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Abstract: Diabetes is a chronic disorder that is among the most prevalent diseases in many parts of the 

world, as it is brought about by high levels of sugar in the blood, which may cause severe complications 

in the heart, blood vessels, kidneys, and nerves. Thus, it is important to monitor blood glucose 

continuously. The use of traditional finger-prick methods was done away with in this study, and it was 

substituted with a noninvasive blood glucose meter. The proposed system has an optical sensor known 

as the MAX30100, an LCD, and an Arduino Mega 2560 microprocessor to provide real-time 

measurements. The device can determine the glucose content through a combination of digital filtering 

and mathematical computations implemented within the microcontroller through the correlation of 

heart rate (HR) and oxygen saturation (SpO2). The 120 samples (females and males, fasting, normal, 

and diabetic) were tested with the system and compared with a commercial reference device (Accu-

Chek). There were high accuracy levels of 97.5% agreement, a sensitivity of 97.94%, and a specificity 

of 95.65%. Strong correlations were found. HR was negatively correlated with SpO₂ (r = −0.936,     

p < 0.001) and positively correlated with glucose (R2 = 0.860, p < 0.001). The validity and clinical 

reliability of the system were validated by statistical methods such as the Clarke error grid, Bland–

Altman test, and error test. The suggested approach showed promise as a practical and affordable 

substitute for regular blood glucose monitoring, and it achieved greater accuracy than that in earlier 

research. 

Keywords: Arduino Mega 2560; Clarke error grid analysis; noninvasive glucose; MAX30100 
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1. Introduction 

One of the most common endocrine disorders worldwide, diabetes mellitus (DM), is characterized 

by chronic hyperglycemia, or increased blood sugar. Poor cellular sensitivity to insulin causes Type 2 

DM, whereas inadequate insulin production causes Type 1 DM [1–3]. Metabolic dysregulation 

involving carbohydrates, proteins, and lipids is a result of both forms of diabetes. Traditional signs of 

diabetes include blurred vision, weight loss, polydipsia (excessive thirst), and polyuria (excessive 

urine). If left uncontrolled, diabetes may cause severe complications, including kidney failure, 

neuropathy, retinopathy, peripheral and coronary artery disease, heart failure, and stroke [4,5]. Globally, 

the prevalence of diabetes has increased dramatically. In 1990, only about 7% of adults (≥18 years) 

were affected; however, this number doubled to 14% by 2022.  In 2021, approximately 1.6 million 

deaths were due to diabetes and approximately 47% of them were in those under the age of 70    

years [6,7]. Considering this threatening trend, in order to enhance the survival of the patient and avoid 

complications, it is important to employ effective and accurate methods of monitoring blood glucose. 

A key component of treating diabetes is ensuring that the blood glucose level stays as close to the safe 

physiological limits as feasible [8]. 

Finger-prick tests and other conventional invasive glucose monitoring methods are helpful, but 

they have several drawbacks, such as pain and needle anxiety [9], as well as infection risk, delayed 

wound healing in diabetics [10], and low patient compliance. Noninvasive glucose testing methods 

have developed more quickly as a result of these restrictions. Newer methods include microwave 

sensors that measure glucose levels by examining the phase changes and attenuation of reflected  

waves [11–18], photometric sensors, and electromagnetic sensors [19–21]. Noninvasive glucose meter 

design has been the subject of numerous investigations. An Arduino UNO R3 microcontroller, a 

noninverting AC amplifier and filter circuit, an LCD, and a TCRT1000 reflecting optical sensor 

operating close to the infrared region at 950 nm are the four primary parts of a device created by Preya 

Anupongongarch et al. They obtained a 95% accuracy rate with their system [22]. In a similar vein, 

Alam et al. suggested a glucometer that allows remote monitoring by integrating Internet of Things 

(IoT) technology with an 850-nm infrared light-emitting diode (LED) and a visible red laser. When 

tested on 198 participants between the ages of 20 and 60, the accuracy rate of the method         

was 96% [23]. To measure blood glucose selectivity, Sivakumar et al. developed a system that 

combines a 630-nm red LED, a 940-nm near-infrared (NIR) LED sensor, and a BPW34 photodiode 

array with signal conditioning circuits and optimized optical cuvettes, with encouraging results [24]. 

Kiani et al. [25] described a microwave substrate integrated waveguide resonator sensor to 

monitor blood glucose concentration noninvasively as cost-effective and pain-free equipment utilized 

by diabetics. This sensor involves the use of microwave technology to be able to ensure precise 

determination of the glucose levels without invasive procedures. The device has a high level of 

sensitivity and reliability, and hence it is a promising alternative for continuous, noninvasive glucose 

monitoring. To meet the main concerns of diabetic care, including the cost, comfort, and user-

friendliness, its design suits portable applications. These findings show that sensors based on 

microwaves can provide accurate measurements and can form a possible solution as next-generation 

glucose monitoring devices. Kiani et al. [26] introduced a dual -frequency microwave resonance sensor 

to detect a change in the glucose levels in noninvasive sensing of the fingertip. The sensor has two 

frequencies, which increase the sensitivity to dielectric changes due to glucose. It allows continuous 

monitoring in real time without blood sampling and it is highly accurate and reliable. The dual-
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frequency method has better detection properties and thus it is a potential solution for noninvasive 

measurement of glucose. 

Herlambang and Arifin [27] presented a method for measuring blood sugar levels by using 

noninvasive technology. The system involves an Arduino Nano, a MAX30100 sensor, and an organic 

light-emitting diode (OLED). The experimental result showed that the system was able to measure 

blood sugar levels by noninvasive technology with an accuracy of 94.3%. Islamudin et al. [28] offered 

a method for measurement blood sugar levels by using noninvasive expertise with the IoT. The system 

involves an Arduino (ESP8266), a MAX30102 sensor, and OLEDs. The experimental result showed 

that the system was able to measure blood sugar levels by noninvasive technology with an accuracy 

of 93.97%. The systems have a low cost and real-time results. However, the sample size was not 

mentioned, nor was the sample classified in terms of disease type (normal or diabetic). Other studies 

have confirmed the ability to measure blood glucose levels, but without any results, using MAX30100 

and MAX30102 [29–32]. This present study’s primary contributions are as follows: 

• We developed and put into use a low-cost, portable tool for noninvasive blood glucose 

monitoring. 

• On the basis of heart rate (HR) and oxygen saturation (SpO2), the MAX30100 sensor was 

used to estimate the glucose content. 

• We designed a new algorithm for data analysis and signal processing that is integrated into 

the control unit. 

• We validated the accuracy of the proposed device against a benchmark device (BM) 

glucometer using rigorous statistical methods. 

The suggested noninvasive prototype uses the MAX30100 optical sensor and specific calibration 

and signal-processing software to approximate blood glucose levels. This combination enables quick 

and painless measurement and gives a reliable and inexpensive option for both diabetic and 

nondiabetic users.  The remainder of this paper is organized as follows: Section 2 presents the design 

of the proposed system. Section 3 describes the data collection process. Section 4 explains the 

experimental setup and configurations. Section 5 discusses the evaluation metrics and statistical 

analyses. Section 6 presents and analyzes the results. Finally, Section 7 concludes the paper and 

outlines directions for future work. 

2. System configuration 

The suggested system’s block diagram, which is powered by an external 9-V battery and 

comprises a liquid crystal display (LCD), an Arduino Mega 2560 microprocessor, and a MAX30100 

optical sensor, is shown in Figure 1. Data collection and processing are both handled by the 

microcontroller, which also provides power to the sensor and display. The patient applies a fingertip 

to the MAX30100 sensor while it is operating. The sensor emits light at 660 nm (red) and 880 nm 

(infrared), and a photodiode detects the reflected signal. Variations in reflected and absorbed light are 

caused by blood analytes and tissue properties. 

To isolate the glucose-related component, three methods were implemented. The first was optical 

absorption ratio analysis, where the absorption intensities at 660 nm and 880 nm were measured, and 

their ratio was calculated (Equation 1).Second, in  alternating current–direct current (AC/DC) signal 

separation, raw signals were pre-processed to remove noise and then decomposed into an AC 

component (a pulsatile signal representing heartbeats and capillary blood volume changes) and a DC 
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component (baseline absorption from the tissue and skin). As shown in Equation 2, the glucose-

dependent absorption ratio was computed. For mathematical modeling of the physiological link 

between glucose concentration using SpO₂ and HR, a proprietary algorithm was created. Using the 

MAX30100 library, bio-signals were recovered, and the moving average filter (Equation 3) was used 

to reduce noise. Using reference device data, an initial glucose estimate was manually generated using 

the filtered HR and SpO₂ values(Equation 4) [33–35].  In this multi-stage strategy, mathematical 

modeling, physiological modeling, and optical modeling are combined to improve the accuracy of 

glucose estimation. 

R=
IRED 

IIR
                                  (1) 

A=
Variable Signal

Constant Signal
                               (2) 

HRfilt=HRread ∑
1

N

N
read=1                            (3) 

Glucosevalue=a×HRfilt+b                          (4) 

where R is the difference between the two concentrations as a ratio, IRED represents the signal 

intensity at a wavelength of 660 nm, IIR represents the signal intensity at 880 nm, A acts as the 

absorption ratio, HRfilt represents the HR value using a filter, HR is the heart rate value measured using 

a sensor, N is the filter size; Glucosevalue is the glucose value. The values a and b were extracted for the 

calibrated linear equations using 120 samples of different ages and genders, including nondiabetic, 

diabetic, and fasting patients. 

Sensor 

max30100

Finger

9 V

5 V

Data Data

 

Figure 1. Block diagram of the proposed system. 
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The MAX30100 sensor operates with two wavelengths: 660 nm (red) and 880 nm (infrared) [36]. 

The degree of absorption of light at these wavelengths depends on the oxygenation of hemoglobin  

(Hb). In the infrared spectrum, deoxygenated Hb absorbs more red light than oxygenated hemoglobin 

(HbO₂) [37–43]. During heartbeats, photoplethysmography (PPG) signals are produced when the 

pulsatile flow of arterial blood causes variations in the measured light intensity. The goal of this signal 

is to extract SpO₂ and HR. While HR variability (HRV) indices can be obtained from the raw 

information provided by the MAX30100 sensor, only HR and SpO₂ were utilized in this investigation 

to forecast glucose levels. HRV indicators were not examined in this analysis to prevent broadening 

the study’s scope or adding more confounding variables. Calculating the ratio of red to infrared light 

absorption—which changes with blood oxygenation—is the foundation of pulse oximetry. It is 

possible to measure SpO₂ by comparing the transmitted or reflected light at the two wavelengths 

(Figure 2). Blood with low oxygen has greater absorption at 660 nm and higher absorption at 880 nm. 

In the reflective arrangement, the sensor uses a photodiode to detect the signal in addition to the LEDs 

to gather the signals in the MAX30100 sensor [44]. 

The recent research has proposed that the variation in light absorption at various wavelengths also 

depends on the glucose concentration, as it affects the refractive index and the viscosity of       

blood [44–48]. Namely, glucose exhibits peculiar absorptive properties in the NIR region 

(approximately 950 nm). At short wavelengths (660 nm), glucose absorbs more than water but at long 

wavelengths (880 nm), the absorption of water increases drastically. This relationship is crucial 

because water makes up 60–70% of bodily tissue and has a significant impact on how light travels 

through biological media [49,50]. The absorption curves of glucose and water are shown in comparison 

in Figure 3, emphasizing the spectrum overlap and the significance of choosing the measurement 

wavelengths properly. Although the -nm infrared signal provides sensitivity to changes in oxygenation, 

the proposed method uses the 660-nm red signal as a baseline to take background interference into 

account. When these signals are combined, SpO₂ may be estimated and characteristics linked to 

glucose can be extracted from the PPG waveform. 

 

Figure 2. Relationship between the molar extinction coefficient and wavelength. 
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Figure 3. Relationship between absorption and wavelength for water and glucose . 

Various frequency bands and sensing domains are also explored in the area of noninvasive glucose 

monitoring, with different benefits and drawbacks. The current methods can broadly be divided into 

three groups. NIR  spectroscopy (650–1000 nm) is popular because it penetrates through the tissue 

layers. This technique detects a greater number of chemical constituents than any alternative   

method [51]. Its advantages include low cost, small sensors, and that it can be used in wearable devices. 

The limitations include intense interference by the absorption of water, low glucose specificity and 

susceptibility to ambient light [52]. Mid-infrared spectroscopy (2500–10000nm) offers highly accurate 

and direct evaluations of the molecular absorption characteristics of glucose [53]. The benefits include 

its great biochemical specificity; the limitations are costly equipment, shallow penetration, and that it 

cannot be used in a portable system [54]. Research into microwave and radio-frequency sensors is 

currently underway as these are deeper penetrators and are more sensitive to dielectric variations in 

tissue [55]. It benefits are the ability to work without any physical contact and high sensitivity to 

changes in the dielectric properties of glucose. The limitations are its complicated sensor design, 

environmental interference, and restrictions at higher power levels [56,57]. 

Although these approaches are very varied, NIR  spectroscopy-based optical sensing is one of the 

most viable ways to have low-cost and portable systems. Thus, the suggested system embraces dual-

wavelength NIR  spectroscopy sensing (660 nm and 880 nm) with the support of custom signal-

processing and statistical modeling to offer a trade-off among usability, price, and physiological 

sensitivity. 

3. Data collection 

The distribution of study participants is shown in Figure 4. In total, 120 volunteers (65 men    

and 55 women) of various ages were enlisted. A systematic questionnaire was used to assess the health 
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state of the participants, who included 21 diabetic patients, 64 fasting people, and 35 healthy controls. 

Each volunteer was measured once using both the proposed noninvasive device and the BM under 

identical environmental conditions and at the same time of day. In certain cases, the measurement was 

repeated when abnormal readings were observed. Some readings that initially appeared to be 

excessively high were re-tested and later confirmed to be accurate upon comparison with the BM. This 

procedure ensured direct statistical comparison and validation of the proposed system against the BM. 

Although traditional finger-prick blood glucose meters provide results within seconds of inserting the 

test strip, there are manual procedures involved. The proposed system provides an estimated glucose 

level in approximately 2 minutes.  The MAX30100 sensor acquired fingertip PPG signals at a 

sampling frequency of 100 Hz for 30 seconds per trial. 

It should be noted that the sample size (120 subjects) is relatively limited; however, it was 

sufficient for initial validation and proof-of-concept demonstration. Future studies with larger and 

more diverse cohorts will be required to establish the generalizability of the proposed system further. 

Everything was measured under controlled conditions in an indoor environment at room temperature 

(22–25 °C). All measurements were taken while the participants were at rest to ensure the HR signals’ 

stability and to minimize variability. We made sure to inform all participants about the purpose of the 

research and the method we would use to collect data. We emphasized that the data would be used for 

scientific purposes only and that the information would remain confidential and secure. As a result, all 

participants agreed to participate in the study and share their data with us voluntarily and knowingly. 

We used the traditional method and the proposed system for each participant to measure blood glucose 

levels. 

 

Figure 4. Distribution of the samples (a) according to age  and gender, and (b) according 

to the nature of the person (fasting, diabetic, and nonfasting (normal) persons). 

4. Experimental setup 

An LCD, an Arduino Mega 2560 microprocessor, and a MAX30100 optical sensor were all 

integrated into the suggested system (Figure 5). The MAX30100 sensor was used because it measures 

SpO₂ and HR values based on red light at 660 nm and infrared at 880 nm, as it is a light sensor with 
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enhanced optics and a low-noise analog signal processor  [50,58]. For the sensor to function, two 

supply voltages of 1.8 V and 3.3 V are normally needed [59]. This system uses low-pass digital filtering 

and a moving average filter to reduce noise in the raw signals that are sent to the microcontroller with 

a mathematical model, then uses the HR and SpO₂ measurements to estimate the blood glucose 

concentration (Equations 2–4). The Arduino Mega 2560 microcontroller's accessibility, affordability, 

and ease of use led to its selection. A 16-MHz crystal oscillator, four Universal Asynchronous 

Receiver/Transmitter ports, an In-Circuit Serial Programming connector, sixteen analogue inputs, a 

USB interface, and 54 digital input/output (I/O) pins—15 of which can be set up as pulse width 

modulation outputs—are among its features [60–63]. These specifications facilitate real-time data 

acquisition, signal pre-processing, and algorithm execution. 

The LCD is a mix of both liquid and crystal to display the glucose reading in real-time to the user. 

The sensor was covered with an opaque fingertip cover to reduce ambient light to minimize 

interference, and more digital filtering was done to reduce motion artifacts. The system’s flowchart is 

displayed in Figure 6. HR and SpO₂ signals are obtained and filtered when the finger is put on the 

sensor; if the signal quality is insufficient, the user is asked to move the finger. Once the processed 

data has been run through the glucose estimation algorithm, the estimated glucose concentration is 

displayed on the LCD. The MAX30100 was chosen for its tiny size; compatibility with portable, low-

cost systems; and affordability in Iraq. Although a pre-made sensor was utilized, custom algorithms 

were developed to increase accuracy and reliability beyond the usual library functions. To reduce 

temporal fluctuations, the average HR during a 30-second stable recording period was used to estimate 

glucose levels rather than instantaneous HR values. 

LCD

Arduino Mega 

2560

Battery On/Off Switch 

Sensor max 

30100 

On/Off 

LED 

 

Figure 5. Snapshot of the components of the proposed system. 
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NO

YES

 

Figure 6. Flowchart of the proposed system. 

To improve signal quality and reduce possible error sources, digital processing was applied to the 

raw optical signals that were acquired from the MAX30100 sensor. The following were some of the 

steps in the processing pipeline. 

• Step 1. Reduce noise via a moving average filter with a window size of N (where N = 10) to 

reduce high-frequency noise while preserving temporal responsiveness using Equation (3). 

Additionally, to reduce sharp oscillations brought on by electrical or physiological noise, a digital low-

pass filter was implemented. 

• Step 2. Motion artifact suppression: To reduce the effect of finger or hand movement, signal 

stability was continuously monitored. The signals’ standard deviation was calculated in a short time 

window; this level was defined to high deviations that invalidated the corresponding sample. 

• Step 3. Ambient light compensation: The equipment was spectrophotometrically adjusted by 

recording the baseline readings in the absence of a finger to ensure that the signals that were recorded 

were solely those of blood and tissue absorption. These initial ambient values were retained as offsets 

to later measurements. 

Digital filtering of the signal, motion artefact management, and ambient light management also 

enhanced the precision of the resulting glucose estimations and ensured reliable signal acquisition. 

4.1. Custom algorithm and signal processing 

A multi-stage signal-processing pipeline was used to achieve a proper noninvasive glucose 

estimation using the raw PPG signals obtained by the MAX30100 sensor. Each volunteer was recorded 
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for 30 seconds in both the red (660 nm) and the IR (880 nm) channels at 100 Hz.  The subsequent bullet 

points summarize the custom algorithm applied in Arduino C++ on the microcontroller. 

In the first stage of noise reduction and pre-processing, the crude optical data were initially filtered 

to eliminate high-frequency noise and electrical variations. The waveform was smoothed using a 

moving average filter (N = 10 samples) and then a first-order digital low-pass infinite impulse response 

(IIR) filter (0.8, cutoff frequency = 5 Hz). This dual-stage filtering process retained physiological 

pulsations but cancelled out sensor noise. The second stage of motion artifact suppression is available. 

To identify unstable or motion-corrupted blocks, the short-window standard deviation (M = 5 samples) 

was calculated on a continuous basis. The samples with more than 5% variation from the regional 

mean were automatically rejected, and the user was advised to reposition the finger. Ambient light 

interference was removed by subtracting a baseline level, which was obtained via pre-measurement 

readings without finger contact. In the third stage, AC/DC abstraction and feature computation, the 

infrared and red filtered signals were broken down into the AC component involving a pulsatile peak-

to-peak amplitude in response to changes in the blood volume of the arteries, and the DC component 

involving nonpulsatile tissue and venous blood absorption, on the basis of Equation 2. The AC_RED 

signal was used to determine the HR from the peak detector and then averaged by a similar moving-

average filter. The ratio R was then used to determine SpO2 using the empirical relationship based on 

Equation (5) [64]. The values that were not within the normal physiological range (95–99) were 

automatically considered unreliable. In the final stage (the glucose estimation model), the estimate of 

glucose was finally given after a calibrated linear model was obtained from the 120-subject dataset. 

The value of the HR after filtering (HR_filt) was entered into Equation 4, where a = 2.06 and        

b = −85.218 are the regression coefficients between the two variables using the BM measurements as 

the dependent variable. Glucose estimation was only performed on valid samples that had a valid signal 

quality (normal SpO2 and stable waveform). This was shown immediately on the LCD module. To 

achieve transparency and reproducibility, Table 1 outlines the major steps and parameters of the custom 

algorithm, which allows one to process the PPG at once. 

SpO
2
= 110 –25R                             (5) 

Table 1. Summary of each stage of the algorithm’s steps, parameters, and effects. 

Stage Methods Parameter Effect 

First Moving average N = 10 samples Noise reduction and pre-

processing 

First-order digital low-

pass IIR filter 

0.8, cutoff frequency = 5 Hz Removing high-frequency 

noise 

Second Motion artifact Standard deviation threshold 

= 5% 

Flag unstable readings 

Ambient light 

interference 

10 pre-measurements Remove ambient light 

Third Abstraction AC/DC abstraction in 

Equation 2 

AC/DC abstraction and 

feature computation 

Final Glucose model a = 2.06, b = −85.218 

in Equation 4 

Regression coefficients 
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5. Evaluation of proposed system based on statistical analyses 

A commercial benchmark glucometer was used to test the recommended system (BM: Accu-Chek 

Active, Roche Diagnostics). Paired glucose values were also recorded using both methods from each 

subject at the same time, assuming the same conditions. Although the test values might have been 

represented in the readings of the proposed system, the actual reference values were the BM readings. 

Accuracy was computed as per the accepted validation procedures and was in accordance with 

Equations (6–9) [65,66]. Three statistical analyses were conducted to carry out a comprehensive 

analysis of performance. The standard deviation and mean absolute error were applied in the error test 

used to determine the mean difference between approaches. Bland–Altman analysis was used to 

determine the systematic bias and define the 95% limits of agreement. Clarke’s error grid analysis was 

used to assess the clinical significance of difference in measurements, where Zones A and B in the 

range of values are deemed to be clinically acceptable [67,68]. Furthermore, diagnostic performance 

measures were also determined, namely sensitivity (SN), specificity (SP), accuracy, true positives (TP), 

true negatives (TN), false positives (FP), and false negatives (FN). Such measures can give analytical 

and clinical insights into the trustworthiness of the suggested system. 

Every volunteer was quantified in just one instance and in identical conditions. The value only 

represents single glucose measurements of 120 volunteers as opposed to a time series of a single 

volunteer. In Figure 7, the x-axis indicates the index of samples and the y-axis indicates the 

concentration of glucose (mg/dL) after using both systems. In future work, continuous measurements 

(before and after a meal or an Oral Glucose Tolerance Test (OGTT) glucose tolerance test) will be 

taken into consideration. The BM reference device that was used in this study is illustrated in    

Figure 8. The joint statistical analyses proved that the proposed system exhibited a high rate of 

agreement with the BM device, with the deviations being within acceptable clinical ranges. Figure 9 

shows the HR and SpO₂ values during measurements on the MAX30100 sensor in 120 volunteers of 

various ages. The HR values have a significant variation that is attributed to changing physiological 

values and blood glucose levels, and the SpO₂ values are mostly constant within the normal range   

of 95–99%. The fact that the PPG signals obtained by the sensor are sensitive to 

cardiovascular/metabolic variations proves that the suggested noninvasive measurement system is 

reliable. The x-axis shows the index of age in years, and the y-axis shows the measurements on the 

MAX30100. 

To confirm the physiological assumptions of the proposed noninvasive glucose monitoring 

system, the data obtained from 120 subjects were subjected to a statistical analysis. The results of the 

Pearson correlation test showed that both HR and SpO₂  had a strong negative correlation (r  = −0.936) 

that was highly significant (p = 0.8 × 10−55), which confirmed that a standard increase in cardiac 

workload is normally accompanied by a minor decrease in peripheral SpO2. Moreover, there was a 

positive correlation between HR and blood glucose levels, and this correlation was strong. The linear 

regression model resulted in R2 = 0.860, and the HR coefficient was very significant (p = 2.74 × 10−52). 

The model’s parameters show that a 1 beat per minute (bpm) increase in the HR will result in an 

increase in glucose level of approximately 2.06mg/dL, with the intercept being −85.218 mg/dL. The 

findings confirm the linear model applied to the proposed system as physiologically plausible and 

statistically sound, where the SpO₂ is more of a signal quality control variable than a predictive 

variable.  Even though SpO₂ was recorded along with HR, it was applied as a normalization and 

validation parameter in signal pre-processing, not as an input variable. It was also able to provide 
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stabilization in the PPG waveform and reduce motion and perfusion artifacts so that variations in the 

HR were a true indication of the real physiological changes related to glucose levels. 

Accuracy (%) =
True value – measured value

True value
 × 100%               (6) 

Sensitivity (SN)=
TP

TP+FN
                             (7) 

Specificity (SP)=
TN

TN+FP
                             (8) 

Accuracy=
TP+TN

TP+TN+FP+FN
                             (9) 

 

Figure 7. Blood glucose measurements (mg/dL) using the blood glucometer of the 

proposed system and the BM device. 

 

Figure 8. The BM device. 
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Figure 9. The variation in HR and SpO₂ with age. 

5.1. Error test 

The proposed system and the BM device were tested for convergence using the error test [69,70]. 

All 120 paired samples were used to calculate three error metrics: Mean absolute error (MAE), absolute 

percentage error (APE), and mean absolute percentage error (MAPE). The APE values varied from 0 

to 19%, with a corresponding MAPE of 3.56%, according to the results, suggesting that the suggested 

system maintained a low relative error throughout the dataset. The absolute error also varied from 0  

to 20 mg/dL, with an overall MAE of 3.65 mg/dL, which indicates a minor departure from the BM 

reference values. Figure 10a illustrates the relationship between the APE values and the number of 

samples, while Figure 10b presents the distribution of absolute error across all samples compared with 

the MAE. These results confirm that the proposed system achieves close agreement with the BM 

device, with error values remaining within clinically acceptable limits. 
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Figure 10. The relationship between the number of samples and (a) the APE and MAPE, 

and (b) the absolute error and MAE. 

5.2. Bland–Altman test 

Agreement between the proposed system and the BM device was further evaluated using Bland–

Altman analysis [71,72]. Each paired measurement’s error (mg/dL) was calculated as the discrepancy 

between the BM reference and the suggested system, 3.47 mg/dL was the mean error (μ), and 4.07 

mg/dL was the standard deviation (σ). Using the definition of μ ± 2σ, the limits of agreement (LoA) 

were determined to be between −4.6 and 11.6 mg/dL. The fact that 97% of the data points fell inside 
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this range demonstrated a high degree of agreement between the two methods. A small percentage of 

the data points (black squares) are beyond the borders, but the majority (red circles) are inside the LoA, 

as seen in Figure 11. For noninvasive glucose monitoring, the overall LoA range of 16.2 mg/dL is 

within clinically acceptable tolerances. These results demonstrate that there is very little systematic 

bias, and that the suggested approach yields results that are closely aligned with the BM device. 

 

Figure 11. Bland–Altman plot for errors (mg/dL) between the mean from the BM and the 

proposed system. 

5.3. Clarke error grid analysis 

The Clarke error grid was used to evaluate the clinical accuracy of the proposed system by 

comparing its readings with those of the BM device [73,74]. In this analysis, the proposed system’s 

values were plotted on the x-axis and the BM reference values on the y-axis (Figure 12). The grid is 

divided into five zones (A–E): Zone A, values within ±20% of the BM reference, and considered 

clinically accurate and acceptable; Zone B, values which fall outside a range of ±20% but not be 

sufficient to cause inappropriate clinical action; Zones C and D, values that have great error, since 

therapeutic decisions can be made incorrectly; Zone E, clinically dangerous and grossly inaccurate 

values. 

The findings indicate high clinical reliability and consensus, whereby the majority of the paired 

measures (~96–98) fall in Zone A. All of them were in Zone B (only about 2–3%) and indicate some 

slight changes to be used in medicine. The percentage of data points in Zones C–E was below 1%, 

indicating that the system generates hardly any clinically inadvisable readings. Figure 11 has a blue 

diagonal line which depicts the line of absolute coincidence among the two devices, whereas the 

dashed green, orange, and red lines mark the boundaries of the zones. The fact that the red data points 

cluster around the diagonal in both Zones A and B indicates that the proposed system can give a 

measurement that is in line with the clinical accuracy requirement of noninvasive glucose monitoring. 
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Figure 12. Clarke error grid analysis for the BM and the proposed system. 

6. Results and discussion 

The system was tested using 120 samples comprising 55 females and 65 males of different ages. 

The proposed device and a BM device (ACCU-CHEK) were used to test each participant 

simultaneously. The statistical testing revealed that the outputs of the proposed system were very 

similar to those of BM device. The key advantage of the suggested device is that it is noninvasive, so 

people will not experience the discomfort and inconvenience associated with finger-prick tests. The 

system offers quick and convenient blood glucose readings, and therefore can be used in daily 

monitoring at home and at work. This would hold significant clinical significance, since it would help 

the patients prevent abrupt changes in glucose that may result in such complications as hypertension 

and cardiac issues. Moreover, the device can assist in the minimization of long-term expenditure by 

lowering the number of laboratory check-ups and clinic visits (Figure 13). It is necessary to note that 

no protocols have been provided in this research for the handgrip test or any other physiological stress 

tests. The proposed system is based entirely on noninvasive optical measurements through a 

MAX30100 sensor placed on the fingertip. 

The level of the system’s performance was evaluated with the help of conventional measures of 

classification: TP, FP, TN, FN, SN, and SP. The values computed are TP = 95, TN = 22, FP = 1, and 

FN = 2. Using these values, the system had a sensitivity of 97.94, a specificity of 95.65, and an overall 

accuracy of 97.5. Moreover, statistical validation was done, using an error test, the Bland–Altman test, 
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and the Clarke error grid. The error test revealed small deviations between the proposed system and 

BM, with a MAE of 3.65 mg/dL and a MAPE of 3.56%. The Bland–Altman plot showed a high level 

of agreement with the BM equipment, with 97% of the samples lying within the agreement limits (−4.6 

and 11.6 mg/dL) of both plots. The study with the Clarke error grid showed that <1% of the samples 

fell in Zones C and E and only 2–3% in Zone B, which demonstrates clinically credible results. On the 

other hand, 96–98% of samples were in Zone A. The results of the validation that confirmed the 

reliability of the system are summarized in Table 2 and demonstrated in Figure 14.  The calibration 

investigation between the proposed system and the BM had an intercept of 5.6, a slope of 1.02, and a 

coefficient of determination (R2) of 0.9714, which indicated there was a significant correlation. Finally, 

Table 3 compares the working of the proposed system with the past studies [22,23,27,28]. The 

proposed device recorded the best accuracy (~98%), which was higher than those reported by previous 

works that had an accuracy of 93%–96%. This shows the enhanced reliability and clinical capability 

of the developed system in relation to previous methods. The studies in [27,28] were closest to the 

proposed system in terms of the use of components, but they lacked the number of samples, achieving 

lower accuracy than the proposed system (94.3% and 93.97%, respectively). Table 3 provides a 

comparison between the proposed system and the previous studies according to the number of 

wavelengths that are used in them (the proposed system used two wavelengths (880 and 660 nm)). As 

it is possible to observe, the proposed system was more accurate than the previous ones. The better 

signal processing algorithm and the calibration of the device with a BM explain this. 

One limitation of this study is that it did not address the analysis of HRV indicators. Although 

HRV analysis has proven its clinical significance in many studies, the proposed system was based 

solely on HR and SpO₂ for glucose estimation. In the future, HRV indicators could be integrated into 

the system to expand the scope of analysis and increase the reliability of the results. 

 

Figure 13. Snapshot of a result with the proposed system. 
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Figure 14. Calibration between the BM and the proposed system. 

Table 2. Summary of the statistical validation results for the proposed system compared 

with the BM device. 

Method Metric Result Interpretation 

Error test Mean absolute error 

(MAE) 

3.65 mg/dL Low average deviation from the BM 

Mean absolute 

percentage error 

(MAPE) 

3.56% High consistency across samples 

Absolute percentage 

error (APE) range 

0 – 19% Within acceptable limits 

Bland–Altman 

analysis 

Mean error (μ) 3.47 mg/dL Small systematic bias 

Standard deviation 

(σ) 

4.07 mg/dL Low dispersion 

Limits of agreement 

(μ ± 2σ) 

–4.6 to 11.6 

mg/dL (97% of 

data) 

Strong agreement with the BM 

Clarke error grid  Zone A ~96–98% Clinically accurate 

Zone B ~2–3% Minor deviations, acceptable 

Zones C–E <1% Rare unsafe readings 

Classification 

metrics 

True positive (TP) 95 Correctly detected elevated glucose 

True negative (TN) 22 Correctly detected normal glucose 

False positive (FP) 1 Minimal misclassification risk 

False negative (FN) 2 Very low rate of missed cases 

Sensitivity (SN) 97.94% High ability to detect positives 

Specificity (SP) 95.65% High ability to detect negatives 

Accuracy 97.50% Overall high classification accuracy 

y = 1.0292x - 5.6073

R² = 0.9714
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Table 3. Comparison of previous studies and the current research. 

Reference 

and year 

Accuracy 

(%) 

Method Advantages Disadvantages 

[22] 2020 95 TCRT1000 optical 

sensor 

Low cost, simple 

design, real-time 

results 

Single wavelength 

and no algorithm 

[23] 2024 96 Laser  IoT remote 

monitoring. 

Needs to be 

calibrated frequently, 

does not model 

physiologically 

[25] 2023 94–96 Microwave 

resonator 

Low cost Affected by ambient 

light 

[26] 2021 95 Microwave 

resonator 

Low cost Affected by ambient 

light 

[27] 2025 94.3  MAX30100  Inexpensive 

educational 

prototype, and easy 

to implement and 

simple design 

Poor repeatability and 

validity of the data 

[28] 2024 93.97 MAX30102  Wireless data 

transmission through 

an IoT module, 

portable and low 

power 

Proposed 

system 

97.5 MAX30100  Dual wavelength 

sensing, 

physiological 

correlation, noise-

insensitive 

Moderate, did not 

analyze HRV 

7. Conclusions 

Diabetes is one of the most common diseases that continue to plague the world and, when 

uncontrolled, may largely affect the overall health of the individual. This study presented an alternative 

method of measuring blood glucose levels with a noninvasive device using an optical sensor 

(MAX30100), which is Arduino-based and does not require finger-prick techniques. The system was 

tested on 120 volunteers and compared with a reference device (BM). The high accuracy of the system 

(98%) was verified by statistical studies, such as error analysis, the Bland–Altman test, and the Clarke 

error grid, with majority of the studies falling within the clinically acceptable zone. The experiment 



632 

AIMS Bioengineering  Volume 12, Issue 4, 613–637. 

confirmed that the MAX30100 optical biosensor could be used in monitoring glucose-related 

physiological changes. The system has unique benefits that include pain-free operation, ease of use, 

quick measurement, and suitability for everyday self-monitoring. Its validity is better than other similar 

studies, which proves that it is a valid tool for diabetes management. Further developments are 

underway in terms of large-scale clinical validation, connection to mobile health interfaces and 

wearable systems, and cloud-based data management. Other capabilities like automated dietary 

reminders, reporting data to medical professionals, and a mobile application to check and communicate 

with the doctor will also be introduced. 
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