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Abstract: This paper fe
Fourier Transform

thejanalysis of the intramolecular OH stretching band obtained by
spectroscopy measurements. In order to characterize the effect of
ies of Bovine Serum Albumin (BSA) the two-state model is adopted
for the analysis of the®QH, stretching band. We assume that the OH stretching can be divided into two
different states of inter*molecular bonding. The results of this experimental work confirm that the
montmorillonite leads to a stabilization of the BSA structure. Also, the analysis of the spectra
temperature dependence shows a montmorillonite-induced higher thermal stability of the BSA in
respect to pristine BSA. Thus, this paper allows to highlight the importance of montmorillonite as
thermal bio-protector: this is also evidenced by the theory widely discussed in the following
introduction regarding the birth of the first life forms on earth in montmorillonite clay, in which the
protective role of the montmorillonite interlayer space is also highlighted. A FTIR analysis was
carried out to investigate the interaction of montmorillonite with BSA. Two different approaches, i.e.
Spectral Distance and Wavelet analyses, constitute two effective and innovative approaches for the
characterization of the thermal properties of pristine BSA and of BSA in the presence of
montmorillonite. The results allowed us to consider as BSA in the presence of montmorillonite has a
lower spectral sensitivity when the temperature changes and, therefore, the role of montmorillonite
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as a thermal bio-protector is motivated.

Keywords: bovine serum albumin, montmorillonite, Fourier Transform InfraRed Spectroscopy

1. Introduction

Many theories have been proposed on the origins of life on earth: in the Russian book of 1924,
Oparin hypothesized that simple molecules (CH4, NH3) reacted to form small bio-molecules and
bio-polymers (nucleotides, peptides,). They, then, evolve in multimolecular systems and, finally, they
gave rise to the first forms of life [1]. Later, in a book of 1929, Haldane proposed a similar theory
about the origins of life [2]: but, it was Bernal (1951) that suggested that clays had a fundamental

role in chemical evolution and in the origins of life due to their abilipy*tC8gbsorb, protect from
ultraviolet radiation and catalyze the polymerization of organic molecu eny Cains-Smith (1982)
has proposed that clays can act as genetic candidates [4]. Hence, t IUSN of organic molecules
and monomers in the layered structure of clays, such as montm ite apd’kaolinite, would favor
the formation and replication of biopolymers such as olynucleotides. In this
introduction, we present a summary of data relating to dj present in the literature to
show as montmorillonite could be considered the cr tion of the early life forms on
rotector of the montmorillonite clay.
particular in montmorillonite [5-12].

ordial life characterized by catalytic and
elow which show as the formation of RNA

easily in the water aif§\ therefore, could be mixed and give rise to chemical reactions [20-21]. We
assume that the evolutidn of the first life forms would have occurred within the earth's surface and
more precisely on the rock constituted from clay-rich soil layers. In fact, in the presence of water,
montmorillonite clay can form a filter and allow the soil layers to become impermeable [22-25].
There are three main groups of clay such as kaolinite, illite and smectite: the most common smectite
is montmorillonite, which is the main constituent of bentonite, derived by volcanic ash, and it is very
likely that it was present in the earth's crust in its primitive state. Based on the number and
arrangement of the tetrahedral and octahedral sheets contained in the layers of crystal structure,
silicate-based clays are classified into two different groups: minerals of type 1: 1 (a tetrahedral and
an octahedral sheet) and type 2: 1 minerals [26-29]. Therefore, there are two types of phyllosilicates:
those with a 1: 1 ratio, such as kaolinite, in which each lamella is formed by only two layers (one
octahedral and one tetrahedral) and the phyllosilicates with a 2: 1 ratio, such as montmorillonite, in
which a single layer is formed by an octahedral sheet interposed between two tetrahedral sheets and,
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moreover, there is the presence of weak Van der Waals bonds between the various layers [30-35].
Figure 1 schematically shows the schematic structure of montmorillonite.
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Figure 1. Schematic structure of montmorillonite with a
consists by two silica tetrahedral sheets with an interpos

H,0 (5%), which allows us to show as in the montm
of the Si*" cations with AI** within the tetra »and of the AI** cation with Mg?* in the
layer is: [7.8 (+4)] + [0.2 (+3)] + [3.4 (+3)]

+[0.6 (+2)] +[20 (-2)] + [4 (-1)] = 2/unit cell. So, these layers are characterized by an

excess negative charge, which is bala iv the giements in the interlayer spaces such as alkaline or
alkaline-earth cations, solvate by water molecules. Due to this peculiar structure,
montmorillonite has many ph properties such as a large surface area, high adsorption
capacity, swelling and io 6-39]. Moreover, the interlayer space of montmorillonite

depends on the degree tipn of the mineral: by increasing the number of water layers, the
crystalline lattice exagads

interlayer space, gerig§ating an increased space between the layers.
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Z
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Figure 2. Swelling of montmorillonite clay in water.
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Regarding the water absorption capacity, this property is very important for these clays. In fact,
clays can absorb or desorb water as a function of changes in the moisture content: as above reported,
when H,O molecules are absorbed, they fill the space between the various layers. Montmorillonite
has excellent water absorption properties; however, the interaction between the water molecules and
montmorillonite can produce swelling. The absorption of water molecules and the swelling of
montmorillonite determine to the formation of hydrated states and can give rose to hysteresis
phenomena. The montmorillonite swelling and hydration processes play a fundamental role for a
wide variety of engineering applications. Furthermore, the anisotropy of a wide class of clays is
reflected in a broad variable range of mechanical properties. The structure of hydrated
montmorillonite is shown in Figure 2: this anisotropy of montmorillonite can produce great
differences in the values of elastic constants, shear modulus, and Young’s modulus. Moreover, these
mechanical properties decrease with increasing hydration [40-42]. Furthermore, as regards the
thermal properties, montmorillonite is a good thermal insulator and, moreg it allows to increase
the thermal stability once added as an additive in many materials. Receg€ develojinents in the use of
aterials links soft

matter chemistry to hard matter sciences [43—46] and requires t of techniques and
approaches that to simultaneously detect the structure re-organizati at the nanoscale [47-49].
This is a significant area of research to produce ther i ts in the structure of the
composite material: in fact, the thermal barrier pr i ays are appreciated in many

applications involving the use of heat-resistant matefials and flanie retardants. The nanoclays have
been largely studied and used in polymer matrix coljposites o obtain greater thermal stability and
better flame retardancy properties. The variatigg,of th expansion, under the effect of heat, for
metals, polymers and ceramics was analyzed. , the order of magnitude of the thermal
expansion in polymers, metals and ceraasggs can Re indicated as follows: polymer> metal> ceramics.

and 3-5 ppm/<C for polymers, L ceramics, respectively [50]. Therefore, a higher thermal
stability of montmorillonite a :

polymers requires an i
and, therefore, can

evolution of early . The three main steps that would lead to the formation of the first life
forms with the birth ¢¥ a primordial genetic code are summarized below. Montmorillonite can
catalyze the formation of RNA oligomers in aqueous solution through the union of RNA nucleotides,
which in turn join together to form longer chains [51]. The extent of this catalysis depends on the
value of the negative charge present inside the montmorillonite and on the number of cations
associated with it. Under certain experimental conditions, it is possible to obtain oligomers of 40 to 50-mers
up to the length of small ribozymes [52-54]. As reported previously, the surfaces of the
montmorillonite layers have a negative charge: in wet conditions, the quantity of water and cations
present in the environment allow a variable space between the layers occupied by water and cations.
While, in dry conditions, these interlayer spaces are reduced and occupied by hydrated cations,
which hold together the layers. Therefore, montmorillonite is able to expand and contract its
structures maintaining its crystallographic integrity. Due to this ability, the oligomerization of RNA
nucleotides would occur mainly in the interlayer space parallel to the surface sheets of
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montmorillonite [55-58] (Figure 3). Consequently, for a development of the oligomerization process
of RNA nucleotides in the interlayer space of montmorillonite, we propose that it is moderately
expanded, i.e. in the presence of low quantities of water and cations [59-62] (Figure 3).
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Silica Tetrahedral sheet

e OLIGOMERS
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Figure 3. Schematic representation of the formatida 'of R ligomers in the interlayer
space in presence of low number of cations andfwater molecules.

As reported previously, the formation ¢ NA oligomers occurred in the space
between the parallel layers to the montmorillo S in the presence of a low amount of water.
During the rainy period, the water with iorig diffuses inside the interlayer space until it reaches

ume

Silica Tetrahedral sheet

Alumina Octahedral sheet 2nm

Silica Tetrahedral sheet

1,02 nm

Silica Tetrahedral sheet

Alumina Octahedral sheet

4 £ - silica Tetrahedral sheet

\ -
M TRIMER {

Silica Tetrahedral sheet

Alumina Octahedral sheet

Silica Tetrahedral sheet

Figure 4. Exit of the oligomers from interlayer space and positioning of trimers in a
position perpendicular to the sheets of adjacent layers.
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According to this theory, the RNA oligomers are protected by the montmorillonite layers, but,
after their exit from the interlayer space, they need protection from some prebiotic conditions such as
the high temperature and the high quantities of UV radiation. For this protection, it has been proven
that montmorillonite can also catalyze the formation of vesicles composed of simple aliphatic
carboxylic acids present in the prebiotic environment and that the clay particles and/or RNA
oligomers could encapsulate inside of these vesicles [65-66]. We propose that, in presence of
prebiotic conditions, the RNA oligomers can be encapsulated inside fatty acids-composed vesicles,
which provide protection and environments for further biochemical reactions (Figure 5). Furthermore,
these fatty acids-composed vesicles show permeability to the nucleotides in such a way as to allow
the nucleic acid to be stretched within them. They exhibit high thermal stability and keep DNA and
RNA oligonucleotides within them at temperatures between 0 <C and 100 <C [67]. Then, each fixed
trimer would be encapsulated with the closest oligomer attracted to a vesicle in which a
codon-anticodon complexes might emerge (Figure 5): the accompanying gliggmer should evolve in
RNA transfer (tRNA) by binding with one of its complementary sequg % odon) to the fixed

trimer considered as a codon and by the presence of new nucleoti enter through the
membrane of this vesicle defined as codon-anticodon vesicle. Hoyever 2e oligomer would be
encapsulated alone or with the others in a vesicle in which t merg*could increase in length
by binding together and/or adding new nucleotides present duce possible ribozymes.

Silica Tetrahedral sheet
RIBOZYME VESICLE CODON-ARGCODOY |aiumina Octahedral sheet

Silica Tetrahedral sheet

Sifica Tetrahedral sheet

Alumina Octahedral sheet

Silica Tetrahedral sheet

Silica Tetrahedral sheet

Alumina Octahedral sheet

Silica Tetrahedral sheet

Figure 5.5%ormation of codon-anticodon complexes in protective vesicles.

After this wet period and at the beginning of a dry period, the amount of water starts to be low
and, consequently, the montmorillonite interlayer spaces decrease until reaching the state of a
possible resumption of the formation of new RNA oligomers. However, during the reduction of the
interlayer space, each codon-anticodon vesicle detaches itself from the edges of the sheets and it is
located, outside the crystalline structure of the clay itself, in contact with the vesicle above and below.
Hence, these vesicles would merge to allow to the connection between nucleotides of subsequent
triplets: as a result, a long chain of codon-anticodon complexes may appear within a long single
vesicle. This chain would represent the first operational RNA already connected to the corresponding
tRNA. So, in summary, the encapsulation of each fixed trimer with an oligomer attracted to a fatty
acids-composed vesicle would be the starting point for the formation of a codon-anticodon complex
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which could lead to the birth of a primordial genetic code. The development of advanced
nanomaterials exploit the self-assembly process that involves the combination of non-covalent soft
interactions with the multi-functionality of building blocks and provides an excellent strategy for the
preparation of novel, advanced nanomaterials with highly controlled properties for biotechnology
and material science application [68—71]. Previously, it has been highlighted that clays have a high
specific surface, cation exchange capacity and absorption capacity and, therefore, they are
appreciated for their high absorption capacity of cations including Ag*, Zn** and Cu?*. Furthermore,
previous research in the literature has shown that clays modified with these cations have antibacterial
properties [72—77]. As regards, however, the antibacterial properties of montmorillonite modified
with Fe®" cations, some studies in the literature have shown effective removal of phenolic organic
compounds from wastewater due to the oxidative oligomerization catalyzed on the surface by the
same Fe** saturated montmorillonite [78-80]. Moreover, it has been hypothesized that the Fe*

saturated montmorillonite could also be able to eliminate the bacteria psaagat in the wastewater.
Although montmorillonites modified with Cu**, Zn?* and Ag" cations sk terial activity, the
presence of these cations in water could pose a potential risk to pu to their toxicity at
high concentrations. Therefore, it was proposed to use the sat illonite of Fe*" as a

possible alternative for the water disinfection process because irgA* i1 element for humans [81].
In summary, the effectiveness of Fe** saturated mont e elimination of bacteria
present in secondary wastewater has been demonstrate xperimental results suggest as the
montmorillonite modified with Fe®" cations could frobably be {ised as an effective antibacterial
material for water disinfection in small plants used 1y the trgatment of drinking water and in large
plants used for the treatment of drinking water was r. In this experimental work, samples of
montmorillonite and its mixture with Bovine S min (BSA) were investigated as a function
of temperature by means of Fourier Tr. rared (FTIR) spectroscopy technique and Spectral

and it has numerous biochemical applications such as
nt Assay) and immunohistochemistry [90-95]. Bovine
, stable, non-reactive protein, and it is used as a representative
stem [96-101]. It is well known that exist different techniques to

Serum Albumin (BSA)4
short peptide in the

absorption [102-110].
2. Materials and method

Pristine montmorillonite powders purchased from Merck (Milano, Italy, surface area 250 m%/g),
BSA (purchased from Sigma) and double distilled water were used to prepare the samples.
Montmorillonite/water mixtures have been prepared by adding to pure protein double-distilled water (80 wt%
montmorillonite); for montmorillonite/water/BSA mixtures the concentration was: 80 wit%
montmorillonite/20 wt% (BSA (50 wt%)+ H,O (50 wt%)). Fourier Transform InfraRed (FTIR)
spectroscopy allows us to characterize the molecule rotational and vibrational motions. This
spectroscopic technique explores 14000-10 cm™ range of the electromagnetic spectrum, which
encloses the Near-IR range (14000-4000 cm™), the Mid-IR range (4000-400 cm™), and the Far-IR (400-10 cm™).
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FTIR technique is a powerful method to investigate the structural and dynamical properties of
materials as well as their dependence on temperature: this technique is based on the analysis of the
absorption spectra [111-114]. In this experimental work, we collected vibrational spectra by means
of the Vertex 70v spectrometer (Bruker Optics, Ettlingen, Germany) using a Platinum diamond ATR.
All spectra were collected by using an average of 96 scans with a resolution of 4 cm™ in a spectral
range of 4000~400 cm™, from a temperature of 20 <C to 55 <C. The pre-processing data procedure
was performed through OPUS software and, then, by means of Matlab environment. Due to the
complexity of the investigated systems we prefer to analyze globally the spectral features of the
samples by applying an innovative approach consisting in the integrated use of the Spectral Distance
and Wavelet Cross Correlation protocols. Such an approach reveals to be very effective since in the
present study we focus the attention only on the spectra temperature dependence. On this purpose, t0
characterize the temperature sensitivity of the analyzed samples, the Spectral Distance approach has
been used; this latter is based on the following expression:

b

SD = (Z[ﬂ[m,Tj —I(w,T)]* - Aw )

(1)
where A(w) represents the absorbance at the @/ , T, denotes the lowest
ono i

temperature, that is 20 <C and Aw is the frequency re nstrument.
3. Results and discussion

In Figure 6, the FTIR spectrum of montm in the spectral range of 4000 <400 cm™ at
the temperature of T = 20 <C is reporte

0 1 1 1 1

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm™1)

Figure 6. FTIR spectrum of montmorillonite in the resolution spectral range of 4000 <400
cm™ at the temperature of T = 20 <C.

AIMS Biophysics Volume 7, Issue 4, 248-266.



256

The most significant peaks are located at ~ 3632 cm™, i.e. O-H stretching; at ~ 1639 cm™ that
represents the O-H bending (hydration); at ~ 1113 cm™ and 1035 cm™ make reference to the i-O
stretching, out of plane and in plane, respectively. Finally, the peak at ~915 cm™ denotes the AIAIOH
bending, at ~793 cm™ is situated the tridymite peak and the peak at ~529 cm™ represents the Si-O
bending vibration. Figure 7 shows the FTIR spectrum of BSA in the spectral range of 4000 <400 cm™
at at the temperature of T = 20 <C.

%107
5_ -

45 1
4_ -

35 1

FTIR Intensity (a.u.)
oo
T

ury
w

1F

0.5

500

0 1 1
4000 3500 3000 2500 20 15

Wavenum {cm™)

Figure 7. FTIR spectra of the BSA in the resol speCtral range of 4000 <400 cm™ at
temperature T = 20 <C.

portant IR spectral feature for the protein are the
e at~ 3292 cm™ the Amide A, at ~ 1649cm™ Amide

For the FTIR BSA spectrum, on
bands of Amide. In particular, in Figur
I and at ~ 1537cm™ Amide I1.

I J
05 Jk = b___ﬁ,:,,m/\.nﬂj

U L 1 1 — 1
4000 3600 3200 2800 2400 2000 1600 1200 800 400
Wavenumber (cm’1)

Figure 8. FTIR spectra for montmorillonite/water mixtures in the spectral range of 4000 =+
400 cm™ and in the temperature range of 20 C <55 <C.
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Figure 8 reports the FTIR spectra for montmorillonite/water mixtures in the spectral range of
4000 =400 cm™ and in the temperature range of 20 < <55 <C. Figure 9 shows the FTIR spectra for
montmorillonite/water mixtures/BSA in the spectral range of 4000 <400 cm™ and in the temperature
range of 20 <C =55 <C.

» 1 0_3
T T T T
T=20°C
5F T=25°C
T=30°C
45F T=35°C 1
T=40°C
| T=45°C il
- T=50°C
©35] T=55°C
>
= 3
5
E 25
o
E 2r
[V
151
1 | .
0.5

0°¢ 1 L L i
4000 3600 3200 2800 2400
Wavenumbgf (cm 1)

Figure 9. FTIR spectra for montmorillo
4000 <400 cm™ and in the temperature ra

ands of montmorillonite and the peaks of Bovine
cisely, by increasing temperature a little decrease in IR
retching band is observed; this suggests a dehydration of
montmorillonite. The pealks at.~ 1649 at 1537 cm™ are typical of BSA and can be attributed to the

As it can be seen, in Figure 9

C = O stretching vibratiG ptide linkages; they turn out to be very sensitive to the secondary
structural componep ot#in. These two peaks decrease with increasing temperature.

Before to p analysis of data, a pre-processing data procedure was performed by
eliminating the back To better investigate the mechanisms of interactions that occur between

montmorillonite and BJA, the spectrum difference has been taken into account. In particular, from the
spectrum of montmorillonite in the presence of BSA, the spectrum of montmorillonite has been
subtracted the spectrum of montmorillonite so obtaining the spectrum difference. This procedure was
adopted for each spectra of all the investigated temperatures. In Figure 10, the spectra differences, in
the temperature range 20 C <55 <C, are reported.

AIMS Biophysics Volume 7, Issue 4, 248-266.
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Difference (a.u.)

-4 1 1 1 1
4000 3500 3000 2500 2000 1500 1
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Figure 10. Spectra differences in the temperaturg’r =55 <C.

The thermal behaviour of the investigated systems wi i y the evaluation of SD (eg. 1).
Figure 11 reports SD as a function of temperature Zfor circle) and for the spectrum
difference (light blue square) together with their linegg fits.

0.03 T T T
O BSA
E (BSA+MONT)-MONT
0.025 | — FIT BSA
|——FT BSA+MQR
a
(0, —~
8
S ]
g
g
§ <
®
25 30 315 40 4:% 50 515 60

Temperature (°C)

Figure 11. SD as a function of temperature for BSA (green circle) and for BSA in the

presence of montmorillonite (light blue square) together with their linear fits (continuous
lines).

In order to extract quantitative information, a linear fit has been performed:

vy=ax+b (@)

AIMS Biophysics Volume 7, Issue 4, 248-266.
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By this examination, it results that the slope coefficient value for the spectrum difference,
m = 1.82-107%, is lower than the slope coefficient value for BSA, that is equal to m = 7.08-107*.
This suggests that BSA in presence of montmorillonite has a higher thermal resistance and for this
reason montmorillonite can be considered as an effective thermal bioprotector.

Another approach to investigate the thermal behavior of montmorillonite consists in applying the
wavelet cross correlation method, that allows to determine, evaluating the wavelet cross-correlation
coefficient, 1y, the degree of affinity between two signals. Such a method is very innovative and
powerful and is employed in several kinds of disciplines such as climate, geoscience, physics,
mathematics, finance, engineering science and others [115-120]. Let’s consider two wavelet
transforms, W, (5 1) and W5 (s, 7) of the investigated spectra, where = represents the scale parameter
(s = 0)and T denotes the shift parameter, and the two wavelet spectra Py(s) and P,(s) [121-125].
From a mathematical point of view W (s, T)is the inner product of the function f(x) and scaled and
shifted mother wavelets 4

+oo

1
wia,7) = - flwr|x — 7l dx;

where f(x) denotes the one-dimensional function, * is the co nju , and 1 is the mother
wavelet:

(3)

then, one defines the wavelet spectrum FP(s):

= |w(s,7) [*dx;
5

(4)
and finally, one determine wave oss-correlation coefficient, !
(o) = { PRIV (s D)dr
TewrlS) = —
V P1(5) P2 (5) )

The wavelet cross-correlation coefficient varies in the range —1 = ry+ = 1; if the value is
equal to 1 indicates a positive statistical relationship between the spectra; if the value is equal to 0 no
statistical relationship between spectra exists; finally, if the value is equal to -1 a negative correlation
between the two spectra is present. In the present study, the spectrum at lowest temperature (T =20 <C)
has been chosen as reference wavelet spectrum both for BSA and for the spectrum difference.

Figure 12 shows the evaluated wavelet cross-correlation coefficient, 1y, Versus temperature
for BSA (orange circles) and for the spectrum difference (magenta squares) together with their linear
fits.

What it emerges is that 7+ decreases by increasing temperature following a decreasing linear
trend. Also in this case, a linear fit has been performed and the slope coefficient value for the
spectrum difference, m = 0.8159 is lower than the slope coefficient value for BSA, that is equal to

AIMS Biophysics Volume 7, Issue 4, 248-266.
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m = 0.9245. These results confirm that montmorillonite can be considered as a thermal
bioprotector.

0.88

" [ @ Bsa
osel - B (BSA+MONT)-MONT
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Figure 12. Wavelet cross-correlation coefficient, r, VEWUS temperature together with
their linear fits.

4. Conclusion

of the thermal properties of
approaches suggest that
when the temperature
thus justified. This i
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