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Abstract: By using the screened Coulomb potential a generalized version of Newton’s Shell 

Theorem is developed and analytical equations are derived to calculate i) the potential of a charged 

sphere surrounded by electrolyte, ii) the potential of two concentric charged spheres surrounded by 

electrolyte, and iii) the potential inside the membrane of a charged lipid vesicle surrounded by 

electrolyte with high ion concentration. By numerical integration the potential of a lipid vesicle is 

calculated at any electrolyte concentration. 
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1. Introduction 

The headgroups of membrane lipids have either single charge (e.g. tetraether lipids [1,2]) or 

electric dipole (e.g. phospholipids [1,3]). Theoretical models of lipid membranes usually focus on 

short range (Van der Waals) lateral interactions between nearest neighbor lipids and ignore the long 

range charge-charge interactions [3,4]. This is because in the case of long range interactions one has 

to consider the entire system rather than the interactions between the nearest neighbor lipids. In 

physics the Shell Theorem deals with a similar problem, determining the electric potential within and 

around a charged sphere (where there is vacuum inside and around the charged sphere of radius R). 

According to the Shell Theorem [5] the electric potential inside the charged sphere is constant, i.e.: 
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          (1) 

where r < R is the distance from the center of the charged sphere and Q is the sum of the charges 

spreaded homogeneously on the sphere surface and                     is the Coulomb’s 

constant. However if r > R then the potential decreases with increasing distance, i.e.: 

     
   

 
          (2) 

In this paper, step by step, we generalize the Shell Theorem to get closer to the conditions of charged 

vesicles. First we consider a charged sphere which, like a charged vesicle, is filled and surrounded by 

electrolyte. Second, to imitate the inner and outer surface of the charged vesicle membrane, we 

consider two concentric charged spheres with electrolyte all around. Third, since the inside of the 

lipid membrane is hydrophobic (with dielectric constant      ), we consider the two concentric 

charged spheres with electrolyte all around except between the region of the two spheres.  

Generalizing the Shell Theorem we found analytical solution for the potential in the first and second 

cases. In the third case, however, we got analytical solution only if the ion concentration of the 

electrolyte is so high that the Debye length is much shorter than the membrane thickness. In the cases 

of longer Debye lengths, i.e. at lower electrolyte concentrations, we provide numerical solutions for 

the potential. In order to get the electric potential in the above mentioned three cases the solution of 

the Debye-Hückel equation is utilized (or also called Screened Poisson Equation, [6]). The Debye- 

Hückel equation is a linearized version of the Poisson-Boltzmann equation and it can be used in the 

case of not particularly large external charges. However, in the case of large external charges, such as 

a charged macroscopic particle, the screening is substantially nonlinear and thus the 

Poisson-Boltzmann equation should be utilized.  The Poisson-Boltzmann equation is solved either 

by numerical methods [7,8] or analytically by using a higher than first-order expansion of the 

exponential Boltzmann distribution [9]. Recently, D’yachkov provided an exact analytical solution of 

the Poisson-Boltzmann equation itself in the form of the logarithm of an infinite power series [10]. 

The deeper biophysical understanding of charged vesicles may help in the recent increase of their 

practical applications, such as application in: drug delivery [11], gene delivery by cationic liposomes [12–14], 

vaccine delivery [15,16], simulating cells for studying and predicting the interactions between 

biological active compounds and cell membranes [15], cosmetics [17,18] and food industry [19,20]. 

2. Model 

2.1. Potential around a charged sphere surrounded by electrolyte 

Charges that are embedded into electrolyte, but not part of the electrolyte itself, are called 

external charges. The potential,  , in this system can be calculated by solving the Debye-Hückel 

equation (or also called Screened Poisson Equation, [6]): 

          
         

    

   
        (3) 

where      is the density of the external charge at position  ,    is the electric constant and   is 

the relative static permittivity,    is the Debye length. Note, that Eq.3 is valid if the electrolyte itself 
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is electrically neutral. The solution of this equation is: 

                

       

               

        
       (4) 

i.e. the potential is the superposition of the so called screened Coulomb potential of the external 

charges. 

The screened Coulomb potential, produced at a distance r from an external point charge, q 

is [6,21,22]: 

     
    

   
                (5) 

where            
   is the Coulomb’s constant. In our model (shown in Figure 1) a charged 

sphere of radius    is surrounded by electrolyte.  

 

Figure 1. Charged sphere. Black circle represents the charged sphere of radius   . The 

potential is calculated at point P1. Its distance from the center of the sphere is Z. The red 

ring represents charges on the charged sphere. Their distance from point P1 is R.   is 

the angle between vector   and a vector pointing from the center of the sphere to any of 

the points (P2) on the red ring. 

On the sphere point charges are homogeneously distributed with charge density   . We would 

like to calculate the potential at point P1, located at a distance      from the center of the 

charged sphere (see Figure 1). First we calculate the potential induced by the charges located along 

the red ring shown in Figure 1: 

          
                           

            
                     (6) 

where                      is the surface area of the red ring and           is the distance 

between point P1 and any of the point charges located on the red ring: 

                                     
 
    

                     (7) 
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The potential induced by the entire charged sphere at point P1 is: 

              
 

 
  

                           

          
               

 

 
    (8) 

After the integration (see Appendix 1) the potential at      is 

     
         

      
  

 
 

        
  

  
         (9) 

where       
      is the total charge of the sphere, and the potential at      is 

     
         

      
  

 
  
        

 

  
          (10) 

2.2. Potential around two concentric charged spheres surrounded by electrolyte 

Let us consider two concentric charged spheres, sphere 1 and 2, with radius    and        . 

The surface charge on sphere 1 and 2 is    and   , respectively and the spheres are surrounded 

everywhere by an electrolyte with Debye length   . 

The potential at      is the sum of the potential from sphere 1 and sphere 2. Based on Eq.9 

the potential from sphere 1 is       
         

      
  

 
 

        
  

  
  and the potential from sphere 2 is 

      
         

      
  

 
 

        
  

  
  . 

Thus in the case of      the total potential is 

     
      

   
  

 
 

    
  

  
      

  

  
  

   

  
      

  

  
       (11) 

If      but      the potential from sphere 1 can be obtained from Eq.9,       
         

      
 

 
 

 

        
  

  
 , but the potential from sphere 2 can be obtained from an equation like Eq.10, 

      
         

      
  

 
  
        

 

  
 . 

Thus in the case of         the total potential is: 

     
      

   
  

   

  
  

 
 

        
  

  
  

   

  
  

 
  
        

 

  
     (12) 

Finally, if      the potential from sphere 1 can be obtained from Eq.10,       
         

      
  

 
  
   

     
 

  
 , while the potential from sphere 2 can be obtained from an equation similar to Eq.10, 

      
         

      
  

 
  
        

 

  
 .  

Thus in the case of      the total potential is: 

     
      

   
      

 

  
  

   

  
  

 
  
    

   

  
  

 
  
          (13) 
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2.3. Potential within the membrane of the charged vesicle – at high electrolyte concentration  

Here we calculate the potential within the membrane of the charged vesicle when the electrolyte 

concentration is so high that the respective Debye length    is much shorter than the membrane 

thickness, i.e.       (see Figure 2). For example, if the monovalent ion concentration of the 

electrolyte is             , then the Debye length is about          while the membrane 

thickness is about      .  

In this case the screening effect of the electrolyte is so strong that if only a part of the straight 

line between a membrane charge and the P1 point (see Figure 2) crosses the intra-vesicular 

electrolyte the potential from that charge reduces to close to zero. Thus at the intra-vesicular surface 

of the membrane only those charges contribute to the potential at point P1 where      (see 

Figure 2A). These charges are not screened at all because there is no electrolyte in the membrane. 

However, at the extra-vesicular surface of the membrane only those charges contribute to the 

potential at point P1 where         (   and    are defined in Figure 2B). 

 

Figure 2. Model of charged vesicle. Light blue ring represents the membrane of the 

vesicle.    and    is the inner and outer radius of the vesicle membrane, respectively. 

P1: an intra-membrane point, at distance Z from the center of the vesicle, where we 

calculate the potential. A) In this figure we consider a charge (black dot) on the 

intra-vesicular surface of the membrane.   is the angle between the vectors pointing 

from the center of the vesicle to P1 and to the black dot. The line between P1 and the 

black dot is within the membrane (see red dashed line. Its length is marked by 

         ). When    is larger than    the line between P1 and the black dot is partly 

within the membrane and partly within the intra-vesicular electrolyte. B) In this figure we 

consider a charge (black dot) on the extra-vesicular surface of the membrane.   is the 

angle between the vectors pointing from the center of the vesicle to P1 and  to the black 

dot. The line between P1 and the black dot is within the membrane. Its length is marked 

by         ). When    is larger than       the line between P1 and the black dot 

is partly within the membrane and partly within the intra-vesicular electrolyte. 

At a point within the vesicle membrane, i.e. when        , the potential produced by the 

charges located at the intra-vesicular surface of the membrane is       and by the charges located at 

the extra-vesicular surface of the membrane is      . Where (from Appendix 2) 
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and 
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             (15) 

where    and    is the total charge of the intra-vesicular and extra-vesicular surface of the 

membrane, respectively,      is the dielectric constant of the membrane.           and 

          are defined in the legends to Figure 2 (and can be calculated by Eq.7) 

2.4. Potential within and around the charged vesicle membrane – at any electrolyte concentration 

When the electrolyte concentration is not high enough then every charge of the vesicle 

membrane contributes to the potential. In this case the potential at a distance   from the center of 

the vesicle can be calculated by the following integrals: 

     
    

 
 

        

             
 
 

          

  
 

 
 

    

 
 

        

             
 
 

          

  
 

 
   (16) 

where    is the Debye length in the electrolyte and           is the distance between point P1 (located 

at a distance   from the center of the vesicle) and the charge located at the intra-vesicular surface of 

the membrane. The part of the distance that goes through electrolyte is marked by           . While 

          is the distance between point P1 and the charge located at the extra-vesicular surface of 

the membrane. The part of the distance that goes through electrolyte is marked by           . The 

dielectric constant is           at         and            at        and at 

    .  

The integrals in Eq.16 can be calculated only numerically. Depending on the value of  , the 

location of the charge and the value of angle   there are eleven cases for calculating            

and            listed in Table A1 (see Appendix 4). 

In Eq.16 the first integral refers to those cases in Table A1 (see Appendix 4) where the charges 

belong to the intra-vesicular surface. i.e.: case IV, V, VIII, IX, XI and thus 
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In Eq.16 the second integral refers to those cases in Table A1 (see Appendix 4) where the charges 

belong to the extra-vesicular surface. i.e.: case I, II, III, VI, VII, X and thus 

    

 
 

      

             
                 

 

 

 

 
    

 
  

      

             
       

           
    

 

    
                           (18) 

Note, that based on Eq.A2 one can get the analytical form of the above integrals only in the 

following four cases: I, VI, VIII, XI. 

3. Results 

 

Figure 3. Calculated potential inside and around a charged sphere. A) The potential, 

  , as a function of the radial distance from the center of the charged sphere is 

calculated by Eqs.9,10. The radius of the charged sphere is:               . 

The total charge of the sphere is:                . Each curve was calculated at a 

certain monovalent ion concentration of the electrolyte.  The concentrations belonging 

to a certain color are shown in        above Figure 3A. The Debye lengths (in  ) 

belonging to each concentration are listed in Table 1. B) Calculated potentials within the 

region:            . 

The potential,  , inside and around a charged sphere of radius    is calculated by Eqs.9,10. 

The radius of the charged sphere,                , is a typical size of a large unilamellar 

vesicle (LUV) [23]. The total charge of the sphere is:                . This is the total charge 

of a PLFE (bipolar tetraether lipid with the polar lipid fraction E) vesicle of radius    if the cross 

sectional area of a PLFE is         and the charge of a PLFE molecule is            [1,2]. In 

Figure 3 the potential multiplied by    is plotted as a function of the radial distance,  , from the 

center of the sphere in the case of different monovalent ion concentrations of the electrolyte. 
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Table 1. Monovalent ion concentrations of electrolytes and the respective Debye lengths. 

Electrolyte concentration           Debye length,        

0.0001           

0.001           

0.01           

0.1           

1.0           

10.0           

100.0            

*Note, that the dielectric constant of the electrolyte decreases with increasing ion concentration. However in the above 

concentration region the decrease is within one percent [24,25]. Thus in our calculations the dielectric constant is taken 

      at the above electrolyte concentrations.  

 

Figure 4. Potential within and around two concentric charged sphere surrounded by 

electrolyte. The potential,   , as a function of the radial distance from the center of the 

charged spheres is calculated by Eqs.11-13. The radius of the smaller and larger sphere is 

             and         , respectively, while the total charge of the smaller 

and larger sphere is    and   . In our calculations always               

      . In the case of black line:     , red line:        , blue line:       , 

green line:      . A) Concentration of electrolyte (of monovalent ions) is 

              and the respective Debye length is              . B) 

Concentration of electrolyte (of monovalent ions) is            and the respective 

Debye length is              . C) Concentration of electrolyte (of monovalent 

ions) is           and the respective Debye length is              . 

By using Eqs.11-13 the potential was calculated within and around two concentric charged 

spheres (see Figure 4). 

The sum of Eq.14 and Eq.15 gives the potential within the membrane of the vesicle filled and 

surrounded by electrolyte with high ion concentration. 
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Figure 5. Potential within the vesicle membrane at high electrolyte concentration. 

The vesicle membrane potential,   , as a function of the radial distance from the center 

of the vesicle is calculated by the sum of Eq.14 and Eq.15. These equations are valid 

only at high ion concentrations at the intra- and extra-vesicular electrolyte, i.e.: when 

          . The radius of the inner- and outer surface of the vesicle membrane is 

             and         , respectively, while the total charge of the inner 

and outer surface of the vesicle membrane is    and   . In our calculations always 

                    . In the case of the black curve:      , red curve: 

       , blue curve:       , green curve:      . The dielectric constant of 

the membrane is     . 

In Eq.16 after performing the numerically integrations we get the radial dependence of the 

potential of charged vesicle (see Figure 6). 
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Figure 6. Potential within and around the charged vesicle membrane at different 

electrolyte concentrations. The potential,   , within and around the charged vesicle 

membrane is calculated by Eq.16. The radius of the inner- and outer surface of the 

vesicle membrane is               and          , respectively, while the total 

charge of the inner and outer surface of the vesicle membrane is    and   . In our 

calculations always                      . In the case of the black curve: 

    , red curve:        , blue curve:       , green curve:      . A) 

Concentration of electrolyte (of monovalent ions) is               and the respective 

Debye length is              . B) Concentration of electrolyte (of monovalent 

ions) is              and the respective Debye length is               . C) 

Concentration of electrolyte (of monovalent ions) is           and the respective 

Debye length is               . Note, each subfigure is divided into a high- and 

low-potential part. 

4. Discussion 

By using Eqs.9, 10 one can calculate the potential of a charged sphere filled and surrounded by 

electrolyte. These equations are generalization of the Shell Theorem (given by Eqs.1, 2) where the 

charged sphere is in vacuum. One can get from Eqs.9, 10 the equations of the Shell Theorem by 

taking infinite long Debye length (that is characteristic for vacuum): 

at      
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and at      
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According to the Shell Theorem the potential inside the charged sphere is constant. Similarly, at 

low ion concentrations (between                , the potential close to constant inside the 

charged sphere (see Figure 3A). At higher ion concentrations however as a consequence of the 

increased screening the potential drops both outward and inward from the surface of the charged 

sphere (see Figure 3B).  

Similar to the result of the Shell Theorem in the case of two concentric charged spheres, 

surrounded by electrolyte of low ion concentration, the potential is constant within the smaller sphere (see 

Figure 4A). If there is any amount of charge on the inner sphere the potential linearly decreases from 

the inner to the outer sphere. While the potential is constant from the center to the outer sphere if 

only the outer sphere is charged. At high ion concentrations, because of the high screening, however, 

the potential has two maxima at the radii of the charged spheres (see Figure 4C). 

In the case of charged vesicles the charges are located at the inner and outer surface of the 

vesicle membrane. Like in the case of the above mentioned charged double spheres the intra- and 

extra-vesicular space is filled by electrolyte, but there is no electrolyte between the two charged 

spheres. The inner part of the lipid membrane is hydrophobic. If the electrolyte concentration is high 

the membrane potential can be calculated analytically by Eqs.14, 15. Figure 5 shows the calculated 

membrane potential if the total membrane charge is divided between the outer and inner membrane 

surface on four different ways. Interestingly, in each case the membrane potential increases with 

increasing radial distance even if the charge is zero at the outer membrane surface (see green line in 

Figure 5). As we mentioned before in this case the screening effect of the electrolyte is so strong that 

if only a part of the straight line between a membrane charge and the P1 point (see Figure 2) crosses 

the intra-vesicular electrolyte the potential from that charge reduces to zero. Thus at the 

intra-vesicular surface of the membrane only those charges contribute to the potential at point P1 

where     . However, at the extra-vesicular surface of the membrane only those charges 

contribute to the potential at point P1 where         (   and    are defined in Figure 2). 

The charges contributing to the potential at point P1 are situated on two spherical caps. The surface 

area of the spherical cap on the intra-vesicular surface of the membrane is: 

       
                    

       
  

 
      (21) 

while based on Eq.A8 on the extra-vesicular surface of the membrane the surface area of the 

spherical cap is: 



87 

AIMS Biophysics  Volume 7, Issue 2, 76–89. 

       
                       

       
  

         
     

    
  

    
    (22) 

Thus the total charge contributing to the potential at point P1 is: 

             
  

 
   

  

 
   

  

 
   

  
         

     
    

  

    
     (23) 

In Figure 7                 is plotted against the radial distance of point P1. 

 

Figure 7. Proportion of total charge contributing to the potential within the vesicle 

membrane. To calculate the accessible proportion of the total charge of the vesicle 

membrane we used Eq.23. The radius of the inner- and outer surface of the vesicle 

membrane is              and         , respectively, while the total charge 

of the inner and outer surface of the vesicle membrane is    and   . In our calculations 

always                     . In the case of the black curve:     , red 

curve:        , blue curve:       , green curve:       . 

The similar characteristics of the curves in Figure 5 and Figure 7 shows that the potential in the 

vesicle membrane close to proportional to the amount of charges that are not screened out by the 

highly concentrated electrolyte surrounding the vesicle membrane. Note also that the membrane 

potential calculated from the sum of Eq.14 and Eq.15 is similar to the result of the numerical 

integration of Eq.16 (compare Figure 5 with Figure 6C where the electrolyte concentration is        

  ).  

In the case of low electrolyte concentration, when every charge of the vesicle membrane 

contributes to the potential, the potential close to linearly decreases within the membrane with 

increasing radial distance (see Figure 6A). This is similar to the change of the potential between two 

charged spheres immersed into electrolyte with low ion concentration (see Figure 4A).  

This can be explained by the Shell Theorem that works well at low electrolyte concentration. 

According to Eq.2 the membrane potential, caused by the charges on the intra-vesicular surface, is 
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close to linearly decreasing within the interval         because 
       

  
  . On the other hand, 

according to Eq.1, the membrane potential, created by the charges on the extra-vesicular surface of 

the membrane, is constant. Thus the total membrane potential decreases also close to linearly. When 

there is no charge on the intra-vesicular surface, i.e.     , based on Eq.1 one may expect constant 

membrane potential. However, the membrane potential is not constant but slightly increasing (see 

black curve in Figure 6A). This maybe the case because the ion concentration of the electrolyte is 

slightly higher than zero. With further increasing electrolyte concentration the membrane potential 

belonging to          increases too (see red curve in Figure 6B). Finally we should mention 

the fundamental differences between Figure 4 and Figure 6. Since the dielectric constant in the 

membrane is 40 times smaller than in the intra- and extra-vesicular space there is a sudden 40 times 

jump and 40 times drop of the potential at    and   , respectively. 

Conclusions 

By using the screened Coulomb potential a generalized version of the Shell Theorem is 

developed and analytical equations are derived to calculate i) the potential of a charged sphere 

surrounded by electrolyte, ii) the potential of two concentric charged spheres surrounded by 

electrolyte, iii) the membrane potential of a charged lipid vesicle surrounded by electrolyte with high 

ion concentration. By numerical integration the potential of a lipid vesicle is calculated at any 

electrolyte concentration. In general with increasing ion concentration the screening effect of the 

electrolyte increases and the overall potential of the above mentioned spheres, vesicles is decreasing. 

With increasing distance from the outer surface of the charged sphere or vesicle the potential 

decrease is steeper in the case of higher electrolyte concentration. Inside the charged sphere or 

vesicle at low electrolyte concentration the potential is close to constant. However with increasing 

electrolyte concentration the decrease of the potential towards the center of the sphere (or vesicle) 

becomes steeper. 

Acknowledgement 

The author is very thankful for Chinmoy Kumar Ghose. 

Conflict of interest 

The author declares no conflict of interest. 

References 

1. Gabriel JL, Chong PLG (2000) Molecular modeling of archaebacterial bipolar tetraether lipid 

membranes. Chem Phys Lipids 105: 193–200.  

2. Chong LG (2010) Archaebacterial bipolar tetraether lipids: Physico-chemical and membrane 

properties. Chem Phys Lipids 163: 253–265. 

3. Almeida PFF (2009) Thermodynamics of lipid interactions in complex bilayers. BBA-Biomembranes 

1788: 72–85. 

4. Sugar IP, Thompson TE, Biltonen RL (1999) Monte Carlo simulation of two-component 

bilayers: DMPC/DSPC mixtures. Biophys J 76: 2099–2110. 



89 

AIMS Biophysics  Volume 7, Issue 2, 76–89. 

5. Newton I (1999) A New Translation, The Principia: Mathematical Principles of Natural 

Philosophy, Berkeley: University of California Press, 590.  

6. Fetter AL, Walecka JD (2003) Theoretical Mechanics of Particles and Continua, New York: 

Dover Publications, 307–310. 

7. Gibson EG (1966) Ionization phenomena in a gas-particle plasma. Phys Fluids 9: 2389–2399. 

8. Gundienkov VA, Yakovlenko SI (2002) Interaction of charged dust particles in clouds of 

thermodynamically equilibrium charges. J Expa Theor Phys 95: 864–877. 

9. Vranješ J, Tanaka MY, Pandey BP, et al. (2002) Electrostatic interaction in dusty plasma. Phys 

Rev E 66: 037401. 

10. D’yachkov LG (2005) Analytical solution of the Poisson-Boltzmann equation in case of 

spherical and axial symmetry. Tech Phys Lett 31: 204–207. 

11. Çağdaş M, Sezer AD, Bucak S (2014) Liposomes as Potential Drug Carrier Systems for Drug 

Delivery, Rijeka: IntechOpen. 

12. Balazs DA, Godbey WT (2011) Liposomes for use in gene delivery. J Drug Deliv 2011: 1–12.  

13. Haritha PN, Uma SKD, Nagaratna DP, et al. (2012) Gene Therapy – A review. Int J Biopharm 3: 55–64. 

14. Dizaj SM, Jafari S, Khosroushahi AY (2014) A sight on the current nanoparticle-based gene 

delivery vectors. Nanoscale Res Lett 9: 252. 

15. Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. 

Chem Rev 115: 10938–10966.  

16. Hussain MJ, Wilkinson A, Bramwell VW, et al. (2014) Th1 immune response can be modulated 

by varying dimethyldioctadecylammonium and distearoyl-sn-glycero-3-phposphocholine 

content in liposomal adjuvants. J Pharm Pharmacol 66: 358–366.  

17. Pradhan B, Kumar N, Saha S, et al. (2015) Liposome: Method of preparation, advantages, 

evaluation and its application. J Appl Pharm Res 3: 1–8. 

18. Patravale VB, Mandawgade SD (2008) Novel cosmetic delivery systems: An application update. 

Int J Cosmetic Sci 30: 19–33. 

19. Shukla S, Haldorai Y, Hwang SK, et al. (2017) Current demands for food approved liposome 

nanoparticles in food and safety sector. Front in Microbiol 8: 2389. 

20. Machado AR, Assis LM, Costa JAV, et al. (2014) Application of sonication and mixing for 

nanoencapsulation of the cyanobacterium Spirulina platensis in liposomes. Int Food Res J 21: 

2201–2206.   

21. Tuinier R (2003) Approximate solutions to Poisson-Boltzmann equation in spherical and 

cylindrical geometry. J Colloid Interf Sci 258: 45–49. 

22. Robinson RA, Stokes R (2002) Electrolyte Solutions, Mineola: Dover Publications.  

23. Rideau E, Dimova R, Schwille P, et al. (2018). Liposomes and polymersomes: a comparative 

review towards cell mimicking. Chem Soc Rev 47: 8572–8610. 

24. Hasted JB, Ritson DM, Collie CH (1948) Dielectric properties of aqueous ionic solutions. Parts 

I and II. J Chem Phys 16: 1–21. 

25. Gavish N, Promislow K (2016) Dependence of the dielectric constant of electrolyte solutions on 

ionic concentration: A microfield approach. Phys Rev E 94: 012611. 

© 2020 the Author, licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


