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Abstract: Cytomorphic hardware, in which bio-cellular processes are mapped onto an electronic
substrate, has gained quite a prominence in the past few decades due to advancements in the fields of
systems biology, synthetic biology, and other related disciplines. Conventionally, the analog substrate
is the preferred choice for nonlinear biochemical reactions in the biological circuits; however, many
researchers have exploited the flexibility, reconfigurability, and ease of design of digital platforms
such as reconfigurable field-programmable gate arrays (FPGAs). In this work, we briefly examined
work on such reconfigurable platforms and proposed a novel and straightforward technique to
implement the systems of ordinary differential equations describing such biochemical reactions in a
modular fashion using single-precision floating-point intellectual property cores available on a
representative reconfigurable platform. A simplified biochemical system of a repressive three-way
network of soil bacteria was taken into account, and the system of ordinary differential equations was
first simulated in a software-based environment with results compared against a hardware-based
realization. We observed a significant speed-up of up to 5x in the reconfigurable platform-based
realization compared to the software-based realization. The values in the hardware-based realization
were also more accurate compared to the software-based approach. Statistical error metrics (RMSE,
MAE, and NRMSE) further confirmed a close numerical match between the two implementations.
Hence, the results conformed well, and thus, this design strategy can be incorporated into the future
cytomorphic design on field-programmable gate arrays.

Keywords: bio-chemical reactions; cytomorphic; ordinary differential equations; reconfigurable
platforms; soil bacteria network
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1. Introduction

The basic cellular structures like neural networks in the nervous system and other cellular
networks in biological systems are quite complex and interwoven in nature. In order to understand
the mechanisms behind functions performed by them, mathematical and computational modeling
techniques play a pivotal role. These techniques enable scientists and researchers to gain some
insight into these intricate mechanisms. Likewise, the intracellular biochemical processes might look
like simple chemical processes at first, but the interactions and regulation patterns are highly
complex, and thus, only mathematical and computational modeling can be deployed to fully
understand these cascades of biochemical pathways. The computational or in-silico modeling of
biological processes using software tools has been an active research domain called Executable
Biology [1,2].

Many different algorithms are based on Finite State Machines as in [3], but the model remains
largely theoretical without experimental validation. The biological complexity of real mutations and
regulatory networks is seen in [4], where practical biochemical feasibility, dynamics of actual
genetic parts, and scalability beyond educational demonstration are untested; and in [5], where the
system is greatly simplified and is limited to two inputs and five states only, and the reaction time,
though improved, lies on the order of minutes, making scalability and speed bottlenecks in more
complex settings.

An artificial-based system in [6] blends mechanistic kinetic model structures with model-free
reinforcement learning to adaptively identify both the correct kinetic form and its time-varying
parameters, but validation is limited to in-silico scenarios only, lacking real experimental data; and
the hybrid structure remains vulnerable to over-parameterization or over-fitting. Similarly,
standardized markup languages [7,8] and other computational variants [9,10] are major contributions
in this domain. Another interesting approach is to define the network motifs of the most commonly
occurring biological networks and create computational algorithms for them [11,12].

All these computational models, however, are phenomenological, and the real molecular level
of cellular interactions is not incorporated. Various rates like the rate of product formation, affinities
of binding, and rates of transcription are not taken into account or are adjusted to attain certain
results. Furthermore, considering a few molecules, surface receptors, and transcription factors is not
enough to give a reasonable insight into the phenomenon under consideration. The biological
systems like the nervous system and immune system, in particular, rely on molecular heterogeneity.
The process of learning requires individual nerve cells to be distinct.

When we consider modeling of neural plasticity, for instance, we consider only the electrical
aspects arising from action potentials, their propagation, and synaptic delays; however, these
electrical mechanisms take place due to protein-based ion channels, pumps, and receptors present on
the cell membranes, and these proteins undergo many variations due to alternative splicing, post
translational modifications, and other factors. Hence, there is a possibility that the long term memory
formation relies on post translational protein modifications of synaptic proteins [13,14].

Another major issue related to computational modeling is the resources required for intricate
and complex simulations of biological processes, such as supercomputer scale machines and cloud
facilities. Hence, a growing number of researchers are looking toward other means of modeling like
using Graphical Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), and
analog/mixed signal domain electronic substrates [15-17]. GPUs, however, support Single
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Instruction Multiple Data (SIMD) scenarios, whereas in biochemical pathways, each ODE represents
a number of different operations on the same data. Hence, using GPUs is not a very scalable solution
when large and complex biological processes are to be modeled, as a very large number of GPUs
would be required in such cases.

Besides digital implementations, some researchers have used analog and mixed-signal platforms
to implement biochemical processes. Dr. S. M. Razaul Hasan and his colleagues, at the Center for
Research in Analog and VLSI microsystems dEsign (CRAVE), Massey University, Auckland, New
Zealand, have made notable contributions to bio-cellular process modeling through mixed IC design.
Their work includes a sequential circuit level design for simulating biological processes and cell
signaling pathways, with sequencing governed by circadian rhythms [18], a hysteretic electronic
switch [19], analogues for mRNA transcription [20], and a comprehensive electronic model of post
gene transcription mechanisms [21], all of which represent significant advancements in the field.

Cytomorphic hardware design, which emulates biological processes on an electronic substrate,
has been an active research area for several decades. Its growing relevance spans basic medical
science, drug testing, pharmacology, molecular biology, and related fields such as synthetic biology,
biosensors, prosthetics, and robotics, highlighting its increasing impact and multidisciplinary
importance.

Professor Rahul Sarpeshkar at the Research Laboratory of Electronics, MIT, and his research
team have contributed to the domain by performing wet experiments (in-vitro) as well as dry
experiments on electronic neuromorphic and cytomorphic chips. Their work, ranging from analog
synthetic biology circuits, to biological and bio-inspired supercomputers based on analog
computation in cells, and ultra-low-power implantable medical devices such as cochlear implants or
diagnostic devices, adds great value to the field of Cytomorphic Computing [22]. He has shown with
his designs that the presence of a smaller number of transistors in an analog electronic substrate
means faster implementations than any digital counterparts [23,24]. In [24], the researchers also
provide an excellent review on how cytomorphic electronic chips at sub-threshold analog levels can
be used to map biochemical reaction networks.

Waqas et al. in [25] use velocity saturated short-channel MOS transistors to model very
frequently seen bio-cellular reactions, namely receptor-ligand binding and Michaelis-Menten
reactions. In [26], Wagqas et al. further extend their work in [25] and [27], and they implement an
analog MOS based design of a complete bio-chemical pathway. In [28], the p53 protein led pathway
responsible for cell death, called apoptosis, is designed by Patra et al. using ODEs of the system
model. CMOS circuits are implemented for the entire pathway. This design enabled the study of p53
pathways dynamics without the need for biological cells in a dry lab and would benefit cancer
treatment and drug control for such diseases. A more recent work from Patra et al. [29] presents a
MOS-based cytomorphic SoC for simulating stochastic apoptosis networks, translating nonlinear
biochemical dynamics into subthreshold electronic circuits. Simulation results show strong
agreement with experimental data and biosimulator outputs, validating the system’s accuracy and
stability.

Although analog design, being fuzzy and noisy like biological circuits, seems to be a better
choice, the design process is tedious and costly; thus, digital and mixed-signal design is often
preferred by researchers. In the digital domain, Application Specific Integrated Circuit (ASIC) and
FPGA-based design are possible, but ASIC designs are again rigid and costly; hence, reconfigurable
platforms like FPGAs are favored over ASICs. We exclude GPU-based realizations from this

AIMS Bioengineering Volume 12, Issue 3, 412—-434.



415

discussion as they are not scalable and cannot be implemented independent of CPU-based host
machines, which incur an additional overhead in the design.

Cytomorphic design at a higher level of abstraction is much easier to carry out using FPGAs,
but a bottom-up approach, where biophysical dynamics of cellular processes are taken into account,
poses a huge challenge due to limited resources on the FPGA chip. The biological processes have
been mapped onto FPGAs for the past few decades, as we can see in the work of [30-32]. A detailed
account of FPGA-based design for biological processes is discussed in the proceeding section. The
researchers in [33] provide a comprehensive overview of cytomorphic and neuromorphic trends on
different electronic platforms and their applications in various emerging fields.

Here, we intend to investigate the realization of a simple biochemical process on a
reconfigurable platform such as FPGA. For dynamic modeling of the selected biochemical process
on an FPGA, a novel technique is furnished so as to inspect some advantages and disadvantages that
can be incurred in doing so.

We have validated the reconfigurable platform-based design against CPU-based simulation by
keeping the initial conditions and rate constants identical in both approaches, as defined in the
following sections. A straightforward implementation strategy is adopted for solving the Ordinary
Differential Equations (ODEs) representing the biological circuit, using Euler’s Method as the
numerical solver. This choice is intentional to facilitate optimal resource utilization on the FPGA.
Higher order solvers such as the Runge Kutta methods, while offering improved numerical accuracy,
are not employed due to their significantly higher computational and memory overhead. These
methods require multiple intermediate calculations per time step, which would increase the hardware
complexity and resource usage on a reconfigurable platform. Given the nature of our application,
particularly when modeling large and intricate biochemical processes, the increased cost in terms of
FPGA logic, memory blocks, and latency outweighs the benefits in accuracy. Therefore, Euler’s
Method presents a favorable trade-off between accuracy and hardware efficiency for our use case.

To ensure a direct correspondence between the software-based and FPGA-based
implementations, we avoid using built in ODE solvers in software and instead employ a self-written
numerical routine. This enables us to maintain consistent computation logic and precisely match the
behavior of both implementations. Furthermore, floating-point arithmetic is utilized instead of
fixed-point, eliminating the need for scaling and mitigating issues related to precision loss.
Fixed-point arithmetic, although resource-efficient, can degrade accuracy and is, thus, avoided where
floating-point resources are available.

The FPGA implementation follows a modular design, enabling future enhancements such as
time multiplexing of functional units to further optimize resource usage. Additionally, the use of the
Advanced eXtensible Interface (AXI) protocol in the floating-point IP cores provides an efficient
means to parallelize independent computations within the ODE system. This helps circumvent the
need for sequential execution as seen in CPU-based simulations. The AXI protocol also offers robust
control over execution flow, making it well suited for handling feedback loops commonly present in
biochemical reaction networks.

1.1. Generic three component repressive network of soil bacteria

A simplified model of a generic three-component repressive network, representing a
biochemical circuit observed in soil-dwelling bacteria, is known to exhibit oscillatory behavior
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depending on the parameters selected. This network comprises three proteins A, B, and C that can
exist in phosphorylated (A-p, B-p, C-p) or dephosphorylated (A, B, C) states. The biochemical
interactions among these proteins form a closed feedback loop, where protein A catalyzes the
dephosphorylation of protein B, protein B catalyzes the dephosphorylation of protein C, and protein
C, in turn, catalyzes the phosphorylation of protein A. The activation signals in the feedback loop are
illustrated in Figure 1, where circles at the end of the arrows denote activation. The reactions
involved in this regulatory circuit are governed by Michaelis-Menten kinetics. The system is
modeled mathematically using a set of three coupled ordinary differential equations (ODEs) (1), (2),
and (3) for the three proteins A, B, and C, respectively, incorporating Michaelis-Menten
expressions to describe the enzymatic activity of each component [34,35]. The resulting model is
expressed as follows:

d[A]l _ kpi(TAeorar]l = [AD  kia[AIC]

4t~ Kpr + roral — (A K T 4] =
d[B] _ kpz([Btotal] - [B])[A] _ kkz [B] (2)
dt Kpz + [Beotar] — [B]  Kiz + [B]
d[C] _ kps([Crotar] — [CDIB] _ kuslC] 3)
dt Kp3 + [Ctotal] - [C] Kk3 + [C]

In these three equations, [4,,,,], [Bowm], and [C,,.] represent the total concentrations of
proteins A, B, and C, respectively. [4], [B], and [C] give their resulting molecular concentrations,
respectively, and (d[A])/dt, (d[B])/dt, and (d[C])/dt represent the rate of change of concentration
for proteins 4, B, and C, respectively. k, , k,, and k, are the rate constants for
dephosphorylation of 4, B, and C, respectively, while k;;, kj, and k;; are the rate constants for
phosphorylation of the three proteins, respectively. K,,;, K,», and K3 are the dissociation constants
for the dephosphorylation of 4, B, and C, respectively, and K, K;,, and Kj; are the
Michaelis-Menten constants of phosphorylation of 4, B, and C, respectively.

The biological motivation for modeling this simplified soil bacterial repressive loop arises from
its relevance to naturally occurring gene regulatory networks that govern adaptive responses in
microbial populations. Soil bacteria frequently encounter fluctuating environmental conditions, such
as changes in nutrient availability, moisture, and pH, necessitating robust regulatory mechanisms to
maintain homeostasis and survival. Minimal repressive circuits, such as the one modeled here,
capture essential features of such regulation, including nonlinearity, time-delayed feedback, and the
potential for oscillatory dynamics. These properties make the system a useful abstraction for
studying the fundamental principles of feedback control in biological systems.
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Figure 1. A generic three protein repressive network of soil bacteria [34].

By focusing on a reduced model with only three interacting components, it becomes feasible to
analyze the system analytically and computationally, thereby providing insights into the parameter
regimes that give rise to oscillatory or steady-state behavior. Furthermore, such simplified models
are useful test cases for hardware-based implementations of biological networks, such as those
deployed on field-programmable gate arrays (FPGAs), enabling real-time simulation and emulation
of biochemical processes. The results obtained from modeling and simulating these circuits not only
enhance our understanding of natural regulatory motifs but also contribute to the development of
synthetic biological circuits for use in biosensors, drug delivery systems, and programmable
bio-devices

1.2. Reconfigurable computing platforms for biochemical pathway realizations

Reconfigurable computing platforms, as the name implies, enable the modification of various
design parameters even after successful implementation. Moreover, the design can be easily altered
whenever required, with minimal effort and cost. Designs can also be made robust and adaptable by
configuring critical parameters as inputs to the system; for instance, by storing initial values in Block
RAM (BRAM) or Ultra RAM (URAM) available on many FPGA devices. In such cases, the design
does not need to be recompiled; instead, parameter changes can be made simply by writing new
values to the memory blocks.

In this work, we explore a technique for implementing a small-scale biological process on an
FPGA using Euler’s method as the ODE solver. The chosen three-protein repressive network has a
limited number of ODEs and parameters, making it ideal for demonstrating the implementation
methodology. However, the proposed approach is scalable and can be extended to larger and more
complex biological networks, where the benefits of FPGA-based acceleration become more
significant.
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1.3. Engineering significance and application scope of FPGA-based biochemical circuit
implementation

The primary contribution of this work lies in the realization of a biologically inspired regulatory
network on reconfigurable hardware. Although the underlying biochemical model, a
three-component repressive loop governed by Michaelis-Menten kinetics, is conceptually established
in systems biology, we introduce a novel hardware-based implementation that enables real-time and
resource-efficient simulation. The circuit is implemented using floating-point arithmetic IP cores to
ensure numerical stability and eliminate the need for manual scaling inherent in fixed-point systems.
This design decision preserves computational fidelity, which is particularly important in modeling
biochemical processes with sensitive dynamic ranges.

The use of the Advanced eXtensible Interface (AXI) protocol further enhances system
efficiency by enabling concurrent processing of independent ODE computations. This contrasts with
CPU-based implementations, which typically rely on sequential execution and are therefore limited
in terms of speed and scalability. Through modular design and IP-level abstraction, the system
supports extensibility to larger networks and enables time- -multiplexing strategies for resource
optimization on the FPGA.

From an application standpoint, the presented approach holds significant promise for domains
such as synthetic biology, where rapid in-silico prototyping of genetic circuits is essential. By
enabling hardware-accelerated emulation of gene regulatory networks, the platform facilitates fast
validation of circuit dynamics before experimental realization. Furthermore, the ability to simulate
complex feedback-driven systems in real time has potential utility in pharmacodynamics and drug
discovery workflows, particularly for simulating signaling cascades under varying conditions. Some
other emerging fields that may benefit from this work include biomorphic artificial intelligence,
neuro-prosthetics and brain-computer interfaces, bio-electronic medicine, DNA-based memory and
computing devices, bio-computers, and others [33]. These capabilities make the proposed
implementation a generalizable framework for the deployment of biologically relevant models in
embedded, high-throughput, or edge-computing environments.

2. Related work

Recent advances in cytomorphic circuits implemented on reconfigurable platforms, particularly
Field-Programmable Gate Arrays (FPGAs), have demonstrated the potential for high-speed and
parallel simulation of biochemical processes. However, much of the work emphasizes
implementation than addressing the broader engineering trade-offs, resource constraints, or
biological fidelity gaps that we aim to bridge. Early contributions in this area include the work by
Osana et al. [36-39], where FPGA-based simulators were developed using deterministic (ODE-based)
and stochastic approaches to model metabolic and biochemical pathways. These efforts culminated
in the development of ReCSiP (Reconfigurable Cell Simulation Platform) [39,40], which
demonstrated considerable speedup compared to conventional software implementations. Despite
these advances, the ReCSiP platform relied on now-obsolete FPGA hardware and legacy toolchains,
limiting its relevance to modern programmable logic devices.

Soleimani and Drakakis, in [41], extended this line of research by implementing a cellular
calcium signaling model on FPGA, capable of pipelining between 10,000 and 40,000 calcium units.
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This demonstrated not only a significant improvement in execution time compared to CPU-based
simulations but also the feasibility of modeling large-scale cellular dynamics on reconfigurable
hardware. However, their focus remained largely on performance metrics, without much emphasis on
hardware scalability or generalization to broader biochemical networks.

Further work by Soma et al. [42], and later extended by Acharya et al. [43], introduced
hardware-software co-design methodologies using MATLAB Simulink and Xilinx System Generator.
These tools facilitated rapid prototyping of biochemical circuits through modular design libraries.
While this approach enabled greater flexibility and ease of implementation, it introduced software
dependencies and version compatibility issues that could affect design portability and long-term
reproducibility. Moreover, both works acknowledged that such abstraction tends to omit key
biological intricacies, thereby limiting its biological interpretability. In [44], Acharya et al.
demonstrated a cytomorphic engineering approach by modeling key cellular biochemical reactions as
low-power electronic circuits using FPGA-based implementation. The synthetic models of p53
signaling pathways are validated against cell culture data and efficiently realized on a Zyng-7000
board, consuming only 310 mW of power.

Several challenges persist across these studies. First, much of the prior work depended on
Systems Biology Markup Language (SBML) for model representation. While SBML is a widely
accepted standard, it poses several practical issues, such as dependency conflicts (e.g., ibSBML and
libstdc++ compatibility with MATLAB), memory management concerns, and difficulties in parsing
complex expressions; issues documented on the SBML.org website. These limitations restrict
automation and integration into modern design workflows. Second, despite the demonstrated
speedup, most platforms use fixed-point arithmetic to reduce resource utilization. However,
fixed-point methods can compromise numerical accuracy, particularly for systems with wide
dynamic ranges or sensitive kinetic parameters. This trade-off is not well addressed in the literature,
especially in the context of biologically faithful circuit emulation.

In contrast, we propose a modular, floating-point FPGA implementation that addresses these
limitations on several fronts. First, it eliminates reliance on SBML or external software layers by
directly implementing the system of ODEs derived from biochemical reactions. Second, it uses
floating-point arithmetic to preserve numerical precision without requiring result scaling, which is
crucial for accurate biological modeling. Third, it leverages the AXI protocol-based IP cores to
exploit the parallelism inherent in biochemical systems, providing scalability and real-time execution
capabilities. In doing so, this work contributes not only a performance-optimized design but also a
biologically consistent and hardware-portable framework that fills key gaps in current cytomorphic
circuit implementations.

3. Experiments to implement biological processes of repressive networks of soil bacteria
3.1. CPU-based implementation
For a software-based approach, we selected MATLAB R2019a running on an Intel 17 Core

machine. We used Euler’s method to implement the three-way repressive network of soil bacteria as
given by equations (1), (2), and (3), using the code structure defined below.
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Table 1. Rate constants and Michaelis-Menten reaction constants.

Constant Constant name Value
symbol
K Constant rate for dephosphorylation for protein A 20 sec™!
pl
K Dissociation constant for phosphorylation of 4 0.2 mM
pl
ki Constant rate for phosphorylation for protein 4 5 sec!
K Michaelis—Menten constant for phosphorylation of protein 4 8 mM
i Constant rate for dephosphorylation for protein B 15 sec’!
2
K Michaelis-Menten constant for dephosphorylation of protein B 10 mM
p2
kin Constant rate for phosphorylation for protein B 30 sec™!
K Dissociation constant for phosphorylation of protein B 3 mM
A Constant rate for dephosphorylation for protein C 5 sec!
'p3
K Michaelis-Menten constant for dephosphorylation of protein C 40 mM
3
kia Constant rate for phosphorylation for protein C 50 sec!
K3 Dissociation constant for phosphorylation of protein C 3mM

We first defined all constants, set the time step and simulation time, and set all the initial
conditions, as shown in Table 1. The initial molecular concentrations of proteins A, B, and C were
kept at 5 mM each. We implemented a loop to handle the progression of time at each time-step and
thus, compute the rates of change in concentration of proteins at each time step denoted as d[A]/dt,
d[B]/dt, and d[C]/dt in equations (1), (2), and (3), respectively. We used a very small timestep
of 0.005 seconds. Based on the attained values, we calculated new values of protein concentrations,
appended them to a vector storing all the new values, and plotted these values to display the resultant
concentration curve.

3.2. FPGA-based implementation

For FPGA-based implementation, we selected Xilinx Vivado 2020.2 and Artix 7 device version
xc7al100tcsg324-1. When it comes to FPGA-based realization of ODE solvers, one of the primary
concerns is the use of fixed-point arithmetic or floating-point arithmetic to solve the equations.
Though we could use fixed-point arithmetic in Verilog, it is known that such an attempt results in
errors related to precision in the results, especially when the molecular concentrations can be subject
to very minute changes in each time-step. Moreover, the synthesis of multiplication and division
operations poses a major concern in such implementations, as the division and multiplication
operators are not synthesizable in Verilog. Thus, a self-reliant synthesizable circuit based on some
adequate algorithm, such as Booth’s algorithm for multiplication, may be required. This is not only
tedious, but also error-prone and expensive from the perspective of resource utilization. One
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possibility is to come up with some multiplier-less implementation and use a multiplication-based
approach for division as well. Another way is to use DSP (Digital Signal Processor) slices for
multiplication using fixed-point arithmetic. Since Verilog does not support any fixed-point
representation, it considers all the operations as integer operations, and the results need to be scaled
to get the correct results.

In our implementation, we opted for floating-point operations available as Intellectual Property
(IP) cores in Xilinx. IP cores are available through an IP catalog that comes with the Xilinx software.
Various IP cores can be instantiated in the design as and when required. One major advantage of
using these IP cores for floating-point operations is that it enables users to optimize the use of DSP
slices. Moreover, since it works according to the Advanced eXtensible Interface (AXI) protocol,
better control of the operations is possible, which is discussed in the following text. Once an IP core
for an operation is generated, it can be used as many times as required by simply instantiating it in
the design. We used Floating-Point I[P Core in XILINX Floating-Point Operator V7.1. The Xilinx
Floating-Point Operator core enables a range of floating-point arithmetic operations to be performed on
FPGA. The operation is specified when the core is generated, and each operation has similar interface.
This core complies with much of the IEEE-754 Standard. Some standards supported are listed as
below. For this research work, we took binary 32 (single precision format).

e binaryl6 (Half Precision Format): 16 bits, with an 11-bit fraction and 5-bit exponent.

e binary32 (Single Precision Format): 32 bits, with a 24-bit fraction and 8-bit exponent.

e binary64 (Double Precision Format): 64 bits, with a 53-bit fraction and 11-bit exponent.

This standard necessitates the results to be accurate to half of one Unit in the Last Place (ULP).
This Floating-Point Operator enables multiplication, addition/subtraction, fused multiply-add, division,
square-root, and conversion operators. Thus, multiplication, addition/subtraction, accumulator, fused
multiply-add, division, and others are used as building blocks for various modules in our design.

3.2.1.  Verilog modules for implementation of repressive networks

The required floating-point IP cores were configured and generated first and then the modules
for solving equations and producing outputs were created. The implemented modules were as
follows:

e Module fp add sub: As the name suggests, this [P Core module can be used to add or
subtract two floating-point operands in IEEE 754 Single Precision Standard.

e Module fp multiply: This module can be used to multiply two single precision
floating-point numbers.

e Module fp mult3 : This module comprises two fp multiply modules to enable
multiplication of 3 floating-point quantities.

e Module fp divide: This module enables single precision division.

e Module fp mult add: This module takes three operands as inputs, multiplies the first two,
and then adds the third one to generate the result.

3.2.2. Repressive network modules

Using the modules of different floating-point operators described in the previous subsection, various
modules are written to implement the ODE solver using Euler’s method. These modules are as follows.
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e Module dAdt: This module computes d/A//dt for protein 4 using (1). This module takes
the constants and initial values required for calculating differential output at each time step.
fp_multiply, fp_add sub, fp divide are instantiated multiple times to carry-out the operations
required. Control of operations is established through handshake signals of AXI4 stream protocol.

e Module dBdt (used as dCdt as well): Similar to d/4//dt module but the relevant
operations and their order is maintained according to the repressive circuit model described in (2)
through (3) for d/BJ/dt and d/C]/dt, respectively. The same module is used to instantiate both
d[BJldt as well as d/CJldt calculations as the working mechanics of proteins B and C are the
same.

e Module 4 dtxdAdt: This module is for the calculation of new values of protein A used as
initial value for the next time step. Modules dAdt and fp mult add are instantiated with required
control signals for handshaking purposes.

e Module B dtxdBdt: Similar to the module defined above, this is for the computation of
proteins B and C. Hence, this module is instantiated twice; once for protein B and then for protein C.

e Module 4BC NW: This is the top module of this design where the concentrations of all the
three proteins are computed by setting the initial conditions and constants of equations along with the
provision of keeping the new values at each time step and produced as outputs. The initial values are
the same as described in Table 1.

In Figure 2, we present the block diagram illustrating various modules derived from equation (1)
for protein A. The floating-point operation modules were arranged to enable parallel execution, as
the resulting values were independent of each other, as shown in equation (1). Once the dependent
values were computed, the next-stage modules were triggered using control signals generated within
the architecture. This figure demonstrates the independent initiation and completion of operations for
numerators and denominators, and the subsequent stages begin execution as soon as all required
operands become available. To enable computational overlapping, multiple instances of each
arithmetic operation were instantiated as needed. However, we could also provide the flexibility to
time-multiplex these modules, optimizing FPGA resource utilization.

The fp_add sub module was used to compute [Atotal]-[A], and another instance computes the
denominator of the first term in equation (1). The numerator’s multiplication operation was executed
in parallel. Once the numerator and denominator values were obtained, the division was carried out.
The second term’s numerator involved a three-operand floating-point multiplication of k;;, [4], and
[C], while the denominator was computed using fp add sub to add Kj; and [A]; these operations
were initiated simultaneously with the first term’s subtraction. Upon computing the numerator and
denominator, the second division was performed. A final subtraction between the two computed
terms yielded dA/dt, which was then multiplied by dr and added to the previous value of [4] to
update the concentration, stored as accA. Figure 2 shows the 4 values at every time step dr.

Figures 3 and 4 depict the modules B values and C values, respectively. Figure 5 provides a
top-level overview (ABC_NW) that simultaneously calculates A values, B values, and C values,
thereby fully parallelizing the execution in contrast to the sequential computation of a CPU-based
realization, illustrated in the flow diagram of Figure 6. This comparison demonstrated that the CPU
processes the values for proteins [A4], [B], and [C], sequentially, using Euler’s method, whereas the
FPGA implementation parallelizes the computation of all three protein concentrations and the
independent arithmetic operations within equations (1), (2), and (3).
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3.2.3. Synthesis results

All the instantiated modules in the proposed design are illustrated in Figures 7 and 8. Figure 7
presents the top-level schematic of the 4ABC NW module, which implements the system of ODEs
given in (1)—(3). This module accepts clock, reset, and start signals as inputs and outputs the updated
concentrations 4 _new, B _new,and C new for the three proteins at each simulation step.

Figure 8 provides an expanded schematic of the 4 values instance, highlighting the 4 dtxdAdt
t module, which contains the dAdt and fp mult add units. The dAdt module was further
decomposed into floating-point operation units, namely fp multiply, fp add sub, and fp divide.
For completeness, detailed expanded schematics for A4 values, B values, and C values are
included in the supplementary material (Figures S1 and S2), showing the internal arrangement of the
floating-point operator modules for each protein.
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| fp_add_sub [
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fp_add_sub

fp_mult3
K1

T
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fp_mult_add |
> )

v
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Figure 2. A_values module block diagram based on floating-point modules according
to (1) and (6).
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Figure 3. B_values module block diagram based on floating-point modules according
to (2) and (6).
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Figure 4. C_values module block diagram based on floating-point modules according

to (3) and (6).
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Figure 5. Top module ABC_NW comprising of A_values, B_values, and C_values.

AIMS Bioengineering Volume 12, Issue 3, 412—-434.



425

Figure 6. CPU-based realization of a sequential execution of the three loops for proteins
A, B, and C unlike parallel execution of the new values for the three proteins, as shown

in Figure 4.
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Figure 8. A values expanded to see instances of the dAdt and fp mult add modules.
3.2.4. Resource utilization

Figure 9 shows the estimated post-synthesis resource utilization percentage of FPGA resources
used in the design. Look-Up-Table (LUT) and LUTRAM were the basic resources through which
FPGA-based design elements were realized. Thus, we observed an adequate percentage of these
resources estimated to be used in the design. Since we opted for Digital Signal Processor (DSP) slices
when configuring IP cores to facilitate multiplication and division operations, 10% of DSP slices were
utilized to optimize the design. Since we latched the concentration values and constants with the design
modules, we observed 11% percent of flip-flops (FF) also estimated to be used, which was again
acceptable resource utilization. However, we observed that 32-bit single precision floating-point
outputs were taxing the IO buffers to 94% but that could be significantly reduced if intermediate values
were not included in the output interface such as accA, accB, and accC buses. These buses could be
used within the design without any loss of information required in the design. Table 2 lists a
comparison of the resources available and estimated utilization for the Artix 7 FPGA resources in this
design.

Table 2. Total number of resources utilized of available resources.

Resource Estimated number of Available Resource
units number of units utilization %

LUT 7537 63400 11.89
LUTRAM 360 19000 1.89

FF 13990 126800 11.03

DSP 24 240 10.00

10 198 210 94.29

BUFG 1 32 3.13
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Figure 9. Percentage of resources used in the design.
4. Results and discussions

The comparison between simulation results obtained from MATLAB-based and FPGA-based
implementations, both in terms of waveform behavior and numerical values, as illustrated in
Figure 10, yields promising insights. We successfully replicate the dynamic biochemical behavior of
the three-protein regulatory network. The FPGA implementation, based on IEEE-754
single-precision floating-point format, produces results with higher numerical precision at each time
step in contrast to the fixed-point representation employed in the MATLAB simulation.

Figure 10(a) presents the concentration waveforms of proteins A, B, and C, where the green
trace denotes A, the blue trace denotes B, and the red trace denotes C. The dynamic interactions
between the proteins, governed by the ODE system defined in Equations (1)—(3), are visible. The
evolution of concentrations is parameter-dependent, as defined in Table 1. Notably, an initial increase
in protein A concentration facilitates a delayed increase in protein B. The concurrent initial
decrease in protein C permits this rise in A. As B concentration accelerates, it promotes the
increase of C, which in turn stabilizes and reverses the growth of A, exhibiting a negative feedback
loop characteristic of the modeled biological circuit.

The corresponding FPGA-based analog waveforms, captured in Vivado Simulator and shown in
Figure 10(b), reproduce the same dynamical behavior with high temporal resolution. Again, the
green, blue, and red traces represent the concentrations of proteins A, B, and C, respectively. The
analog-style display of digital simulation values was enabled via Vivado’s analog waveform
visualization settings. This feature supports the broader feasibility of using digital reconfigurable
platforms to simulate analog biological processes, establishing a viable bridge between
continuous-time biological models and digital hardware realization.

The simulation results from the software-based (CPU) implementation extend over a biological
timescale of 1.5 seconds. In contrast, the FPGA-based realization achieves equivalent system
dynamics in only 0.3 seconds, demonstrating a 5% acceleration in simulated time. This performance
gain is depicted in Figure 11(a) and Figure 11(b), which show the MATLAB and FPGA simulation
timelines, respectively, along with closely matching concentration values.

AIMS Bioengineering Volume 12, Issue 3, 412—-434.



428

These results not only validate the numerical correctness of our hardware design but also
confirm its practical viability. The use of floating-point arithmetic via Xilinx’s IP cores, interfaced
through the AXI protocol, enabled parallel evaluation of ODE terms, significantly improving
simulation throughput compared to sequential CPU execution. Moreover, the system was
implemented in a modular fashion to enable scalability. Resource utilization remain within
acceptable bounds for a Xilinx Artix 7 FPGA, ensuring that the design is feasible on mid-range
hardware platforms. The use of Euler’s method, selected for its simplicity and low hardware
overhead, provides a favorable trade-off between numerical efficiency and real-time execution
constraints.

Together, these findings underscore the accuracy and feasibility of implementing biologically
inspired nonlinear ODE systems on reconfigurable digital platforms. The work highlights the
potential of such FPGA-based architectures in enabling high-speed, resource-efficient simulations of
biochemical pathways (relevant for real-time embedded systems in synthetic biology and other
related domains).

4.1. Statistical analysis of CPU-based and FPGA-based results

To quantitatively validate the accuracy of the FPGA-based implementation, statistical error
metrics were computed between the CPU-based and FPGA-based simulation results for protein
concentrations A, B, and C. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
were used as indicators of numerical fidelity as depicted in Figure 12(a). To express the FPGA—-CPU
deviations relative to typical concentration magnitudes, we also computed the normalized RMSE
(NRMSE) using the CPU-based mean concentration as the normalization factor. The NRMSE values
are 1.35% (Protein A), 1.85% (Protein B), and 1.97% (Protein C), indicating that the FPGA
implementation reproduces the MATLAB reference with deviations below 2% of the typical
concentration values. These low percentages confirm the high numerical fidelity of the FPGA-based
simulation besides significant execution-time improvements. Figure 12(b) illustrates the NMRSE
values of the three proteins.

Furthermore, execution time measurements in Figure 12(c) show that the CPU-based simulation
requires 1.500 s, whereas the FPGA-based implementation completes the same simulation in 0.315 s,
yielding a 5% acceleration. This performance improvement highlights the suitability of FPGA
architectures for real-time biochemical network simulation.

AIMS Bioengineering Volume 12, Issue 3, 412—-434.



429

30
Al
e] |- Name Value 0.000 ns
25 [e1] - W dones 0
W doneC 0
¥ accA[31.0] 1.457315325737
> W accB[31:0]  15.9485845565796
1) > B9 aceC[31:0) 27.7243423461914
)
= > W Anew[31:0]  1.46464133262634
" Bnew[31:0]  16.0422382354736
f’/
> W Cnew[31:0]  27.6916465759277
0 . .
) 05 1 15

Time

(a)

200,000.000

(b)

Figure 10. Simulation Results. (a) Results from MATLAB-based implementation; and (b)
results from FPGA-based implementation in Vivado Simulator using analog waveform.
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Figure 11. Simulation Results. (a) Results from MATLAB-based implementation with
time scale from 0 to 1.5 seconds; and (b) results from FPGA-based implementation with

time scale from 0 to 0.3 seconds.
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MAE for proteins A, B, and C (CPU-based and FPGA-based simulations); (b)
NRMSE for proteins A, B, and C; and (c) execution time comparison between CPU
and FPGA-based simulations.

5. Conclusion

In this work, we propose a reconfigurable platform-based hardware realization using
floating-point IP cores for various arithmetic operations in ordinary differential equations to simulate
a biological process of soil bacteria. We design our modules to capitalize on the parallelism that can
be achieved by starting independent arithmetic operations in a single ordinary differential equation
simultaneously, as well as starting the solution of ordinary differential equations at the same time, in
contrast to CPU-based algorithms, where solutions are attained sequentially. The AXI protocol
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enables us to control the start and end of various arithmetic functions. The results are validated
against CPU-based simulation, and we observe a speed-up of 5 against software-based realization.
Moreover, the results are more accurate due to single floating-point representation of numbers
instead of fixed-point representation in software-based implementation. To further strengthen the
validation, we conduct a rigorous statistical comparison between FPGA- and CPU-based results
using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Normalized RMSE
(NRMSE) for all simulated protein concentrations. The low RMSE values (A: 0.09546, B: 0.27655,
C: 0.23648) and NRMSE values below 2% confirm a close numerical match between the two
implementations, demonstrating that the hardware realization preserves the accuracy of the original
simulation. Furthermore, this work can be improved by using Block RAMs (BRAMs) and Ultra
RAMs (URAMs) for constants, initial values, and intermediate values instead of internal registers,
thus making the design optimized through parallel implementation techniques. With the techniques
and resources available on FPGA chips, it is very likely to continue using such platforms, either for
the actual design or for networking of such designs or for both.
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