

AIMS Bioengineering Volume 12, Issue 3, 412–434.

AIMS Bioengineering, 12(3): 412–434.

DOI: 10.3934/bioeng.2025020

Received: 24 June 2025

Revised: 20 August 2025

Accepted: 01 September 2025

Published: 05 September 2025

https://www.aimspress.com/journal/Bioengineering

Research article

Electronic modeling of biochemical pathways on reconfigurable

computing platform-a repressive circuit of soil bacteria

Syeda Ramish Fatima* and Maria Waqas

Department of Computer and Information Systems Engineering, NED University of Engineering and

Technology, Karachi, Pakistan

* Correspondence: Email: syedaramish@neduet.edu.pk; Tel: +923342037313.

Abstract: Cytomorphic hardware, in which bio-cellular processes are mapped onto an electronic

substrate, has gained quite a prominence in the past few decades due to advancements in the fields of

systems biology, synthetic biology, and other related disciplines. Conventionally, the analog substrate

is the preferred choice for nonlinear biochemical reactions in the biological circuits; however, many

researchers have exploited the flexibility, reconfigurability, and ease of design of digital platforms

such as reconfigurable field-programmable gate arrays (FPGAs). In this work, we briefly examined

work on such reconfigurable platforms and proposed a novel and straightforward technique to

implement the systems of ordinary differential equations describing such biochemical reactions in a

modular fashion using single-precision floating-point intellectual property cores available on a

representative reconfigurable platform. A simplified biochemical system of a repressive three-way

network of soil bacteria was taken into account, and the system of ordinary differential equations was

first simulated in a software-based environment with results compared against a hardware-based

realization. We observed a significant speed-up of up to 5x in the reconfigurable platform-based

realization compared to the software-based realization. The values in the hardware-based realization

were also more accurate compared to the software-based approach. Statistical error metrics (RMSE,

MAE, and NRMSE) further confirmed a close numerical match between the two implementations.

Hence, the results conformed well, and thus, this design strategy can be incorporated into the future

cytomorphic design on field-programmable gate arrays.

Keywords: bio-chemical reactions; cytomorphic; ordinary differential equations; reconfigurable

platforms; soil bacteria network

413

AIMS Bioengineering Volume 12, Issue 3, 412–434.

1. Introduction

The basic cellular structures like neural networks in the nervous system and other cellular

networks in biological systems are quite complex and interwoven in nature. In order to understand

the mechanisms behind functions performed by them, mathematical and computational modeling

techniques play a pivotal role. These techniques enable scientists and researchers to gain some

insight into these intricate mechanisms. Likewise, the intracellular biochemical processes might look

like simple chemical processes at first, but the interactions and regulation patterns are highly

complex, and thus, only mathematical and computational modeling can be deployed to fully

understand these cascades of biochemical pathways. The computational or in-silico modeling of

biological processes using software tools has been an active research domain called Executable

Biology [1,2].

Many different algorithms are based on Finite State Machines as in [3], but the model remains

largely theoretical without experimental validation. The biological complexity of real mutations and

regulatory networks is seen in [4], where practical biochemical feasibility, dynamics of actual

genetic parts, and scalability beyond educational demonstration are untested; and in [5], where the

system is greatly simplified and is limited to two inputs and five states only, and the reaction time,

though improved, lies on the order of minutes, making scalability and speed bottlenecks in more

complex settings.

An artificial-based system in [6] blends mechanistic kinetic model structures with model-free

reinforcement learning to adaptively identify both the correct kinetic form and its time-varying

parameters, but validation is limited to in-silico scenarios only, lacking real experimental data; and

the hybrid structure remains vulnerable to over-parameterization or over-fitting. Similarly,

standardized markup languages [7,8] and other computational variants [9,10] are major contributions

in this domain. Another interesting approach is to define the network motifs of the most commonly

occurring biological networks and create computational algorithms for them [11,12].

All these computational models, however, are phenomenological, and the real molecular level

of cellular interactions is not incorporated. Various rates like the rate of product formation, affinities

of binding, and rates of transcription are not taken into account or are adjusted to attain certain

results. Furthermore, considering a few molecules, surface receptors, and transcription factors is not

enough to give a reasonable insight into the phenomenon under consideration. The biological

systems like the nervous system and immune system, in particular, rely on molecular heterogeneity.

The process of learning requires individual nerve cells to be distinct.

When we consider modeling of neural plasticity, for instance, we consider only the electrical

aspects arising from action potentials, their propagation, and synaptic delays; however, these

electrical mechanisms take place due to protein-based ion channels, pumps, and receptors present on

the cell membranes, and these proteins undergo many variations due to alternative splicing, post

translational modifications, and other factors. Hence, there is a possibility that the long term memory

formation relies on post translational protein modifications of synaptic proteins [13,14].

Another major issue related to computational modeling is the resources required for intricate

and complex simulations of biological processes, such as supercomputer scale machines and cloud

facilities. Hence, a growing number of researchers are looking toward other means of modeling like

using Graphical Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), and

analog/mixed signal domain electronic substrates [15–17]. GPUs, however, support Single

414

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Instruction Multiple Data (SIMD) scenarios, whereas in biochemical pathways, each ODE represents

a number of different operations on the same data. Hence, using GPUs is not a very scalable solution

when large and complex biological processes are to be modeled, as a very large number of GPUs

would be required in such cases.

Besides digital implementations, some researchers have used analog and mixed-signal platforms

to implement biochemical processes. Dr. S. M. Razaul Hasan and his colleagues, at the Center for

Research in Analog and VLSI microsystems dEsign (CRAVE), Massey University, Auckland, New

Zealand, have made notable contributions to bio-cellular process modeling through mixed IC design.

Their work includes a sequential circuit level design for simulating biological processes and cell

signaling pathways, with sequencing governed by circadian rhythms [18], a hysteretic electronic

switch [19], analogues for mRNA transcription [20], and a comprehensive electronic model of post

gene transcription mechanisms [21], all of which represent significant advancements in the field.

Cytomorphic hardware design, which emulates biological processes on an electronic substrate,

has been an active research area for several decades. Its growing relevance spans basic medical

science, drug testing, pharmacology, molecular biology, and related fields such as synthetic biology,

biosensors, prosthetics, and robotics, highlighting its increasing impact and multidisciplinary

importance.

Professor Rahul Sarpeshkar at the Research Laboratory of Electronics, MIT, and his research

team have contributed to the domain by performing wet experiments (in-vitro) as well as dry

experiments on electronic neuromorphic and cytomorphic chips. Their work, ranging from analog

synthetic biology circuits, to biological and bio-inspired supercomputers based on analog

computation in cells, and ultra-low-power implantable medical devices such as cochlear implants or

diagnostic devices, adds great value to the field of Cytomorphic Computing [22]. He has shown with

his designs that the presence of a smaller number of transistors in an analog electronic substrate

means faster implementations than any digital counterparts [23,24]. In [24], the researchers also

provide an excellent review on how cytomorphic electronic chips at sub-threshold analog levels can

be used to map biochemical reaction networks.

Waqas et al. in [25] use velocity saturated short-channel MOS transistors to model very

frequently seen bio-cellular reactions, namely receptor-ligand binding and Michaelis-Menten

reactions. In [26], Waqas et al. further extend their work in [25] and [27], and they implement an

analog MOS based design of a complete bio-chemical pathway. In [28], the p53 protein led pathway

responsible for cell death, called apoptosis, is designed by Patra et al. using ODEs of the system

model. CMOS circuits are implemented for the entire pathway. This design enabled the study of p53

pathways dynamics without the need for biological cells in a dry lab and would benefit cancer

treatment and drug control for such diseases. A more recent work from Patra et al. [29] presents a

MOS-based cytomorphic SoC for simulating stochastic apoptosis networks, translating nonlinear

biochemical dynamics into subthreshold electronic circuits. Simulation results show strong

agreement with experimental data and biosimulator outputs, validating the system’s accuracy and

stability.

Although analog design, being fuzzy and noisy like biological circuits, seems to be a better

choice, the design process is tedious and costly; thus, digital and mixed-signal design is often

preferred by researchers. In the digital domain, Application Specific Integrated Circuit (ASIC) and

FPGA-based design are possible, but ASIC designs are again rigid and costly; hence, reconfigurable

platforms like FPGAs are favored over ASICs. We exclude GPU-based realizations from this

415

AIMS Bioengineering Volume 12, Issue 3, 412–434.

discussion as they are not scalable and cannot be implemented independent of CPU-based host

machines, which incur an additional overhead in the design.

Cytomorphic design at a higher level of abstraction is much easier to carry out using FPGAs,

but a bottom-up approach, where biophysical dynamics of cellular processes are taken into account,

poses a huge challenge due to limited resources on the FPGA chip. The biological processes have

been mapped onto FPGAs for the past few decades, as we can see in the work of [30–32]. A detailed

account of FPGA-based design for biological processes is discussed in the proceeding section. The

researchers in [33] provide a comprehensive overview of cytomorphic and neuromorphic trends on

different electronic platforms and their applications in various emerging fields.

Here, we intend to investigate the realization of a simple biochemical process on a

reconfigurable platform such as FPGA. For dynamic modeling of the selected biochemical process

on an FPGA, a novel technique is furnished so as to inspect some advantages and disadvantages that

can be incurred in doing so.

We have validated the reconfigurable platform-based design against CPU-based simulation by

keeping the initial conditions and rate constants identical in both approaches, as defined in the

following sections. A straightforward implementation strategy is adopted for solving the Ordinary

Differential Equations (ODEs) representing the biological circuit, using Euler’s Method as the

numerical solver. This choice is intentional to facilitate optimal resource utilization on the FPGA.

Higher order solvers such as the Runge Kutta methods, while offering improved numerical accuracy,

are not employed due to their significantly higher computational and memory overhead. These

methods require multiple intermediate calculations per time step, which would increase the hardware

complexity and resource usage on a reconfigurable platform. Given the nature of our application,

particularly when modeling large and intricate biochemical processes, the increased cost in terms of

FPGA logic, memory blocks, and latency outweighs the benefits in accuracy. Therefore, Euler’s

Method presents a favorable trade-off between accuracy and hardware efficiency for our use case.

To ensure a direct correspondence between the software-based and FPGA-based

implementations, we avoid using built in ODE solvers in software and instead employ a self-written

numerical routine. This enables us to maintain consistent computation logic and precisely match the

behavior of both implementations. Furthermore, floating-point arithmetic is utilized instead of

fixed-point, eliminating the need for scaling and mitigating issues related to precision loss.

Fixed-point arithmetic, although resource-efficient, can degrade accuracy and is, thus, avoided where

floating-point resources are available.

The FPGA implementation follows a modular design, enabling future enhancements such as

time multiplexing of functional units to further optimize resource usage. Additionally, the use of the

Advanced eXtensible Interface (AXI) protocol in the floating-point IP cores provides an efficient

means to parallelize independent computations within the ODE system. This helps circumvent the

need for sequential execution as seen in CPU-based simulations. The AXI protocol also offers robust

control over execution flow, making it well suited for handling feedback loops commonly present in

biochemical reaction networks.

1.1. Generic three component repressive network of soil bacteria

A simplified model of a generic three-component repressive network, representing a

biochemical circuit observed in soil-dwelling bacteria, is known to exhibit oscillatory behavior

416

AIMS Bioengineering Volume 12, Issue 3, 412–434.

depending on the parameters selected. This network comprises three proteins A, B, and C that can

exist in phosphorylated (A-p, B-p, C-p) or dephosphorylated (A, B, C) states. The biochemical

interactions among these proteins form a closed feedback loop, where protein A catalyzes the

dephosphorylation of protein B, protein B catalyzes the dephosphorylation of protein C, and protein

C, in turn, catalyzes the phosphorylation of protein A. The activation signals in the feedback loop are

illustrated in Figure 1, where circles at the end of the arrows denote activation. The reactions

involved in this regulatory circuit are governed by Michaelis-Menten kinetics. The system is

modeled mathematically using a set of three coupled ordinary differential equations (ODEs) (1), (2),

and (3) for the three proteins A, B, and C , respectively, incorporating Michaelis-Menten

expressions to describe the enzymatic activity of each component [34,35]. The resulting model is

expressed as follows:

𝑑[𝐴]

𝑑𝑡
=

𝑘𝑝1([𝐴𝑡𝑜𝑡𝑎𝑙] − [𝐴])

𝐾𝑝1 + [𝐴𝑡𝑜𝑡𝑎𝑙] − [𝐴]
−
𝑘𝑘1[𝐴][𝐶]

𝐾𝑘1 + [𝐴]
 (1)

𝑑[𝐵]

𝑑𝑡
=
𝑘𝑝2([𝐵𝑡𝑜𝑡𝑎𝑙] − [𝐵])[𝐴]

𝐾𝑝2 + [𝐵𝑡𝑜𝑡𝑎𝑙] − [𝐵]
−

𝑘𝑘2[𝐵]

𝐾𝑘2 + [𝐵]
 (2)

𝑑[𝐶]

𝑑𝑡
=
𝑘𝑝3([𝐶𝑡𝑜𝑡𝑎𝑙] − [𝐶])[𝐵]

𝐾𝑝3 + [𝐶𝑡𝑜𝑡𝑎𝑙] − [𝐶]
−

𝑘𝑘3[𝐶]

𝐾𝑘3 + [𝐶]
 (3)

In these three equations, [Atotal], [Btotal], and [Ctotal] represent the total concentrations of

proteins A, B, and C, respectively. [A], [B], and [C] give their resulting molecular concentrations,

respectively, and (d[A])/dt, (d[B])/dt, and (d[C])/dt represent the rate of change of concentration

for proteins A , B , and C , respectively. kp1 , kp2 , and kp3 are the rate constants for

dephosphorylation of A, B, and C, respectively, while kk1, kk2, and kk3 are the rate constants for

phosphorylation of the three proteins, respectively. Kp1, Kp2, and Kp3 are the dissociation constants

for the dephosphorylation of A , B , and C , respectively, and Kk1 , Kk2 , and Kk3 are the

Michaelis-Menten constants of phosphorylation of A, B, and C, respectively.

The biological motivation for modeling this simplified soil bacterial repressive loop arises from

its relevance to naturally occurring gene regulatory networks that govern adaptive responses in

microbial populations. Soil bacteria frequently encounter fluctuating environmental conditions, such

as changes in nutrient availability, moisture, and pH, necessitating robust regulatory mechanisms to

maintain homeostasis and survival. Minimal repressive circuits, such as the one modeled here,

capture essential features of such regulation, including nonlinearity, time-delayed feedback, and the

potential for oscillatory dynamics. These properties make the system a useful abstraction for

studying the fundamental principles of feedback control in biological systems.

417

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Figure 1. A generic three protein repressive network of soil bacteria [34].

By focusing on a reduced model with only three interacting components, it becomes feasible to

analyze the system analytically and computationally, thereby providing insights into the parameter

regimes that give rise to oscillatory or steady-state behavior. Furthermore, such simplified models

are useful test cases for hardware-based implementations of biological networks, such as those

deployed on field-programmable gate arrays (FPGAs), enabling real-time simulation and emulation

of biochemical processes. The results obtained from modeling and simulating these circuits not only

enhance our understanding of natural regulatory motifs but also contribute to the development of

synthetic biological circuits for use in biosensors, drug delivery systems, and programmable

bio-devices

1.2. Reconfigurable computing platforms for biochemical pathway realizations

Reconfigurable computing platforms, as the name implies, enable the modification of various

design parameters even after successful implementation. Moreover, the design can be easily altered

whenever required, with minimal effort and cost. Designs can also be made robust and adaptable by

configuring critical parameters as inputs to the system; for instance, by storing initial values in Block

RAM (BRAM) or Ultra RAM (URAM) available on many FPGA devices. In such cases, the design

does not need to be recompiled; instead, parameter changes can be made simply by writing new

values to the memory blocks.

In this work, we explore a technique for implementing a small-scale biological process on an

FPGA using Euler’s method as the ODE solver. The chosen three-protein repressive network has a

limited number of ODEs and parameters, making it ideal for demonstrating the implementation

methodology. However, the proposed approach is scalable and can be extended to larger and more

complex biological networks, where the benefits of FPGA-based acceleration become more

significant.

418

AIMS Bioengineering Volume 12, Issue 3, 412–434.

1.3. Engineering significance and application scope of FPGA-based biochemical circuit

implementation

The primary contribution of this work lies in the realization of a biologically inspired regulatory

network on reconfigurable hardware. Although the underlying biochemical model, a

three-component repressive loop governed by Michaelis-Menten kinetics, is conceptually established

in systems biology, we introduce a novel hardware-based implementation that enables real-time and

resource-efficient simulation. The circuit is implemented using floating-point arithmetic IP cores to

ensure numerical stability and eliminate the need for manual scaling inherent in fixed-point systems.

This design decision preserves computational fidelity, which is particularly important in modeling

biochemical processes with sensitive dynamic ranges.

The use of the Advanced eXtensible Interface (AXI) protocol further enhances system

efficiency by enabling concurrent processing of independent ODE computations. This contrasts with

CPU-based implementations, which typically rely on sequential execution and are therefore limited

in terms of speed and scalability. Through modular design and IP-level abstraction, the system

supports extensibility to larger networks and enables time- -multiplexing strategies for resource

optimization on the FPGA.

From an application standpoint, the presented approach holds significant promise for domains

such as synthetic biology, where rapid in-silico prototyping of genetic circuits is essential. By

enabling hardware-accelerated emulation of gene regulatory networks, the platform facilitates fast

validation of circuit dynamics before experimental realization. Furthermore, the ability to simulate

complex feedback-driven systems in real time has potential utility in pharmacodynamics and drug

discovery workflows, particularly for simulating signaling cascades under varying conditions. Some

other emerging fields that may benefit from this work include biomorphic artificial intelligence,

neuro-prosthetics and brain-computer interfaces, bio-electronic medicine, DNA-based memory and

computing devices, bio-computers, and others [33]. These capabilities make the proposed

implementation a generalizable framework for the deployment of biologically relevant models in

embedded, high-throughput, or edge-computing environments.

2. Related work

Recent advances in cytomorphic circuits implemented on reconfigurable platforms, particularly

Field-Programmable Gate Arrays (FPGAs), have demonstrated the potential for high-speed and

parallel simulation of biochemical processes. However, much of the work emphasizes

implementation than addressing the broader engineering trade-offs, resource constraints, or

biological fidelity gaps that we aim to bridge. Early contributions in this area include the work by

Osana et al. [36–39], where FPGA-based simulators were developed using deterministic (ODE-based)

and stochastic approaches to model metabolic and biochemical pathways. These efforts culminated

in the development of ReCSiP (Reconfigurable Cell Simulation Platform) [39,40], which

demonstrated considerable speedup compared to conventional software implementations. Despite

these advances, the ReCSiP platform relied on now-obsolete FPGA hardware and legacy toolchains,

limiting its relevance to modern programmable logic devices.

Soleimani and Drakakis, in [41], extended this line of research by implementing a cellular

calcium signaling model on FPGA, capable of pipelining between 10,000 and 40,000 calcium units.

419

AIMS Bioengineering Volume 12, Issue 3, 412–434.

This demonstrated not only a significant improvement in execution time compared to CPU-based

simulations but also the feasibility of modeling large-scale cellular dynamics on reconfigurable

hardware. However, their focus remained largely on performance metrics, without much emphasis on

hardware scalability or generalization to broader biochemical networks.

Further work by Soma et al. [42], and later extended by Acharya et al. [43], introduced

hardware-software co-design methodologies using MATLAB Simulink and Xilinx System Generator.

These tools facilitated rapid prototyping of biochemical circuits through modular design libraries.

While this approach enabled greater flexibility and ease of implementation, it introduced software

dependencies and version compatibility issues that could affect design portability and long-term

reproducibility. Moreover, both works acknowledged that such abstraction tends to omit key

biological intricacies, thereby limiting its biological interpretability. In [44], Acharya et al.

demonstrated a cytomorphic engineering approach by modeling key cellular biochemical reactions as

low-power electronic circuits using FPGA-based implementation. The synthetic models of p53

signaling pathways are validated against cell culture data and efficiently realized on a Zynq-7000

board, consuming only 310 mW of power.

Several challenges persist across these studies. First, much of the prior work depended on

Systems Biology Markup Language (SBML) for model representation. While SBML is a widely

accepted standard, it poses several practical issues, such as dependency conflicts (e.g., libSBML and

libstdc++ compatibility with MATLAB), memory management concerns, and difficulties in parsing

complex expressions; issues documented on the SBML.org website. These limitations restrict

automation and integration into modern design workflows. Second, despite the demonstrated

speedup, most platforms use fixed-point arithmetic to reduce resource utilization. However,

fixed-point methods can compromise numerical accuracy, particularly for systems with wide

dynamic ranges or sensitive kinetic parameters. This trade-off is not well addressed in the literature,

especially in the context of biologically faithful circuit emulation.

In contrast, we propose a modular, floating-point FPGA implementation that addresses these

limitations on several fronts. First, it eliminates reliance on SBML or external software layers by

directly implementing the system of ODEs derived from biochemical reactions. Second, it uses

floating-point arithmetic to preserve numerical precision without requiring result scaling, which is

crucial for accurate biological modeling. Third, it leverages the AXI protocol-based IP cores to

exploit the parallelism inherent in biochemical systems, providing scalability and real-time execution

capabilities. In doing so, this work contributes not only a performance-optimized design but also a

biologically consistent and hardware-portable framework that fills key gaps in current cytomorphic

circuit implementations.

3. Experiments to implement biological processes of repressive networks of soil bacteria

3.1. CPU-based implementation

For a software-based approach, we selected MATLAB R2019a running on an Intel i7 Core

machine. We used Euler’s method to implement the three-way repressive network of soil bacteria as

given by equations (1), (2), and (3), using the code structure defined below.

420

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Table 1. Rate constants and Michaelis-Menten reaction constants.

Constant

symbol

Constant name Value

kp1
Constant rate for dephosphorylation for protein A 20 sec-1

Kp1
Dissociation constant for phosphorylation of A 0.2 mM

kk1 Constant rate for phosphorylation for protein A 5 sec-1

Kk1 Michaelis–Menten constant for phosphorylation of protein A 8 mM

kp2
Constant rate for dephosphorylation for protein B 15 sec-1

Kp2
Michaelis-Menten constant for dephosphorylation of protein B 10 mM

kk2 Constant rate for phosphorylation for protein B 30 sec-1

Kk2 Dissociation constant for phosphorylation of protein B 3 mM

kp3
Constant rate for dephosphorylation for protein C 5 sec-1

Kp3
Michaelis-Menten constant for dephosphorylation of protein C 40 mM

kk3 Constant rate for phosphorylation for protein C 50 sec-1

Kk3 Dissociation constant for phosphorylation of protein C 3 mM

We first defined all constants, set the time step and simulation time, and set all the initial

conditions, as shown in Table 1. The initial molecular concentrations of proteins A, B, and C were

kept at 5 mM each. We implemented a loop to handle the progression of time at each time-step and

thus, compute the rates of change in concentration of proteins at each time step denoted as d[A]/dt,

d[B]/dt, and d[C]/dt in equations (1), (2), and (3), respectively. We used a very small timestep

of 0.005 seconds. Based on the attained values, we calculated new values of protein concentrations,

appended them to a vector storing all the new values, and plotted these values to display the resultant

concentration curve.

3.2. FPGA-based implementation

For FPGA-based implementation, we selected Xilinx Vivado 2020.2 and Artix 7 device version

xc7a100tcsg324-1. When it comes to FPGA-based realization of ODE solvers, one of the primary

concerns is the use of fixed-point arithmetic or floating-point arithmetic to solve the equations.

Though we could use fixed-point arithmetic in Verilog, it is known that such an attempt results in

errors related to precision in the results, especially when the molecular concentrations can be subject

to very minute changes in each time-step. Moreover, the synthesis of multiplication and division

operations poses a major concern in such implementations, as the division and multiplication

operators are not synthesizable in Verilog. Thus, a self-reliant synthesizable circuit based on some

adequate algorithm, such as Booth’s algorithm for multiplication, may be required. This is not only

tedious, but also error-prone and expensive from the perspective of resource utilization. One

421

AIMS Bioengineering Volume 12, Issue 3, 412–434.

possibility is to come up with some multiplier-less implementation and use a multiplication-based

approach for division as well. Another way is to use DSP (Digital Signal Processor) slices for

multiplication using fixed-point arithmetic. Since Verilog does not support any fixed-point

representation, it considers all the operations as integer operations, and the results need to be scaled

to get the correct results.

In our implementation, we opted for floating-point operations available as Intellectual Property

(IP) cores in Xilinx. IP cores are available through an IP catalog that comes with the Xilinx software.

Various IP cores can be instantiated in the design as and when required. One major advantage of

using these IP cores for floating-point operations is that it enables users to optimize the use of DSP

slices. Moreover, since it works according to the Advanced eXtensible Interface (AXI) protocol,

better control of the operations is possible, which is discussed in the following text. Once an IP core

for an operation is generated, it can be used as many times as required by simply instantiating it in

the design. We used Floating-Point IP Core in XILINX Floating-Point Operator V7.1. The Xilinx

Floating-Point Operator core enables a range of floating-point arithmetic operations to be performed on

FPGA. The operation is specified when the core is generated, and each operation has similar interface.

This core complies with much of the IEEE-754 Standard. Some standards supported are listed as

below. For this research work, we took binary 32 (single precision format).

• binary16 (Half Precision Format): 16 bits, with an 11-bit fraction and 5-bit exponent.

• binary32 (Single Precision Format): 32 bits, with a 24-bit fraction and 8-bit exponent.

• binary64 (Double Precision Format): 64 bits, with a 53-bit fraction and 11-bit exponent.

This standard necessitates the results to be accurate to half of one Unit in the Last Place (ULP).

This Floating-Point Operator enables multiplication, addition/subtraction, fused multiply-add, division,

square-root, and conversion operators. Thus, multiplication, addition/subtraction, accumulator, fused

multiply-add, division, and others are used as building blocks for various modules in our design.

3.2.1. Verilog modules for implementation of repressive networks

The required floating-point IP cores were configured and generated first and then the modules

for solving equations and producing outputs were created. The implemented modules were as

follows:

• Module fp_add_sub: As the name suggests, this IP Core module can be used to add or

subtract two floating-point operands in IEEE 754 Single Precision Standard.

• Module fp_multiply : This module can be used to multiply two single precision

floating-point numbers.

• Module fp_mult3 : This module comprises two fp_multiply modules to enable

multiplication of 3 floating-point quantities.

• Module fp_divide: This module enables single precision division.

• Module fp_mult_add: This module takes three operands as inputs, multiplies the first two,

and then adds the third one to generate the result.

3.2.2. Repressive network modules

Using the modules of different floating-point operators described in the previous subsection, various

modules are written to implement the ODE solver using Euler’s method. These modules are as follows.

422

AIMS Bioengineering Volume 12, Issue 3, 412–434.

• Module dAdt: This module computes d[A]/dt for protein A using (1). This module takes

the constants and initial values required for calculating differential output at each time step.

fp_multiply , fp_add_sub , fp_divide are instantiated multiple times to carry-out the operations

required. Control of operations is established through handshake signals of AXI4 stream protocol.

• Module dBdt (used as dCdt as well): Similar to d[A]/dt module but the relevant

operations and their order is maintained according to the repressive circuit model described in (2)

through (3) for d[B]/dt and d[C]/dt, respectively. The same module is used to instantiate both

d[B]/dt as well as d[C]/dt calculations as the working mechanics of proteins B and C are the

same.

• Module A_dtxdAdt: This module is for the calculation of new values of protein A used as

initial value for the next time step. Modules dAdt and fp_mult_add are instantiated with required

control signals for handshaking purposes.

• Module B_dtxdBdt: Similar to the module defined above, this is for the computation of

proteins B and C. Hence, this module is instantiated twice; once for protein B and then for protein C.

• Module ABC_NW: This is the top module of this design where the concentrations of all the

three proteins are computed by setting the initial conditions and constants of equations along with the

provision of keeping the new values at each time step and produced as outputs. The initial values are

the same as described in Table 1.

In Figure 2, we present the block diagram illustrating various modules derived from equation (1)

for protein A. The floating-point operation modules were arranged to enable parallel execution, as

the resulting values were independent of each other, as shown in equation (1). Once the dependent

values were computed, the next-stage modules were triggered using control signals generated within

the architecture. This figure demonstrates the independent initiation and completion of operations for

numerators and denominators, and the subsequent stages begin execution as soon as all required

operands become available. To enable computational overlapping, multiple instances of each

arithmetic operation were instantiated as needed. However, we could also provide the flexibility to

time-multiplex these modules, optimizing FPGA resource utilization.

The fp_add_sub module was used to compute [Atotal]-[A], and another instance computes the

denominator of the first term in equation (1). The numerator’s multiplication operation was executed

in parallel. Once the numerator and denominator values were obtained, the division was carried out.

The second term’s numerator involved a three-operand floating-point multiplication of kk1, [A], and

[C], while the denominator was computed using fp_add_sub to add Kk1 and [A]; these operations

were initiated simultaneously with the first term’s subtraction. Upon computing the numerator and

denominator, the second division was performed. A final subtraction between the two computed

terms yielded dA/dt, which was then multiplied by dt and added to the previous value of [A] to

update the concentration, stored as accA. Figure 2 shows the A_values at every time step dt.

Figures 3 and 4 depict the modules B_values and C_values, respectively. Figure 5 provides a

top-level overview (ABC_NW) that simultaneously calculates A_values, B_values, and C_values,

thereby fully parallelizing the execution in contrast to the sequential computation of a CPU-based

realization, illustrated in the flow diagram of Figure 6. This comparison demonstrated that the CPU

processes the values for proteins [A], [B], and [C], sequentially, using Euler’s method, whereas the

FPGA implementation parallelizes the computation of all three protein concentrations and the

independent arithmetic operations within equations (1), (2), and (3).

423

AIMS Bioengineering Volume 12, Issue 3, 412–434.

3.2.3. Synthesis results

All the instantiated modules in the proposed design are illustrated in Figures 7 and 8. Figure 7

presents the top-level schematic of the ABC_NW module, which implements the system of ODEs

given in (1)–(3). This module accepts clock, reset, and start signals as inputs and outputs the updated

concentrations A_new, B_new, and C_new for the three proteins at each simulation step.

Figure 8 provides an expanded schematic of the A_values instance, highlighting the A_dtxdAdt

t module, which contains the dAdt and fp_mult_add units. The dAdt module was further

decomposed into floating-point operation units, namely fp_multiply, fp_add_sub, and fp_divide.

For completeness, detailed expanded schematics for A_values , B_values , and C_values are

included in the supplementary material (Figures S1 and S2), showing the internal arrangement of the

floating-point operator modules for each protein.

Figure 2. 𝐴_𝑣𝑎𝑙𝑢𝑒𝑠 module block diagram based on floating-point modules according

to (1) and (6).

Figure 3. 𝐵_𝑣𝑎𝑙𝑢𝑒𝑠 module block diagram based on floating-point modules according

to (2) and (6).

𝐵_𝑣𝑎𝑙𝑢𝑒𝑠

𝐾𝑘2

 _ _

 _

 _ _

 _ 3

 _ _

 _

 _

 _ _

 _ _

424

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Figure 4. 𝐶_𝑣𝑎𝑙𝑢𝑒𝑠 module block diagram based on floating-point modules according

to (3) and (6).

Figure 5. Top module 𝐴𝐵𝐶_𝑁𝑊 comprising of 𝐴_𝑣𝑎𝑙𝑢𝑒𝑠, 𝐵_𝑣𝑎𝑙𝑢𝑒𝑠, and 𝐶_𝑣𝑎𝑙𝑢𝑒𝑠.

 _

𝐾𝑘3

 _ _

 _

 _ _

 _ 3

 _ _

 _

 _

 _ _

 _ _

 _

 _

 _

 _

425

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Figure 6. CPU-based realization of a sequential execution of the three loops for proteins

A, B, and C unlike parallel execution of the new values for the three proteins, as shown

in Figure 4.

Figure 7. RTL Schematic of the ABC_NW Module.

 𝐴 𝐵 𝐶

All values of and C

 𝑑𝐴 𝑑𝑡

 𝑡

 [𝐴]

 𝑑𝐵 𝑑𝑡

 𝑡

 [𝐵]

 𝑑𝐶 𝑑𝑡

 𝑡

 [𝐶]

426

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Figure 8. A_values expanded to see instances of the dAdt and fp_mult_add modules.

3.2.4. Resource utilization

Figure 9 shows the estimated post-synthesis resource utilization percentage of FPGA resources

used in the design. Look-Up-Table (LUT) and LUTRAM were the basic resources through which

FPGA-based design elements were realized. Thus, we observed an adequate percentage of these

resources estimated to be used in the design. Since we opted for Digital Signal Processor (DSP) slices

when configuring IP cores to facilitate multiplication and division operations, 10% of DSP slices were

utilized to optimize the design. Since we latched the concentration values and constants with the design

modules, we observed 11% percent of flip-flops (FF) also estimated to be used, which was again

acceptable resource utilization. However, we observed that 32-bit single precision floating-point

outputs were taxing the IO buffers to 94% but that could be significantly reduced if intermediate values

were not included in the output interface such as 𝑎𝑐𝑐𝐴, 𝑎𝑐𝑐𝐵, and 𝑎𝑐𝑐𝐶 buses. These buses could be

used within the design without any loss of information required in the design. Table 2 lists a

comparison of the resources available and estimated utilization for the Artix 7 FPGA resources in this

design.

Table 2. Total number of resources utilized of available resources.

Resource Estimated number of

units

Available

number of units

Resource

utilization %

LUT 7537 63400 11.89

LUTRAM 360 19000 1.89

FF 13990 126800 11.03

DSP 24 240 10.00

IO 198 210 94.29

BUFG 1 32 3.13

427

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Figure 9. Percentage of resources used in the design.

4. Results and discussions

The comparison between simulation results obtained from MATLAB-based and FPGA-based

implementations, both in terms of waveform behavior and numerical values, as illustrated in

Figure 10, yields promising insights. We successfully replicate the dynamic biochemical behavior of

the three-protein regulatory network. The FPGA implementation, based on IEEE-754

single-precision floating-point format, produces results with higher numerical precision at each time

step in contrast to the fixed-point representation employed in the MATLAB simulation.

Figure 10(a) presents the concentration waveforms of proteins A, B, and C, where the green

trace denotes A, the blue trace denotes B, and the red trace denotes C. The dynamic interactions

between the proteins, governed by the ODE system defined in Equations (1)–(3), are visible. The

evolution of concentrations is parameter-dependent, as defined in Table 1. Notably, an initial increase

in protein A concentration facilitates a delayed increase in protein B. The concurrent initial

decrease in protein C permits this rise in A. As B concentration accelerates, it promotes the

increase of C, which in turn stabilizes and reverses the growth of A, exhibiting a negative feedback

loop characteristic of the modeled biological circuit.

The corresponding FPGA-based analog waveforms, captured in Vivado Simulator and shown in

Figure 10(b), reproduce the same dynamical behavior with high temporal resolution. Again, the

green, blue, and red traces represent the concentrations of proteins A, B, and C, respectively. The

analog-style display of digital simulation values was enabled via Vivado’s analog waveform

visualization settings. This feature supports the broader feasibility of using digital reconfigurable

platforms to simulate analog biological processes, establishing a viable bridge between

continuous-time biological models and digital hardware realization.

The simulation results from the software-based (CPU) implementation extend over a biological

timescale of 1.5 seconds. In contrast, the FPGA-based realization achieves equivalent system

dynamics in only 0.3 seconds, demonstrating a 5× acceleration in simulated time. This performance

gain is depicted in Figure 11(a) and Figure 11(b), which show the MATLAB and FPGA simulation

timelines, respectively, along with closely matching concentration values.

12

2

11

10

94

3

0 20 40 60 80 100

LUT

LUTRAM

FF

DSP

IO

BUFG

Estimated Utilization (%)

428

AIMS Bioengineering Volume 12, Issue 3, 412–434.

These results not only validate the numerical correctness of our hardware design but also

confirm its practical viability. The use of floating-point arithmetic via Xilinx’s IP cores, interfaced

through the AXI protocol, enabled parallel evaluation of ODE terms, significantly improving

simulation throughput compared to sequential CPU execution. Moreover, the system was

implemented in a modular fashion to enable scalability. Resource utilization remain within

acceptable bounds for a Xilinx Artix 7 FPGA, ensuring that the design is feasible on mid-range

hardware platforms. The use of Euler’s method, selected for its simplicity and low hardware

overhead, provides a favorable trade-off between numerical efficiency and real-time execution

constraints.

Together, these findings underscore the accuracy and feasibility of implementing biologically

inspired nonlinear ODE systems on reconfigurable digital platforms. The work highlights the

potential of such FPGA-based architectures in enabling high-speed, resource-efficient simulations of

biochemical pathways (relevant for real-time embedded systems in synthetic biology and other

related domains).

4.1. Statistical analysis of CPU-based and FPGA-based results

To quantitatively validate the accuracy of the FPGA-based implementation, statistical error

metrics were computed between the CPU-based and FPGA-based simulation results for protein

concentrations A, B, and C. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)

were used as indicators of numerical fidelity as depicted in Figure 12(a). To express the FPGA–CPU

deviations relative to typical concentration magnitudes, we also computed the normalized RMSE

(NRMSE) using the CPU-based mean concentration as the normalization factor. The NRMSE values

are 1.35% (Protein A), 1.85% (Protein B), and 1.97% (Protein C), indicating that the FPGA

implementation reproduces the MATLAB reference with deviations below 2% of the typical

concentration values. These low percentages confirm the high numerical fidelity of the FPGA-based

simulation besides significant execution-time improvements. Figure 12(b) illustrates the NMRSE

values of the three proteins.

Furthermore, execution time measurements in Figure 12(c) show that the CPU-based simulation

requires 1.500 s, whereas the FPGA-based implementation completes the same simulation in 0.315 s,

yielding a 5× acceleration. This performance improvement highlights the suitability of FPGA

architectures for real-time biochemical network simulation.

429

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Figure 10. Simulation Results. (a) Results from MATLAB-based implementation; and (b)

results from FPGA-based implementation in Vivado Simulator using analog waveform.

Figure 11. Simulation Results. (a) Results from MATLAB-based implementation with

time scale from 0 to 1.5 seconds; and (b) results from FPGA-based implementation with

time scale from 0 to 0.3 seconds.

430

AIMS Bioengineering Volume 12, Issue 3, 412–434.

Figure 12. Statistical Analysis of CPU-based and FPGA-based results. (a) RMSE and

MAE for proteins A , B , and C (CPU-based and FPGA-based simulations); (b)

NRMSE for proteins A, B, and C; and (c) execution time comparison between CPU

and FPGA-based simulations.

5. Conclusion

In this work, we propose a reconfigurable platform-based hardware realization using

floating-point IP cores for various arithmetic operations in ordinary differential equations to simulate

a biological process of soil bacteria. We design our modules to capitalize on the parallelism that can

be achieved by starting independent arithmetic operations in a single ordinary differential equation

simultaneously, as well as starting the solution of ordinary differential equations at the same time, in

contrast to CPU-based algorithms, where solutions are attained sequentially. The AXI protocol

431

AIMS Bioengineering Volume 12, Issue 3, 412–434.

enables us to control the start and end of various arithmetic functions. The results are validated

against CPU-based simulation, and we observe a speed-up of 5 against software-based realization.

Moreover, the results are more accurate due to single floating-point representation of numbers

instead of fixed-point representation in software-based implementation. To further strengthen the

validation, we conduct a rigorous statistical comparison between FPGA- and CPU-based results

using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Normalized RMSE

(NRMSE) for all simulated protein concentrations. The low RMSE values (A: 0.09546, B: 0.27655,

C: 0.23648) and NRMSE values below 2% confirm a close numerical match between the two

implementations, demonstrating that the hardware realization preserves the accuracy of the original

simulation. Furthermore, this work can be improved by using Block RAMs (BRAMs) and Ultra

RAMs (URAMs) for constants, initial values, and intermediate values instead of internal registers,

thus making the design optimized through parallel implementation techniques. With the techniques

and resources available on FPGA chips, it is very likely to continue using such platforms, either for

the actual design or for networking of such designs or for both.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this

article.

Conflict of interest

All authors declare no conflicts of interest in this paper.

Authors contributions

We would like to undertake that both authors of this research paper have directly participated in

the planning, execution, or analysis of this study. All authors of this research paper have read and

approved the final version submitted

References

1. Fisher J, Henzinger TA (2007) Executable cell biology. Nat Biotechnol 25: 1239–1249.

https://doi.org/10.1038/nbt1356

2. Fisher J, Piterman N (2010) The executable pathway to biological networks. Briefings Funct

Genomics 9: 79–92. https://doi.org/10.1093/bfgp/elp054

3. Gao R, Hu W, Tarn TJ (2013) The application of finite state machine in modeling and control of

gene mutation process. IEEE Trans NanoBiosci 12: 265–274.

https://doi.org/10.1109/TNB.2013.2260866

4. Fuente D, Garibo i Orts Ó, Conejero JA, et al. (2020) Rational design of a genetic finite state

machine: combining biology, engineering, and mathematics for bio-computer research.

Mathematics 8: 1362. https://doi.org/10.3390/math8081362

5. Liu L, Hong F, Liu H, et al. (2022) A localized DNA finite-state machine with temporal

resolution. Sci Adv 8: eabm9530. https://doi.org/10.1126/sciadv.abm9530

https://doi.org/10.1038/nbt1356
https://doi.org/10.1093/bfgp/elp054
https://doi.org/10.1109/TNB.2013.2260866
https://doi.org/10.1126/sciadv.abm9530

432

AIMS Bioengineering Volume 12, Issue 3, 412–434.

6. Mowbray MR, Wu C, Rogers AW, et al. (2023) A reinforcement learning‐based hybrid modeling

framework for bioprocess kinetics identification. Biotechnol Bioeng 120: 154–168.

https://doi.org/10.1002/bit.28262

7. Zi Z, Klipp E (2006) SBML-PET: a systems biology markup language-based parameter

estimation tool. Bioinformatic 22: 2704–2705. https://doi.org/10.1093/bioinformatics/btl443

8. Novère NL (2009) The systems biology graphical notation. Nat Biotechnol 27: 735–741.

https://doi.org/10.1038/nbt.1558

9. Schaub MA, Henzinger TA, Fisher J (2007) Qualitative networks: a symbolic approach to

analyze biological signaling networks. BMC Syst Biol 1: 4.

https://doi.org/10.1186/1752-0509-1-4

10. Palshikar MG, Min X, Crystal A, et al. (2023) Executable network models of integrated

multiomics data. J Proteome Res 22: 1546–1556. https://doi.org/10.1021/acs.jproteome.2c00730

11. Milo R, Shen-Orr S, Itzkovitz S, et al. (2002) Network motifs: simple building blocks of

complex networks. Science 29: 824–827. https://doi.org/10.1126/science.298.5594.824

12. Shen-Orr SS, Milo R, Mangan S, et al. (2002) Network motifs in the transcriptional regulation

network of Escherichia coli. Nat Genet 31: 64–68. https://doi.org/10.1038/ng881

13. Bray D (2015) Limits of computational biology. In Silico Biol 12: 1–7.

https://doi.org/10.3233/ISB-140461

14. Routtenberg A (2008) Long-lasting memory from evanescent networks. Eur J Pharmacol 585:

60–63. https://doi.org/10.1016/j.ejphar.2008.02.047

15. Chalkidis G, Nagasaki M, Miyano S (2010) High performance hybrid functional petri net

simulations of biological pathway models on cuda. IEEE/ACM Trans Comput Biol Bioinform 8:

1545–1556. https://doi.org/10.1109/TCBB.2010.118

16. Osana Y, Yoshimi M, Iwaoka Y, et al. (2007) ReCSiP: an FPGA‐based general‐purpose

biochemical simulator. Electron Commun Jpn Part II Electron 90: 1–10.

https://doi.org/10.1002/ecjb.20370

17. De Rubertis G, Davies SW (2003) A genetic circuit amplifier: design and simulation. IEEE

Trans Nanobioscience 2: 239–246. https://doi.org/10.1109/TNB.2003.820283

18. Hasan SMR (2010) A digital cmos sequential circuit model for bio-cellular adaptive immune

response pathway using phagolysosomic digestion: a digital phagocytosis engine. J Biomed Sci

Eng 3: 470–475. https://doi.org/10.4236/jbise.2010.35065

19. Hasan SMR (2008) A micro-sequenced CMOS model for cell signaling pathway using

G-protein and phosphorylation cascade. 2008 15th International Conference on Mechatronics

and Machine Vision in Practice, IEEE, 2008: 57–62.

https://doi.org/10.1109/MMVIP.2008.4749507

20. Hasan SMR (2008) A novel mixed-signal integrated circuit model for DNA-protein regulatory

genetic circuits and genetic state machines. IEEE Trans Circuits Syst Regul Pap 55: 1185–1196.

https://doi.org/10.1109/TCSI.2008.925632

21. Alam S, Hasan SMR (2013) Integrated circuit modeling of biocellular post-transcription gene

mechanisms regulated by microRNA and proteasome. IEEE Trans Circuits Syst Regul Pap 60:

2298–2310.https://doi.org/10.1109/TCSI.2013.2245451

22. Sarpeshkar R (2014) Analog synthetic biology. Philos Trans R Soc Math Phys Eng Sci 372:

20130110. https://doi.org/10.1098/rsta.2013.0110

https://doi.org/10.1002/bit.28262
https://doi.org/10.1038/nbt.1558
https://doi.org/10.1186/1752-0509-1-4
https://doi.org/10.1021/acs.jproteome.2c00730
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1038/ng881
https://doi.org/10.3233/ISB-140461
https://doi.org/10.1016/j.ejphar.2008.02.047
https://doi.org/10.1109/TCBB.2010.118
https://doi.org/10.1002/ecjb.20370
https://doi.org/10.1109/TNB.2003.820283
https://doi.org/10.4236/jbise.2010.35065
https://doi.org/10.1109/MMVIP.2008.4749507
https://doi.org/10.1109/TCSI.2008.925632
https://doi.org/10.1109/TCSI.2013.2245451
https://doi.org/10.1098/rsta.2013.0110

433

AIMS Bioengineering Volume 12, Issue 3, 412–434.

23. Sarpeshkar R, Lu TKT, Danial R, et al. (2015) Analog and mixed-signal computation and

circuits in living cells: U.S. Patent Application 14/391,817[P]. 2015-3-26.

24. Beahm DR, Deng Y, Riley TG, et al. (2021) Cytomorphic electronic systems: a review and

perspective. IEEE Nanotechnol Mag 15: 41–53. https://doi.org/10.1109/MNANO.2021.3113192

25. Waqas M, Khurram M, Hasan SMR (2017) Bio-cellular processes modeling on silicon substrate:

receptor-ligand binding and Michaelis Menten reaction. Analog Integr Circuits Signal Process

93: 329–340. https://doi.org/10.1007/s10470-017-1044-x

26. Waqas M, Ainuddin U, Iftikhar U (2022) An analog electronic circuit model for

cAMP-dependent pathway-towards creation of Silicon life. AIMS Bioeng 9: 145–162.

https://doi.org/10.3934/bioeng.2022011

27. Waqas M, Khurram M, Hasan SMR (2020) Analog electronic circuits to model cooperativity in

hill process. Mehran Univ Res J Eng Technol 39: 678–685.

https://doi.org/10.22581/muet1982.2004.01

28. Patra T, Chatterjee S, Barman Mandal S (2023) Cytomorphic electrical circuit modeling of

tumor suppressor p53 protein pathway. Trans Indian Natl Acad Eng 8: 363–377.

https://doi.org/10.1007/s41403-023-00403-0

29. Patra T, Dey S, Barman S (2025) Cytomorphic electronic system design of apoptosis pathway

with extrinsic and intrinsic perturbations. Comput Biol Chem 119: 108545.

https://doi.org/10.1016/j.compbiolchem.2025.108545

30. Yamaguchi Y, Azuma R, Konagaya A, et al. (2003) An approach for the high speed Monte Carlo

simulation with FPGA-toward a whole cell simulation. 2003 46th Midwest Symposium on

Circuits and Systems, IEEE, 2003, 1: 364–367.

https://doi.org/10.1109/MWSCAS.2003.1562294

31. Yamaguchi Y, Maruyama T, Azuma R, et al. (2007) Mesoscopic-level simulation of dynamics

and interactions of biological molecules using monte carlo simulation. J VLSI Signal Process

Syst Signal Image Video Technol 48: 287–299. https://doi.org/10.1007/s11265-007-0072-7

32. Mak TST, Rachmuth G, Lam KP, et al. (2006) A component-based FPGA design framework for

neuronal ion channel dynamics simulations. IEEE Trans Neural Syst Rehabil Eng 14: 410–418.

https://doi.org/10.1109/TNSRE.2006.886727

33. Fatima SR, Waqas M (2025) Trends of modeling bio-cellular processes and neural pathways on

analog, mixed-signal and digital hardware-a review. AIMS Bioeng 12: 177–208.

https://doi.org/10.3934/bioeng.2025008

34. Mogilner A, Wollman R, Marshall WF (2006) Quantitative modeling in cell biology: what is it

good for?. Dev Cell 11: 279–287. https://doi.org/10.1016/j.devcel.2006.08.004

35. Igoshin OA, Goldbeter A, Kaiser D, et al. (2004) A biochemical oscillator explains several

aspects of Myxococcus xanthus behavior during development. Proc Natl Acad Sci 101: 15760–

15765. https://doi.org/10.1073/pnas.0407111101

36. Osana Y, Fukushima T, Amano H (2003) Implementation of recsip: a reconfigurable cell

simulation platform. International Conference on Field Programmable Logic and Applications.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 766–775.

https://doi.org/10.1007/978-3-540-45234-8_74

37. Osana Y, Fukushima T, Yoshimi M, et al. (2004) An FPGA-based acceleration method for

metabolic simulation. IEICE Trans Inf Syst 87: 2029–2037.

https://doi.org/10.1109/MNANO.2021.3113192
https://doi.org/10.1007/s10470-017-1044-x
https://doi.org/10.3934/bioeng.2022011
https://doi.org/10.22581/muet1982.2004.01
https://doi.org/10.1007/s41403-023-00403-0
https://doi.org/10.1016/j.compbiolchem.2025.108545
https://doi.org/10.1109/MWSCAS.2003.1562294
https://doi.org/10.1007/s11265-007-0072-7
https://doi.org/10.1109/TNSRE.2006.886727
https://doi.org/10.3934/bioeng.2025008
https://doi.org/10.1016/j.devcel.2006.08.004
https://doi.org/10.1073/pnas.0407111101
https://doi.org/10.1007/978-3-540-45234-8_74

434

AIMS Bioengineering Volume 12, Issue 3, 412–434.

38. Osana Y, Fukushima T, Yoshimi M, et al. (2005) An FPGA-based, multi-model simulation

method for biochemical systems. 19th IEEE International Parallel and Distributed Processing

Symposium, IEEE, 2005: 4.

39. Osana Y, Yoshimi M, Iwaoka Y, et al. (2007) ReCSiP: an FPGA‐based general‐purpose

biochemical simulator. Electron Commun Jpn Part II Electron 90: 1–10.

https://doi.org/10.1002/ecjb.20370

40. Amano H, Kitano N, Iwanaga N, et al. (2006) Performance evaluation of an FPGA-based

biochemical simulator ReCSiP. 2006 International Conference on Field Programmable Logic

and Applications, IEEE, 2006: 1–6. https://doi.org/10.1109/FPL.2006.311327

41. Soleimani H, Drakakis EM (2017) A compact synchronous cellular model of nonlinear calcium

dynamics: simulation and FPGA synthesis results. IEEE Trans Biomed Circuits Syst 11: 703–

713. https://doi.org/10.1109/TBCAS.2016.2636183

42. Soma BM, Moumita A, Samik B, et al. (2021) FPGA implementation of different stochastic

biochemical reactions involved in a cell. 2021 25th International Symposium on VLSI Design

and Test (VDAT), IEEE, 2021: 1–4. https://doi.org/10.1109/VDAT53777.2021.9601094

43. Acharya M, Dey S, Chakrabarti A, et al. (2023) FPGA based library subset design for different

biochemical reactions involved in a cell. Sādhanā 48: 264.

https://doi.org/10.1007/s12046-023-02314-w

44. Acharya M, Chakrabarti A, Dey S, et al. (2024) Designing Lab Prototype of Synthetic p53

Protein-Based Tumor Suppressor Pathway. 2024 1st International Conference on Cognitive,

Green and Ubiquitous Computing (IC-CGU), IEEE, 2024: 1–6.

https://doi.org/10.1109/IC-CGU58078.2024.10530855

© 2025 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1002/ecjb.20370
https://doi.org/10.1109/FPL.2006.311327
https://doi.org/10.1109/TBCAS.2016.2636183
https://doi.org/10.1109/VDAT53777.2021.9601094
https://doi.org/10.1007/s12046-023-02314-w
https://doi.org/10.1109/IC-CGU58078.2024.10530855

