

contributes to change in the slip-length η. Moreover, the gradient of absorption rate affects the 

velocity. We would like to mention that experimental work needs to be done to fully understand the 

flow nature and parameters that influence physiological quantities. This experiment includes the 

effect of reabsorption gradient a1 and η on velocity, pressure, flow rate and the shear stress.  
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