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Abstract: Background: Bone regeneration is a critical area of regenerative medicine that faces
significant challenges, such as bone defects and fractures. 3D printing offers a promising solution
through customized scaffolds that mimic the natural architecture of bone and support tissue healing.
Polylactic acid (PLA) is a biodegradable and biocompatible polymer widely used in biomedical 3D
printing. Preclinical animal models are essential to evaluate the performance of PLA-based scaffolds
before their clinical use. Objective: This systematic review aimed to assess the current applications
of 3D-printed PLA scaffolds for bone regeneration in animal models, focusing on PLA, animal models,
biological performance, and in vivo outcomes. Methods: A comprehensive search was conducted
across databases, covering studies published between January 2009 and January 2025, following the
PRISMA guidelines. Studies were included if they reported 3D-printed PLA scaffold constructs for
bone regeneration that were validated in animal models. Data on the animal species, defect types,
biomaterials, and outcomes were extracted and analyzed. Results: This review included 38 studies that
used animal models, such as rodents, rabbits, canines, and sheep, to assess the performance of the 3D-
printed PLA scaffolds. Cells and compounds such as hydroxyapatite, drugs, nanoparticles, proteins,
and polymers enable active scaffold fabrication that enhances regeneration from 1 to 12 weeks on the
defect created in the chosen animal model. Conclusion: 3D printing based on PLA offers significant
potential for advancing bone regeneration, with promising preclinical outcomes in animal models.
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Further preclinical and clinical studies are required to confirm the safety, effectiveness, and scalability
for human applications.

Keywords: 3D printing; polylactic acid; bone regeneration; animal model; biomaterials; regenerative
medicine

1. Introduction

Bone regeneration is a critical aspect of orthopedic and reconstructive medicine that addresses
challenges such as bone defects, fractures, and diseases that impair the body’s natural healing
processes [1]. Traditional approaches, including grafting and implants, often face limitations, such as
donor site morbidity, immune rejection, and mechanical incompatibility [2]. Recent advances in
biomedical engineering have led to innovative solutions, with 3D printing emerging as a transformative
technology in tissue engineering and regenerative medicine [3].

The precision and versatility of 3D printing enable the fabrication of patient-specific scaffolds
and implants that mimic the natural bone’s complex architecture and properties [4]. By integrating
biomaterials and bioactive components, these constructs promote osteointegration and support bone
healing [5]. Despite their promise, translating 3D-printed solutions from laboratory settings to clinical
applications requires extensive validation in preclinical models, making animal studies fundamental
in this field [6].

Polylactic acid (PLA) is one of the most widely used biodegradable polymers in 3D printing for
tissue regeneration, because of its biocompatibility, ease of processing, and mechanical stability [7,8].
However, their inherent brittleness, hydrophobic nature, and limited bioactivity have driven extensive
research on composite formulations to enhance their regenerative potential [9]. The incorporation of
hydroxyapatite (HA) into PLA scaffolds has been widely explored to improve osteoconductivity,
mimic the mineral composition of natural bone, and promote cellular attachment and
differentiation [10,11]. In addition, PLA can be functionalized with bioactive molecules, such as
drugs [12,13], and proteins [14,15], such as bone morphogenetic proteins (BMPs) [16],
nanoparticles [17], and growth factors, such as insulin-like growth factor-1 (IGF1) [12], into PLA
scaffolds, which have demonstrated enhanced osteoinduction and vascularization in preclinical models
because of the controlled release systems that enhance tissue healing.

Furthermore, blending PLA with other biodegradable polymers such as polycaprolactone
(PCL) [19], poly (lactic-co-glycolic acid) (PLGA) [18,19], or polyethylene glycol (PEG) [12,17] can
improve mechanical flexibility, degradation kinetics, and drug-loading capacity. These hybrid
scaffolds not only offer better biomimetic properties but also allow tailored degradation rates that
match the needs of specific tissues [20]. The combination of PLA with ceramics [21], natural
polymers [16,22,23] (e.g., collagen, gelatin, and alginate), and therapeutic agents represent a promising
strategy for optimizing scaffold performance, making PLA-based 3D-printed constructs highly
versatile for bone regeneration.

Animal models provide a critical platform for evaluating the biological, mechanical, and
functional performances of 3D-printed constructs [24]. They help bridge the gap between in vitro
research and human clinical trials by offering insights into material biocompatibility, scaffold
degradation, and regenerative response of the host tissue [24,25].
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Critical-sized bone defects, defined as defects that cannot heal spontaneously within an animal’s
lifespan, are commonly used experimental models to rigorously evaluate the osteogenic and
regenerative capabilities of scaffolds [26]. The consistent use of critical-size defects across studies
allows for reliable comparisons of scaffold efficacy and facilitates meaningful interpretations of their
potential clinical applicability [27] (Figure 1).

Figure 1. Critical-sized bone defect formation in a rat calvarial model. A) Selection of the
area where the defect will be made and initiation of surgery. B) Exposed bone and the
beginning of defect generation, created using a rotary instrument (trephine). C) Removal
of the cut bone. D) Generated defect. E) Placement of the PLA-based scaffold in the defect
zone. F). Closure of the defect zone. (Created and owned by the authors.)

Various species, including rodents [28], rabbits [29], and large animals, such as sheep [15],
canines [30], and pigs [31], have been used to assess the biological performance of 3D-printed
constructs. Rodents, particularly rats and mice, are commonly employed because of their cost-
effectiveness, short lifespan, and well-characterized genetic background [32]. They are frequently used
in calvarial defect models, where 3D-printed scaffolds are implanted to evaluate bone regeneration
over weeks or months [32,33]. Despite their advantages, rodent models have limitations, particularly
in replicating the mechanical and physiological properties of human bones [33]. Rabbits serve as
intermediate models, providing larger defect sites for testing and more accurate mechanical load-
bearing conditions [34]. In rabbits, critical-sized femoral and tibial defects are widely used to assess
the osteointegration and biodegradation of 3D-printed biomaterials, such as polylactic acid (PLA) and
composite scaffolds infused with bioactive components [35].
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Larger animals, including canines, sheep, and pigs, offer a more translational approach to human
bone healing because of their close anatomical and biomechanical similarities [25]. Sheep and pigs are
preferred as long-bone defect models, allowing researchers to evaluate vascularization, bone
remodeling, and scaffold integration under weight-bearing conditions [36]. Canines have also been
used to test the maxillofacial and dental applications of 3D-printed scaffolds, particularly for
periodontal and mandibular regeneration [37]. Although large animal models provide invaluable
insights, their high cost, long healing time, and ethical considerations pose challenges for their
widespread use [25,38].

Overall, the selection of an appropriate animal model depends on the research objectives, scaffold
characteristics, and specific tissue engineering applications being studied, highlighting the importance
of comparative studies to optimize the translational potential.

The evaluation of the 3D-printed PLA scaffold performance in animal models may depend on the
regenerated tissue type, animal species used, and specific study objectives [39]. Tracking the behavior
of the printed scaffolds in the regeneration process in animal models over time allows the evaluation
of the performance of the scaffolds. Short-term studies (4—8 weeks) have typically focused on early-
stage biocompatibility, inflammatory responses, and the initial cell attachment and proliferation on
scaffolds. Medium-term studies (8—16 weeks) have assessed scaffold degradation, osteointegration,
and progression of new tissue formation, providing insights into the performance of the material under
physiological conditions. Long-term studies (16—52 weeks or more) are crucial for evaluating complete
scaffold resorption, bone remodeling, and functional restoration, particularly in large animal models,
where the healing process closely resembles human bone regeneration [24,40,41]. The replacement
rate of PLA or its composites depends on factors such as the components added and test conditions,
which can take weeks to years to be absorbed by the animal body [42]. The choice of evaluation period
is critical for understanding how the scaffold supports tissue regeneration over time, ensuring that it
maintains its structural integrity during the healing phase before being gradually replaced by natural
tissue [43].

This systematic review aimed to comprehensively analyze the current applications of 3D printing
using PLA for bone regeneration validated in animal models. This study sought to highlight
advancements, identify gaps, focus on regeneration evaluation periods not considered in previous
studies, and propose future directions to enhance the translational potential of 3D-printed constructs
based on PLA in regenerative medicine, supported by their performance in animal models.

2. Materials and methods
The systematic review was registered in the Open Science Framework (OSF) Registries.
2.1. Study design

e Type of review: Systematic
e Focus: 3D-printed PLA scaffolds applied in bone regeneration in animal models.

2.2. Research strategy

e Databases: PubMed, Scopus, and Web of Science
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e Keywords used: 3D printing, polylactic acid, PLA, bone regeneration, animal model.

e Filters applied: Original studies published from January 2009 to January 2025.
2.3. Inclusion criteria

e Studies have considered animal models for evaluating bone regeneration.
e Use of 3D printing for scaffold generation.
e Use of PLA as a base polymer for 3D printing.

2.4. Exclusion criteria

e Studies that do not involve animal models.

e In vitro studies without validation in animal models.

e Studies without the use of 3D printing.

e Studies that do not use PLA in the printing of the scaffolds.
e Duplicate studies.

e Literature and systematic reviews.

2.5. Selection process
¢ Elimination of duplicates.
e Selection by title and abstract.
e Complete evaluation of the text.

2.6. Quality assessment

e Use of the PRISMA guide to perform the systematic review.

e Use of the Systematic Review Centre of Laboratory Animal Experimentations (SYRCLE)

Risk of Bias Tool to assess the risk of bias in the included animal studies.
3. Results

3.1 Selection of studies

The studies were selected according to the PRISMA guidelines (Figure 2).
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Figure 2. Flowchart for selecting studies to be considered in the systematic review.
3.2 Quality assessment

SYRCLE is a methodological approach based on the development, application, and dissemination
of systematic reviews of animal studies to advance responsible animal-based research by synthesis of
evidence [44]. The quality assessment of this systematic review indicated that most of the 38 included
studies achieved moderate-to-high methodological quality according to the SYRCLE’s Risk of Bias
tool (Table 1). Domains such as incomplete outcome data (81.6% low risk), baseline characteristics
(71.0% low risk), and blinding of outcome assessors (57.9% low risk) were consistently well addressed.
Likewise, random outcome assessment (55.3%) and random housing (52.6%) were judged as low risk
in more than half of the studies, suggesting efforts to reduce bias. However, some methodological gaps
persisted: sequence generation and allocation concealment were insufficiently reported in a proportion
of studies, while blinding of caregivers/investigators was inconsistently described. Overall, these
findings suggest that, although limitations remain in reporting and methodological transparency, the
body of evidence supporting PLA-based scaffolds in animal models is based on studies of acceptable-
to-high quality, strengthening confidence in the observed regenerative outcomes.
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Table 1. Results of the quality assessment using the SYRCLE Risk of Bias tool.

SYRCLE domain Low risk High risk Unclear risk
(n, %) (n, %) (n, %)

Sequence generation (randomization) 19 (50.0%) 4 (10.5%) 15 (39.5%)
Baseline characteristics 27 (71.0%) 3 (7.9%) 8 (21.1%)
Allocation concealment 15 (39.5%) 5(13.2%) 18 (47.3%)
Random housing 20 (52.6%) 6 (15.8%) 12 (31.6%)
Blinding of caregivers/investigators 16 (42.1%) 8 (21.1%) 14 (36.8%)
Random outcome assessment 21 (55.3%) 4 (10.5%) 13 (34.2%)
Blinding of outcome assessor 22 (57.9%) 5(13.2%) 11 (28.9%)
Incomplete outcome data 31 (81.6%) 2 (5.3%) 5(13.1%)
Selective outcome reporting 25 (65.8%) 3 (7.9%) 10 (26.3%)
Other bias 23 (60.5%) 6 (15.8%) 9(23.7%)

3.3 Characteristics of the included studies

3.3.1  The use of PLA in 3D printing

Only one study in this systematic review evaluated PLA alone, highlighting its potential as a
polymer that can lead to osteoinductive performance (Figure 3). However, 37 studies evaluated PLA
combined with other compounds, such as hydroxyapatite, drugs, nanoparticles, growth factors,
proteins, cells, or other biodegradable polymers (Table 2) to enhance its properties, biocompatibility,
and osteoinductive potential. This finding suggests that, while PLA is a promising base material
for 3D-printed scaffolds, its combination with bioactive components is essential for optimizing its
effectiveness in tissue regeneration.
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Figure 3. Studies that involve PLA alone and PLA mixed with other components.

Most studies have combined PLA with various bioactive compounds, primarily drugs,
nanoparticles, organic compounds, and plant extracts to enhance its biological functionality and
therapeutic potential. These modifications were followed by the incorporation of hydroxyapatite,
which improved osteoconductivity [45], making the scaffolds more suitable for bone regeneration.
Additionally, several studies have explored the combination of PLA with other polymers, such as
polyethylene glycol (PEG), poly e-caprolactone (PCL), polyglycolic acid (PGA), chitosan, hyaluronic
acid, and collagen, to enhance the degradation rates [46], hydrophilicity [47], and strength [48].
However, very few studies have included the integration of cells or bioactive compounds, such as
proteins, growth factors, or extracellular matrix components, despite their potential to significantly
enhance osteoinduction and tissue regeneration [15] (Table 2). This suggests that synthetic and natural
additives are preferred for extensively optimizing PLA-based scaffolds.

Table 2 summarizes the different components incorporated into PLA for printing scaffolds,
grouped by their structural relationship, bioactivity, or composition.
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In 37 studies that combined PLA with other components, more than one component was combined

to reinforce the properties of the scaffold (Figure 4).

3D-printed
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Figure 4. Compounds added to the 3D-printed PLA models to reinforce their properties.

(Created and owned by the authors.)

Table 2. Compounds added to the 3D-printed PLA scaffold.

Compounds Number of studies
Drugs, nanoparticles, minerals, extracts, and organic 20

compounds

Hydroxyapatite (nanoparticles and bulk) 17

Polymers (PEG, PCL, PGA, chitosan, collagen, gelatine, and 16

hyaluronic acid)

Cells 8

Proteins, growth factors, and extracellular matrix components 8

3.3.2  Animal models

This systematic review revealed that the rat calvarial model was the most frequently used model,
with 19 studies employing this approach to evaluate PLA-based scaffolds for bone regeneration. This
preference is likely due to the well-established protocol, cost-effectiveness, and ability to assess
osteointegration in a controlled environment [32,33]. Rabbit models have also been widely utilized,
particularly in femoral (4 studies), cranial (4 studies), tibial (2 studies), and radial (3 studies) defect
models, highlighting their relevance in studying weight-bearing bone regeneration [34]. The use of rat

AIMS Bioengineering
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femur (2 studies) and rat radial (1 study) models was comparatively less common, suggesting a more
limited application of these models in PLA-based scaffold research. Additionally, a few studies have
explored alternative models, including osteochondral tissue in mice (1 study), beagle dogs (1 study),
and sheep (1 study), which are likely to assess different zones of administration, long-term
performance, scaffold degradation, and stability under more physiologically relevant conditions [25]
(Figure 5) (Table 3).
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tissue Calvaria Radius Femur Tibia Metatarsus

Figure 5. The most common animal models used to evaluate the regeneration process of
3D-printed PLA models in vivo. (Created and owned by the authors.)

Variations in animal models highlight the importance of selecting an appropriate model based on
specific research objectives, ranging from early-stage biocompatibility assessments in rodents to large

animal models that better simulate human bone regeneration.

Table 3. Animal models considered in the studies.

Animal model Number of studies
Rat calvaria

Rabbit femur

Rabbit calvaria

Rabbit radius

Rabbit tibia

Rat femur

Beagle radius

Mouse osteochondral tissue (subcutaneous implantation)
Rat radius

Sheep metatarsus

—_
O

—_— = = = NN WS B
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3.3.3  Biological performance

All studies included in this systematic review consistently confirmed positive outcomes regarding
the performance of PLA-based scaffolds in bone regeneration. Specifically, the scaffolds could
effectively stimulate and accelerate the repair process of the defects, resulting in complete bone repair
and formation of new bone tissue, accompanied by enhanced vascularization (Figure 5) [49].
Additionally, the scaffolds exhibited favorable biological properties, such as regulating inflammatory
and immune responses and alleviating tissue hypoxia [16,50], thereby creating an optimal environment
for tissue regeneration.

Histological assessments further indicated that bone regeneration typically occurred
progressively from the edges of the defect toward the center, demonstrating a consistent healing
pattern [14]. Importantly, none of the studies reported any adverse effects associated with scaffold
implantation, thereby supporting the safety and biocompatibility of PLA-based materials for potential
clinical applications.

Some studies have evaluated specific treatment times to evaluate the efficacy of PLA-based
scaffolds. Of the studies analyzed, 30 explicitly included treatment timeframes, allowing for a detailed
assessment of scaffold performance over defined periods. These studies have facilitated a better
understanding of the degradation rates, bone regeneration progression, and long-term biocompatibility.
However, 8 studies did not specify the treatment duration, limiting the ability to compare outcomes
across different experimental designs and reducing the reliability of the conclusions regarding scaffold
effectiveness over time (Figure 6).

The lack of standardized reporting on treatment duration highlights a critical gap in current
research, emphasizing the need for future studies to consistently document experimental timelines to
enhance reproducibility and facilitate comparisons between different studies.

32— 30

Number of studies

ONROOONAMNC
|
o]

Figure 6. Studies that included or did not include evaluation times of the scaffold in animal models.
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Among the studies that included treatment duration, considerable variation was observed in the
evaluation time points across the different animal models. The rat calvarial model was the most
extensively studied model, with evaluations conducted from 1 to 12 weeks, suggesting a focus on both
short- and medium-term bone regeneration. The rat femur model had only one study reporting a
treatment duration of 6 weeks, limiting comparative insights into its long-term performance. In the
rabbit models, calvarial defect studies included evaluations at 4 and 12 weeks, whereas the radial defect
model was assessed at 8 weeks. The rabbit femur model, which is more relevant for weight-bearing
bone regeneration, was evaluated at 4, 8, and 12 weeks, providing a broader temporal assessment of
the scaffold performance. These variations highlight the diversity in study designs and the standardized
evaluation periods focused on comparing the results and optimizing the translation of PLA-based
scaffolds for clinical applications (Table 4).

Of the ten animal models included in this systematic review, only five reported specific evaluation
time points, limiting the ability to compare the temporal effectiveness of PLA-based scaffolds across
all studies. The models that included treatment duration were the rat calvarial, rat femur, rabbit
calvarial, rabbit radial, and rabbit femur. These studies have provided crucial insights into scaffold
performance over different periods, ranging from early assessments at 1 week to long-term evaluations
at 12 weeks. However, the absence of time-specific data in rabbit tibial, beagle, sheep, mouse
osteochondral tissue, and rat radial models reduces the ability to comprehensively analyze long-term
degradation rates and tissue regeneration in large animals, such as canines and sheep, and different
bones, such as the tibia.

Table 4. Number of studies that reported evaluation times for the different animal models
considered in this systematic review.

Evaluation times (weeks)  Rat Rat Rabbit Rabbit Rabbit
calvaria femur calvaria radius femur

1 2 - - - -

4 3 - 1 - 3

6 - 1 - - -

8 10 - - 1 3

12 4 - 3 - 3

4. Discussion

This systematic review demonstrates that PLA-based scaffolds are widely used in bone tissue
engineering, often in combination with other bioactive compounds, to enhance their mechanical and
biological properties. Most studies have incorporated PLA with hydroxyapatite, polymers such as PEG
and chitosan, or bioactive molecules such as drugs and nanoparticles, demonstrating that pure PLA
alone may not support optimal bone regeneration [51,52].

Incorporating drugs such as anti-inflammatory agents, antibiotics, or osteogenic stimulators into
PLA scaffolds enhances bone healing by providing local and sustained release at the defect site [53].
This modification not only accelerates the resolution of inflammation but also reduces the risk of
infection and stimulates osteoblastic activity [54]. Drug-loaded PLA scaffolds are particularly
beneficial for critical-size defects, where systemic administration alone is insufficient to promote
complete healing.
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Nanoparticles, such as hydroxyapatite, and minerals, such as magnesium silicate, hardystonite,
and wollastonite, are used as additives because of their chemical similarity to the mineral phase of
bone. Hydroxyapatite improves osteoconductivity and enhances the mechanical stiffness of the
scaffold, which is crucial for load-bearing and larger defects [55]. Additionally, other nanoparticles
can contribute to antimicrobial effects and improve bioactivity [56,57]. Their role is particularly
relevant in critical-sized defects, where mechanical reinforcement and robust osteoconduction are
required.

Blending PLA with polymers such as PEG, PCL, PGA, chitosan, collagen, gelatin, or hyaluronic
acid modifies the mechanical and degradation properties of the scaffold [58]. Hydrophilic polymers
(PEG, hyaluronic acid) improve wettability and cell attachment [59], whereas natural biopolymers
(chitosan, collagen, and gelatin) enhance biocompatibility and mimic extracellular matrix components,
thereby promoting osteogenesis and angiogenesis. These modifications are particularly advantageous
for medium-to-large defects because they balance scaffold resorption with new bone formation and
reduce the risk of fibrous tissue infiltration [60].

The incorporation of bioactive plant extracts or small organic molecules contributes to antioxidant,
anti-inflammatory, and osteogenic effects [61]. These compounds can modulate the local
microenvironment, reduce oxidative stress, and promote vascularization, which are essential for stable
bone regeneration [62]. While evidence is still emerging, these additives may be particularly useful in
challenging healing environments such as infected or hypoxic large defects [63].

Using cells, proteins, growth factors, and extracellular matrix components is the most biologically
potent strategy, involving seeding PLA scaffolds with osteoprogenitor cells, stem cells, or
incorporating proteins, growth factors (BMP-2, VEGF), and extracellular matrix components [64].
These biologically active modifications provide osteogenic and angiogenic signals, which directly
enhance bone formation and vascular ingrowth [65]. Although technically complex, these approaches
have shown the greatest potential to achieve full regeneration of critical-size defects, particularly in
calvarial or long-bone models, by mimicking the natural bone healing cascade [66].

The predominant use of rat calvarial models suggests a focus on small, controlled defect studies,
which provide valuable insights into scaffold integration and early bone formation but may not fully
replicate the complexities of weight-bearing bone healing [67]. The inclusion of larger animal models,
such as rabbits, canines, and sheep, although less frequent, is essential for assessing the stability and
long-term performance of the scaffold, which is crucial for clinical translation.

One of the strengths of the included studies was the diversity of the animal models used, ranging
from small rodents to large mammals, which allowed for a comprehensive understanding of scaffold
performance under different physiological conditions [68]. Furthermore, combining PLA with
bioactive materials enhances osteogenic potential, which is a significant step toward clinical
application. However, there were notable limitations to the analyzed studies. A few studies did not
specify the treatment duration, making it difficult to compare outcomes over time. The lack of
standardized reporting on treatment duration highlights a critical gap in current research, emphasizing
the need for future studies to consistently document experimental timelines to enhance reproducibility
and facilitate comparisons between different studies. Very few studies have incorporated cell-based or
protein-based strategies that could further enhance bone regeneration [69-71]. Although
preclinical models provide valuable insights, differences in bone metabolism and healing between
animals and humans must be carefully considered before their clinical application [72,73].

The findings of this review emphasize the need for further research before PLA-based scaffolds

AIMS Bioengineering Volume 12, Issue 4, 453-472.



466

can be widely used in the clinical setting. Future studies should prioritize large animal models that
better mimic human bone physiology to facilitate translation into human applications, particularly
under weight-bearing conditions. Additionally, more research is needed to evaluate the long-term
degradation of PLA scaffolds, their impact on surrounding tissues, and the controlled release of
bioactive molecules to enhance bone healing. Integrating standardized protocols, including defined
evaluation times and consistent defect models, will improve the comparability of studies and support
regulatory approval for clinical trials [74]. Although PLA-based 3D-printed scaffolds show significant
promise for bone regeneration, further optimization is necessary to ensure their safety, efficacy, and
scalability in human applications. Nonetheless, their use involves important logistical and economic
challenges, including animal availability, handling requirements, and associated costs [25,75].

5. Conclusions

This systematic review highlights the widespread use of PLA-based 3D-printed scaffolds for bone
regeneration in animal models, emphasizing the importance of combining PLA with bioactive
compounds, such as hydroxyapatite, cells, proteins, polymers (PEG, chitosan, and collagen),
nanoparticles, and therapeutic agents to enhance their biological properties. Most studies have focused
on rat calvarial models, whereas few have explored weight-bearing bone regeneration in larger animals,
limiting direct translational applications to human clinical settings. Additionally, while many studies
included specific treatment durations, a few did not report this information, reducing the ability to
compare outcomes over time.

Future research should optimize scaffold composition to improve osteoinductive and
osteoconductive properties while ensuring controlled degradation rates. The use of larger animal
models that better mimic human bone physiology is essential to evaluate long-term efficacy.
Standardized methodologies, including consistent defect models, scaffold fabrication techniques, and
evaluation time points, will enhance the reproducibility and comparability of results. Furthermore,
incorporating cell-based therapies, growth factors, and controlled drug delivery systems can
significantly enhance the performance of the scaffolds. Although PLA-based 3D-printed scaffolds
show promising potential for bone tissue engineering, further preclinical and clinical studies are
required to ensure their safety, effectiveness, and scalability for human applications.
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