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Abstract: Cytomorphic hardware, in which bio-cellular processes are mapped onto an electronic 

substrate, has gained quite a prominence in the past few decades due to advancements in the fields of 

systems biology, synthetic biology, and other related disciplines. Conventionally, the analog substrate 

is the preferred choice for nonlinear biochemical reactions in the biological circuits; however, many 

researchers have exploited the flexibility, reconfigurability, and ease of design of digital platforms 

such as reconfigurable field-programmable gate arrays (FPGAs). In this work, we briefly examined 

work on such reconfigurable platforms and proposed a novel and straightforward technique to 

implement the systems of ordinary differential equations describing such biochemical reactions in a 

modular fashion using single-precision floating-point intellectual property cores available on a 

representative reconfigurable platform. A simplified biochemical system of a repressive three-way 

network of soil bacteria was taken into account, and the system of ordinary differential equations was 

first simulated in a software-based environment with results compared against a hardware-based 

realization. We observed a significant speed-up of up to 5x in the reconfigurable platform-based 

realization compared to the software-based realization. The values in the hardware-based realization 

were also more accurate compared to the software-based approach. Statistical error metrics (RMSE, 

MAE, and NRMSE) further confirmed a close numerical match between the two implementations. 

Hence, the results conformed well, and thus, this design strategy can be incorporated into the future 

cytomorphic design on field-programmable gate arrays. 

Keywords: bio-chemical reactions; cytomorphic; ordinary differential equations; reconfigurable 

platforms; soil bacteria network 
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1. Introduction 

The basic cellular structures like neural networks in the nervous system and other cellular 

networks in biological systems are quite complex and interwoven in nature. In order to understand 

the mechanisms behind functions performed by them, mathematical and computational modeling 

techniques play a pivotal role. These techniques enable scientists and researchers to gain some 

insight into these intricate mechanisms. Likewise, the intracellular biochemical processes might look 

like simple chemical processes at first, but the interactions and regulation patterns are highly 

complex, and thus, only mathematical and computational modeling can be deployed to fully 

understand these cascades of biochemical pathways. The computational or in-silico modeling of 

biological processes using software tools has been an active research domain called Executable 

Biology [1,2]. 

Many different algorithms are based on Finite State Machines as in [3], but the model remains 

largely theoretical without experimental validation. The biological complexity of real mutations and 

regulatory networks is seen in [4], where practical biochemical feasibility, dynamics of actual 

genetic parts, and scalability beyond educational demonstration are untested; and in [5], where the 

system is greatly simplified and is limited to two inputs and five states only, and the reaction time, 

though improved, lies on the order of minutes, making scalability and speed bottlenecks in more 

complex settings. 

An artificial-based system in [6] blends mechanistic kinetic model structures with model-free 

reinforcement learning to adaptively identify both the correct kinetic form and its time-varying 

parameters, but validation is limited to in-silico scenarios only, lacking real experimental data; and 

the hybrid structure remains vulnerable to over-parameterization or over-fitting. Similarly, 

standardized markup languages [7,8] and other computational variants [9,10] are major contributions 

in this domain. Another interesting approach is to define the network motifs of the most commonly 

occurring biological networks and create computational algorithms for them [11,12]. 

All these computational models, however, are phenomenological, and the real molecular level 

of cellular interactions is not incorporated. Various rates like the rate of product formation, affinities 

of binding, and rates of transcription are not taken into account or are adjusted to attain certain 

results. Furthermore, considering a few molecules, surface receptors, and transcription factors is not 

enough to give a reasonable insight into the phenomenon under consideration. The biological 

systems like the nervous system and immune system, in particular, rely on molecular heterogeneity. 

The process of learning requires individual nerve cells to be distinct. 

When we consider modeling of neural plasticity, for instance, we consider only the electrical 

aspects arising from action potentials, their propagation, and synaptic delays; however, these 

electrical mechanisms take place due to protein-based ion channels, pumps, and receptors present on 

the cell membranes, and these proteins undergo many variations due to alternative splicing, post 

translational modifications, and other factors. Hence, there is a possibility that the long term memory 

formation relies on post translational protein modifications of synaptic proteins [13,14]. 

Another major issue related to computational modeling is the resources required for intricate 

and complex simulations of biological processes, such as supercomputer scale machines and cloud 

facilities. Hence, a growing number of researchers are looking toward other means of modeling like 

using Graphical Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), and 

analog/mixed signal domain electronic substrates [15–17]. GPUs, however, support Single 
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Instruction Multiple Data (SIMD) scenarios, whereas in biochemical pathways, each ODE represents 

a number of different operations on the same data. Hence, using GPUs is not a very scalable solution 

when large and complex biological processes are to be modeled, as a very large number of GPUs 

would be required in such cases. 

Besides digital implementations, some researchers have used analog and mixed-signal platforms 

to implement biochemical processes. Dr. S. M. Razaul Hasan and his colleagues, at the Center for 

Research in Analog and VLSI microsystems dEsign (CRAVE), Massey University, Auckland, New 

Zealand, have made notable contributions to bio-cellular process modeling through mixed IC design. 

Their work includes a sequential circuit level design for simulating biological processes and cell 

signaling pathways, with sequencing governed by circadian rhythms [18], a hysteretic electronic 

switch [19], analogues for mRNA transcription [20], and a comprehensive electronic model of post 

gene transcription mechanisms [21], all of which represent significant advancements in the field. 

Cytomorphic hardware design, which emulates biological processes on an electronic substrate, 

has been an active research area for several decades. Its growing relevance spans basic medical 

science, drug testing, pharmacology, molecular biology, and related fields such as synthetic biology, 

biosensors, prosthetics, and robotics, highlighting its increasing impact and multidisciplinary 

importance. 

Professor Rahul Sarpeshkar at the Research Laboratory of Electronics, MIT, and his research 

team have contributed to the domain by performing wet experiments (in-vitro) as well as dry 

experiments on electronic neuromorphic and cytomorphic chips. Their work, ranging from analog 

synthetic biology circuits, to biological and bio-inspired supercomputers based on analog 

computation in cells, and ultra-low-power implantable medical devices such as cochlear implants or 

diagnostic devices, adds great value to the field of Cytomorphic Computing [22]. He has shown with 

his designs that the presence of a smaller number of transistors in an analog electronic substrate 

means faster implementations than any digital counterparts [23,24]. In [24], the researchers also 

provide an excellent review on how cytomorphic electronic chips at sub-threshold analog levels can 

be used to map biochemical reaction networks. 

Waqas et al. in [25] use velocity saturated short-channel MOS transistors to model very 

frequently seen bio-cellular reactions, namely receptor-ligand binding and Michaelis-Menten 

reactions. In [26], Waqas et al. further extend their work in [25] and [27], and they implement an 

analog MOS based design of a complete bio-chemical pathway. In [28], the p53 protein led pathway 

responsible for cell death, called apoptosis, is designed by Patra et al. using ODEs of the system 

model. CMOS circuits are implemented for the entire pathway. This design enabled the study of p53 

pathways dynamics without the need for biological cells in a dry lab and would benefit cancer 

treatment and drug control for such diseases. A more recent work from Patra et al. [29] presents a 

MOS-based cytomorphic SoC for simulating stochastic apoptosis networks, translating nonlinear 

biochemical dynamics into subthreshold electronic circuits. Simulation results show strong 

agreement with experimental data and biosimulator outputs, validating the system’s accuracy and 

stability. 

Although analog design, being fuzzy and noisy like biological circuits, seems to be a better 

choice, the design process is tedious and costly; thus, digital and mixed-signal design is often 

preferred by researchers. In the digital domain, Application Specific Integrated Circuit (ASIC) and 

FPGA-based design are possible, but ASIC designs are again rigid and costly; hence, reconfigurable 

platforms like FPGAs are favored over ASICs. We exclude GPU-based realizations from this 
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discussion as they are not scalable and cannot be implemented independent of CPU-based host 

machines, which incur an additional overhead in the design. 

Cytomorphic design at a higher level of abstraction is much easier to carry out using FPGAs, 

but a bottom-up approach, where biophysical dynamics of cellular processes are taken into account, 

poses a huge challenge due to limited resources on the FPGA chip. The biological processes have 

been mapped onto FPGAs for the past few decades, as we can see in the work of [30–32]. A detailed 

account of FPGA-based design for biological processes is discussed in the proceeding section. The 

researchers in [33] provide a comprehensive overview of cytomorphic and neuromorphic trends on 

different electronic platforms and their applications in various emerging fields. 

Here, we intend to investigate the realization of a simple biochemical process on a 

reconfigurable platform such as FPGA. For dynamic modeling of the selected biochemical process 

on an FPGA, a novel technique is furnished so as to inspect some advantages and disadvantages that 

can be incurred in doing so. 

We have validated the reconfigurable platform-based design against CPU-based simulation by 

keeping the initial conditions and rate constants identical in both approaches, as defined in the 

following sections. A straightforward implementation strategy is adopted for solving the Ordinary 

Differential Equations (ODEs) representing the biological circuit, using Euler’s Method as the 

numerical solver. This choice is intentional to facilitate optimal resource utilization on the FPGA. 

Higher order solvers such as the Runge Kutta methods, while offering improved numerical accuracy, 

are not employed due to their significantly higher computational and memory overhead. These 

methods require multiple intermediate calculations per time step, which would increase the hardware 

complexity and resource usage on a reconfigurable platform. Given the nature of our application, 

particularly when modeling large and intricate biochemical processes, the increased cost in terms of 

FPGA logic, memory blocks, and latency outweighs the benefits in accuracy. Therefore, Euler’s 

Method presents a favorable trade-off between accuracy and hardware efficiency for our use case. 

To ensure a direct correspondence between the software-based and FPGA-based 

implementations, we avoid using built in ODE solvers in software and instead employ a self-written 

numerical routine. This enables us to maintain consistent computation logic and precisely match the 

behavior of both implementations. Furthermore, floating-point arithmetic is utilized instead of 

fixed-point, eliminating the need for scaling and mitigating issues related to precision loss. 

Fixed-point arithmetic, although resource-efficient, can degrade accuracy and is, thus, avoided where 

floating-point resources are available. 

The FPGA implementation follows a modular design, enabling future enhancements such as 

time multiplexing of functional units to further optimize resource usage. Additionally, the use of the 

Advanced eXtensible Interface (AXI) protocol in the floating-point IP cores provides an efficient 

means to parallelize independent computations within the ODE system. This helps circumvent the 

need for sequential execution as seen in CPU-based simulations. The AXI protocol also offers robust 

control over execution flow, making it well suited for handling feedback loops commonly present in 

biochemical reaction networks. 

1.1. Generic three component repressive network of soil bacteria 

A simplified model of a generic three-component repressive network, representing a 

biochemical circuit observed in soil-dwelling bacteria, is known to exhibit oscillatory behavior 
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depending on the parameters selected. This network comprises three proteins A, B, and C that can 

exist in phosphorylated (A-p, B-p, C-p) or dephosphorylated (A, B, C) states. The biochemical 

interactions among these proteins form a closed feedback loop, where protein A catalyzes the 

dephosphorylation of protein B, protein B catalyzes the dephosphorylation of protein C, and protein 

C, in turn, catalyzes the phosphorylation of protein A. The activation signals in the feedback loop are 

illustrated in Figure 1, where circles at the end of the arrows denote activation. The reactions 

involved in this regulatory circuit are governed by Michaelis-Menten kinetics. The system is 

modeled mathematically using a set of three coupled ordinary differential equations (ODEs) (1), (2), 

and (3) for the three proteins A,  B,  and C , respectively, incorporating Michaelis-Menten 

expressions to describe the enzymatic activity of each component [34,35]. The resulting model is 

expressed as follows: 

𝑑[𝐴]

𝑑𝑡
=

𝑘𝑝1([𝐴𝑡𝑜𝑡𝑎𝑙] − [𝐴])

𝐾𝑝1 + [𝐴𝑡𝑜𝑡𝑎𝑙] − [𝐴]
−
𝑘𝑘1[𝐴][𝐶]

𝐾𝑘1 + [𝐴]
                                                    (1) 

𝑑[𝐵]

𝑑𝑡
=
𝑘𝑝2([𝐵𝑡𝑜𝑡𝑎𝑙] − [𝐵])[𝐴]

𝐾𝑝2 + [𝐵𝑡𝑜𝑡𝑎𝑙] − [𝐵]
−

𝑘𝑘2[𝐵]

𝐾𝑘2 + [𝐵]
                                                (2) 

 
𝑑[𝐶]

𝑑𝑡
=
𝑘𝑝3([𝐶𝑡𝑜𝑡𝑎𝑙] − [𝐶])[𝐵]

𝐾𝑝3 + [𝐶𝑡𝑜𝑡𝑎𝑙] − [𝐶]
−

𝑘𝑘3[𝐶]

𝐾𝑘3 + [𝐶]
                                                (3) 

In these three equations, [Atotal], [Btotal], and [Ctotal] represent the total concentrations of 

proteins A, B, and C, respectively. [A], [B], and [C] give their resulting molecular concentrations, 

respectively, and (d[A])/dt, (d[B])/dt, and (d[C])/dt represent the rate of change of concentration 

for proteins A , B , and C , respectively. kp1 ,  kp2 , and kp3  are the rate constants for 

dephosphorylation of A, B, and C, respectively, while  kk1,  kk2, and  kk3 are the rate constants for 

phosphorylation of the three proteins, respectively. Kp1, Kp2, and Kp3 are the dissociation constants 

for the dephosphorylation of A , B , and C , respectively, and Kk1 , Kk2 , and Kk3  are the 

Michaelis-Menten constants of phosphorylation of A, B, and C, respectively. 

The biological motivation for modeling this simplified soil bacterial repressive loop arises from 

its relevance to naturally occurring gene regulatory networks that govern adaptive responses in 

microbial populations. Soil bacteria frequently encounter fluctuating environmental conditions, such 

as changes in nutrient availability, moisture, and pH, necessitating robust regulatory mechanisms to 

maintain homeostasis and survival. Minimal repressive circuits, such as the one modeled here, 

capture essential features of such regulation, including nonlinearity, time-delayed feedback, and the 

potential for oscillatory dynamics. These properties make the system a useful abstraction for 

studying the fundamental principles of feedback control in biological systems. 
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Figure 1. A generic three protein repressive network of soil bacteria [34]. 

By focusing on a reduced model with only three interacting components, it becomes feasible to 

analyze the system analytically and computationally, thereby providing insights into the parameter 

regimes that give rise to oscillatory or steady-state behavior. Furthermore, such simplified models 

are useful test cases for hardware-based implementations of biological networks, such as those 

deployed on field-programmable gate arrays (FPGAs), enabling real-time simulation and emulation 

of biochemical processes. The results obtained from modeling and simulating these circuits not only 

enhance our understanding of natural regulatory motifs but also contribute to the development of 

synthetic biological circuits for use in biosensors, drug delivery systems, and programmable 

bio-devices 

1.2. Reconfigurable computing platforms for biochemical pathway realizations 

Reconfigurable computing platforms, as the name implies, enable the modification of various 

design parameters even after successful implementation. Moreover, the design can be easily altered 

whenever required, with minimal effort and cost. Designs can also be made robust and adaptable by 

configuring critical parameters as inputs to the system; for instance, by storing initial values in Block 

RAM (BRAM) or Ultra RAM (URAM) available on many FPGA devices. In such cases, the design 

does not need to be recompiled; instead, parameter changes can be made simply by writing new 

values to the memory blocks. 

In this work, we explore a technique for implementing a small-scale biological process on an 

FPGA using Euler’s method as the ODE solver. The chosen three-protein repressive network has a 

limited number of ODEs and parameters, making it ideal for demonstrating the implementation 

methodology. However, the proposed approach is scalable and can be extended to larger and more 

complex biological networks, where the benefits of FPGA-based acceleration become more 

significant. 
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1.3. Engineering significance and application scope of FPGA-based biochemical circuit 

implementation 

The primary contribution of this work lies in the realization of a biologically inspired regulatory 

network on reconfigurable hardware. Although the underlying biochemical model, a 

three-component repressive loop governed by Michaelis-Menten kinetics, is conceptually established 

in systems biology, we introduce a novel hardware-based implementation that enables real-time and 

resource-efficient simulation. The circuit is implemented using floating-point arithmetic IP cores to 

ensure numerical stability and eliminate the need for manual scaling inherent in fixed-point systems. 

This design decision preserves computational fidelity, which is particularly important in modeling 

biochemical processes with sensitive dynamic ranges. 

The use of the Advanced eXtensible Interface (AXI) protocol further enhances system 

efficiency by enabling concurrent processing of independent ODE computations. This contrasts with 

CPU-based implementations, which typically rely on sequential execution and are therefore limited 

in terms of speed and scalability. Through modular design and IP-level abstraction, the system 

supports extensibility to larger networks and enables time- -multiplexing strategies for resource 

optimization on the FPGA. 

From an application standpoint, the presented approach holds significant promise for domains 

such as synthetic biology, where rapid in-silico prototyping of genetic circuits is essential. By 

enabling hardware-accelerated emulation of gene regulatory networks, the platform facilitates fast 

validation of circuit dynamics before experimental realization. Furthermore, the ability to simulate 

complex feedback-driven systems in real time has potential utility in pharmacodynamics and drug 

discovery workflows, particularly for simulating signaling cascades under varying conditions. Some 

other emerging fields that may benefit from this work include biomorphic artificial intelligence, 

neuro-prosthetics and brain-computer interfaces, bio-electronic medicine, DNA-based memory and 

computing devices, bio-computers, and others [33]. These capabilities make the proposed 

implementation a generalizable framework for the deployment of biologically relevant models in 

embedded, high-throughput, or edge-computing environments. 

2. Related work 

Recent advances in cytomorphic circuits implemented on reconfigurable platforms, particularly 

Field-Programmable Gate Arrays (FPGAs), have demonstrated the potential for high-speed and 

parallel simulation of biochemical processes. However, much of the work emphasizes 

implementation than addressing the broader engineering trade-offs, resource constraints, or 

biological fidelity gaps that we aim to bridge. Early contributions in this area include the work by 

Osana et al. [36–39], where FPGA-based simulators were developed using deterministic (ODE-based) 

and stochastic approaches to model metabolic and biochemical pathways. These efforts culminated 

in the development of ReCSiP (Reconfigurable Cell Simulation Platform) [39,40], which 

demonstrated considerable speedup compared to conventional software implementations. Despite 

these advances, the ReCSiP platform relied on now-obsolete FPGA hardware and legacy toolchains, 

limiting its relevance to modern programmable logic devices. 

Soleimani and Drakakis, in [41], extended this line of research by implementing a cellular 

calcium signaling model on FPGA, capable of pipelining between 10,000 and 40,000 calcium units. 
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This demonstrated not only a significant improvement in execution time compared to CPU-based 

simulations but also the feasibility of modeling large-scale cellular dynamics on reconfigurable 

hardware. However, their focus remained largely on performance metrics, without much emphasis on 

hardware scalability or generalization to broader biochemical networks. 

Further work by Soma et al. [42], and later extended by Acharya et al. [43], introduced 

hardware-software co-design methodologies using MATLAB Simulink and Xilinx System Generator. 

These tools facilitated rapid prototyping of biochemical circuits through modular design libraries. 

While this approach enabled greater flexibility and ease of implementation, it introduced software 

dependencies and version compatibility issues that could affect design portability and long-term 

reproducibility. Moreover, both works acknowledged that such abstraction tends to omit key 

biological intricacies, thereby limiting its biological interpretability. In [44], Acharya et al. 

demonstrated a cytomorphic engineering approach by modeling key cellular biochemical reactions as 

low-power electronic circuits using FPGA-based implementation. The synthetic models of p53 

signaling pathways are validated against cell culture data and efficiently realized on a Zynq-7000 

board, consuming only 310 mW of power. 

Several challenges persist across these studies. First, much of the prior work depended on 

Systems Biology Markup Language (SBML) for model representation. While SBML is a widely 

accepted standard, it poses several practical issues, such as dependency conflicts (e.g., libSBML and 

libstdc++ compatibility with MATLAB), memory management concerns, and difficulties in parsing 

complex expressions; issues documented on the SBML.org website. These limitations restrict 

automation and integration into modern design workflows. Second, despite the demonstrated 

speedup, most platforms use fixed-point arithmetic to reduce resource utilization. However, 

fixed-point methods can compromise numerical accuracy, particularly for systems with wide 

dynamic ranges or sensitive kinetic parameters. This trade-off is not well addressed in the literature, 

especially in the context of biologically faithful circuit emulation. 

In contrast, we propose a modular, floating-point FPGA implementation that addresses these 

limitations on several fronts. First, it eliminates reliance on SBML or external software layers by 

directly implementing the system of ODEs derived from biochemical reactions. Second, it uses 

floating-point arithmetic to preserve numerical precision without requiring result scaling, which is 

crucial for accurate biological modeling. Third, it leverages the AXI protocol-based IP cores to 

exploit the parallelism inherent in biochemical systems, providing scalability and real-time execution 

capabilities. In doing so, this work contributes not only a performance-optimized design but also a 

biologically consistent and hardware-portable framework that fills key gaps in current cytomorphic 

circuit implementations. 

3. Experiments to implement biological processes of repressive networks of soil bacteria 

3.1. CPU-based implementation 

For a software-based approach, we selected MATLAB R2019a running on an Intel i7 Core 

machine. We used Euler’s method to implement the three-way repressive network of soil bacteria as 

given by equations (1), (2), and (3), using the code structure defined below. 
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Table 1. Rate constants and Michaelis-Menten reaction constants. 

Constant 

symbol 

Constant name Value 

kp1 
Constant rate for dephosphorylation for protein A 20 sec-1 

Kp1 
Dissociation constant for phosphorylation of A 0.2 mM 

kk1 Constant rate for phosphorylation for protein A 5 sec-1 

Kk1 Michaelis–Menten constant for phosphorylation of protein A 8 mM 

kp2 
Constant rate for dephosphorylation for protein B 15 sec-1 

Kp2 
Michaelis-Menten constant for dephosphorylation of protein B 10 mM 

kk2 Constant rate for phosphorylation for protein B 30 sec-1 

Kk2 Dissociation constant for phosphorylation of protein B 3 mM 

kp3 
Constant rate for dephosphorylation for protein C 5 sec-1 

Kp3 
Michaelis-Menten constant for dephosphorylation of protein C 40 mM 

kk3 Constant rate for phosphorylation for protein C 50 sec-1 

Kk3 Dissociation constant for phosphorylation of protein C 3 mM 

We first defined all constants, set the time step and simulation time, and set all the initial 

conditions, as shown in Table 1. The initial molecular concentrations of proteins A, B, and C were 

kept at 5 mM each. We implemented a loop to handle the progression of time at each time-step and 

thus, compute the rates of change in concentration of proteins at each time step denoted as d[A]/dt, 

d[B]/dt, and d[C]/dt in equations (1), (2), and (3), respectively. We used a very small timestep    

of 0.005 seconds. Based on the attained values, we calculated new values of protein concentrations, 

appended them to a vector storing all the new values, and plotted these values to display the resultant 

concentration curve. 

3.2. FPGA-based implementation 

For FPGA-based implementation, we selected Xilinx Vivado 2020.2 and Artix 7 device version 

xc7a100tcsg324-1. When it comes to FPGA-based realization of ODE solvers, one of the primary 

concerns is the use of fixed-point arithmetic or floating-point arithmetic to solve the equations. 

Though we could use fixed-point arithmetic in Verilog, it is known that such an attempt results in 

errors related to precision in the results, especially when the molecular concentrations can be subject 

to very minute changes in each time-step. Moreover, the synthesis of multiplication and division 

operations poses a major concern in such implementations, as the division and multiplication 

operators are not synthesizable in Verilog. Thus, a self-reliant synthesizable circuit based on some 

adequate algorithm, such as Booth’s algorithm for multiplication, may be required. This is not only 

tedious, but also error-prone and expensive from the perspective of resource utilization. One 
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possibility is to come up with some multiplier-less implementation and use a multiplication-based 

approach for division as well. Another way is to use DSP (Digital Signal Processor) slices for 

multiplication using fixed-point arithmetic. Since Verilog does not support any fixed-point 

representation, it considers all the operations as integer operations, and the results need to be scaled 

to get the correct results. 

In our implementation, we opted for floating-point operations available as Intellectual Property 

(IP) cores in Xilinx. IP cores are available through an IP catalog that comes with the Xilinx software. 

Various IP cores can be instantiated in the design as and when required. One major advantage of 

using these IP cores for floating-point operations is that it enables users to optimize the use of DSP 

slices. Moreover, since it works according to the Advanced eXtensible Interface (AXI) protocol, 

better control of the operations is possible, which is discussed in the following text. Once an IP core 

for an operation is generated, it can be used as many times as required by simply instantiating it in 

the design. We used Floating-Point IP Core in XILINX Floating-Point Operator V7.1. The Xilinx 

Floating-Point Operator core enables a range of floating-point arithmetic operations to be performed on 

FPGA. The operation is specified when the core is generated, and each operation has similar interface. 

This core complies with much of the IEEE-754 Standard. Some standards supported are listed as 

below. For this research work, we took binary 32 (single precision format). 

• binary16 (Half Precision Format): 16 bits, with an 11-bit fraction and 5-bit exponent. 

• binary32 (Single Precision Format): 32 bits, with a 24-bit fraction and 8-bit exponent. 

• binary64 (Double Precision Format): 64 bits, with a 53-bit fraction and 11-bit exponent. 

This standard necessitates the results to be accurate to half of one Unit in the Last Place (ULP). 

This Floating-Point Operator enables multiplication, addition/subtraction, fused multiply-add, division, 

square-root, and conversion operators. Thus, multiplication, addition/subtraction, accumulator, fused 

multiply-add, division, and others are used as building blocks for various modules in our design. 

3.2.1. Verilog modules for implementation of repressive networks 

The required floating-point IP cores were configured and generated first and then the modules 

for solving equations and producing outputs were created. The implemented modules were as 

follows: 

• Module fp_add_sub: As the name suggests, this IP Core module can be used to add or 

subtract two floating-point operands in IEEE 754 Single Precision Standard. 

• Module fp_multiply : This module can be used to multiply two single precision 

floating-point numbers. 

• Module fp_mult3 : This module comprises two fp_multiply  modules to enable 

multiplication of 3 floating-point quantities. 

• Module fp_divide: This module enables single precision division. 

• Module fp_mult_add: This module takes three operands as inputs, multiplies the first two, 

and then adds the third one to generate the result. 

3.2.2. Repressive network modules 

Using the modules of different floating-point operators described in the previous subsection, various 

modules are written to implement the ODE solver using Euler’s method. These modules are as follows. 
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• Module dAdt: This module computes d[A]/dt for protein A using (1). This module takes 

the constants and initial values required for calculating differential output at each time step. 

fp_multiply , fp_add_sub , fp_divide  are instantiated multiple times to carry-out the operations 

required. Control of operations is established through handshake signals of AXI4 stream protocol. 

• Module dBdt  (used as dCdt  as well): Similar to d[A]/dt  module but the relevant 

operations and their order is maintained according to the repressive circuit model described in (2) 

through (3) for d[B]/dt and d[C]/dt, respectively. The same module is used to instantiate both 

d[B]/dt as well as d[C]/dt calculations as the working mechanics of proteins B and C are the 

same. 

• Module A_dtxdAdt: This module is for the calculation of new values of protein A used as 

initial value for the next time step. Modules dAdt and fp_mult_add are instantiated with required 

control signals for handshaking purposes. 

• Module B_dtxdBdt: Similar to the module defined above, this is for the computation of 

proteins B and C. Hence, this module is instantiated twice; once for protein B and then for protein C. 

• Module ABC_NW: This is the top module of this design where the concentrations of all the 

three proteins are computed by setting the initial conditions and constants of equations along with the 

provision of keeping the new values at each time step and produced as outputs. The initial values are 

the same as described in Table 1. 

In Figure 2, we present the block diagram illustrating various modules derived from equation (1) 

for protein A. The floating-point operation modules were arranged to enable parallel execution, as 

the resulting values were independent of each other, as shown in equation (1). Once the dependent 

values were computed, the next-stage modules were triggered using control signals generated within 

the architecture. This figure demonstrates the independent initiation and completion of operations for 

numerators and denominators, and the subsequent stages begin execution as soon as all required 

operands become available. To enable computational overlapping, multiple instances of each 

arithmetic operation were instantiated as needed. However, we could also provide the flexibility to 

time-multiplex these modules, optimizing FPGA resource utilization. 

The fp_add_sub module was used to compute [Atotal]-[A], and another instance computes the 

denominator of the first term in equation (1). The numerator’s multiplication operation was executed 

in parallel. Once the numerator and denominator values were obtained, the division was carried out. 

The second term’s numerator involved a three-operand floating-point multiplication of kk1, [A], and 

[C], while the denominator was computed using fp_add_sub to add Kk1 and [A]; these operations 

were initiated simultaneously with the first term’s subtraction. Upon computing the numerator and 

denominator, the second division was performed. A final subtraction between the two computed 

terms yielded dA/dt, which was then multiplied by dt and added to the previous value of [A] to 

update the concentration, stored as accA. Figure 2 shows the A_values at every time step dt. 

Figures 3 and 4 depict the modules B_values and C_values, respectively. Figure 5 provides a 

top-level overview (ABC_NW) that simultaneously calculates A_values, B_values, and C_values, 

thereby fully parallelizing the execution in contrast to the sequential computation of a CPU-based 

realization, illustrated in the flow diagram of Figure 6. This comparison demonstrated that the CPU 

processes the values for proteins [A], [B], and [C], sequentially, using Euler’s method, whereas the 

FPGA implementation parallelizes the computation of all three protein concentrations and the 

independent arithmetic operations within equations (1), (2), and (3). 
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3.2.3. Synthesis results 

All the instantiated modules in the proposed design are illustrated in Figures 7 and 8. Figure 7 

presents the top-level schematic of the ABC_NW module, which implements the system of ODEs 

given in (1)–(3). This module accepts clock, reset, and start signals as inputs and outputs the updated 

concentrations A_new, B_new, and C_new for the three proteins at each simulation step. 

Figure 8 provides an expanded schematic of the A_values instance, highlighting the A_dtxdAdt 

t module, which contains the dAdt  and fp_mult_add  units. The dAdt  module was further 

decomposed into floating-point operation units, namely fp_multiply, fp_add_sub, and fp_divide. 

For completeness, detailed expanded schematics for A_values , B_values , and C_values  are 

included in the supplementary material (Figures S1 and S2), showing the internal arrangement of the 

floating-point operator modules for each protein. 

 

Figure 2. 𝐴_𝑣𝑎𝑙𝑢𝑒𝑠 module block diagram based on floating-point modules according 

to (1) and (6). 

 

Figure 3. 𝐵_𝑣𝑎𝑙𝑢𝑒𝑠 module block diagram based on floating-point modules according 

to (2) and (6). 
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Figure 4. 𝐶_𝑣𝑎𝑙𝑢𝑒𝑠 module block diagram based on floating-point modules according 

to (3) and (6). 

 

Figure 5. Top module 𝐴𝐵𝐶_𝑁𝑊 comprising of 𝐴_𝑣𝑎𝑙𝑢𝑒𝑠, 𝐵_𝑣𝑎𝑙𝑢𝑒𝑠, and 𝐶_𝑣𝑎𝑙𝑢𝑒𝑠. 
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Figure 6. CPU-based realization of a sequential execution of the three loops for proteins 

A, B, and C unlike parallel execution of the new values for the three proteins, as shown 

in Figure 4. 

 

Figure 7. RTL Schematic of the ABC_NW Module. 
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Figure 8. A_values expanded to see instances of the dAdt and fp_mult_add modules. 

3.2.4. Resource utilization 

Figure 9 shows the estimated post-synthesis resource utilization percentage of FPGA resources 

used in the design. Look-Up-Table (LUT) and LUTRAM were the basic resources through which 

FPGA-based design elements were realized. Thus, we observed an adequate percentage of these 

resources estimated to be used in the design. Since we opted for Digital Signal Processor (DSP) slices 

when configuring IP cores to facilitate multiplication and division operations, 10% of DSP slices were 

utilized to optimize the design. Since we latched the concentration values and constants with the design 

modules, we observed 11% percent of flip-flops (FF) also estimated to be used, which was again 

acceptable resource utilization. However, we observed that 32-bit single precision floating-point 

outputs were taxing the IO buffers to 94% but that could be significantly reduced if intermediate values 

were not included in the output interface such as 𝑎𝑐𝑐𝐴, 𝑎𝑐𝑐𝐵, and 𝑎𝑐𝑐𝐶 buses. These buses could be 

used within the design without any loss of information required in the design. Table 2 lists a 

comparison of the resources available and estimated utilization for the Artix 7 FPGA resources in this 

design. 

Table 2. Total number of resources utilized of available resources. 

Resource Estimated number of 

units 

Available 

number of units 

Resource 

utilization % 

LUT 7537 63400 11.89 

LUTRAM 360 19000 1.89 

FF 13990 126800 11.03 

DSP 24 240 10.00 

IO 198 210 94.29 

BUFG 1 32 3.13 
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Figure 9. Percentage of resources used in the design. 

4. Results and discussions 

The comparison between simulation results obtained from MATLAB-based and FPGA-based 

implementations, both in terms of waveform behavior and numerical values, as illustrated in   

Figure 10, yields promising insights. We successfully replicate the dynamic biochemical behavior of 

the three-protein regulatory network. The FPGA implementation, based on IEEE-754 

single-precision floating-point format, produces results with higher numerical precision at each time 

step in contrast to the fixed-point representation employed in the MATLAB simulation. 

Figure 10(a) presents the concentration waveforms of proteins A, B, and C, where the green 

trace denotes A, the blue trace denotes B, and the red trace denotes C. The dynamic interactions 

between the proteins, governed by the ODE system defined in Equations (1)–(3), are visible. The 

evolution of concentrations is parameter-dependent, as defined in Table 1. Notably, an initial increase 

in protein A concentration facilitates a delayed increase in protein B. The concurrent initial 

decrease in protein C permits this rise in A. As B concentration accelerates, it promotes the 

increase of C, which in turn stabilizes and reverses the growth of A, exhibiting a negative feedback 

loop characteristic of the modeled biological circuit. 

The corresponding FPGA-based analog waveforms, captured in Vivado Simulator and shown in 

Figure 10(b), reproduce the same dynamical behavior with high temporal resolution. Again, the 

green, blue, and red traces represent the concentrations of proteins A, B, and C, respectively. The 

analog-style display of digital simulation values was enabled via Vivado’s analog waveform 

visualization settings. This feature supports the broader feasibility of using digital reconfigurable 

platforms to simulate analog biological processes, establishing a viable bridge between 

continuous-time biological models and digital hardware realization. 

The simulation results from the software-based (CPU) implementation extend over a biological 

timescale of 1.5 seconds. In contrast, the FPGA-based realization achieves equivalent system 

dynamics in only 0.3 seconds, demonstrating a 5× acceleration in simulated time. This performance 

gain is depicted in Figure 11(a) and Figure 11(b), which show the MATLAB and FPGA simulation 

timelines, respectively, along with closely matching concentration values. 
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These results not only validate the numerical correctness of our hardware design but also 

confirm its practical viability. The use of floating-point arithmetic via Xilinx’s IP cores, interfaced 

through the AXI protocol, enabled parallel evaluation of ODE terms, significantly improving 

simulation throughput compared to sequential CPU execution. Moreover, the system was 

implemented in a modular fashion to enable scalability. Resource utilization remain within 

acceptable bounds for a Xilinx Artix 7 FPGA, ensuring that the design is feasible on mid-range 

hardware platforms. The use of Euler’s method, selected for its simplicity and low hardware 

overhead, provides a favorable trade-off between numerical efficiency and real-time execution 

constraints. 

Together, these findings underscore the accuracy and feasibility of implementing biologically 

inspired nonlinear ODE systems on reconfigurable digital platforms. The work highlights the 

potential of such FPGA-based architectures in enabling high-speed, resource-efficient simulations of 

biochemical pathways (relevant for real-time embedded systems in synthetic biology and other 

related domains). 

4.1. Statistical analysis of CPU-based and FPGA-based results 

To quantitatively validate the accuracy of the FPGA-based implementation, statistical error 

metrics were computed between the CPU-based and FPGA-based simulation results for protein 

concentrations A, B, and C. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 

were used as indicators of numerical fidelity as depicted in Figure 12(a). To express the FPGA–CPU 

deviations relative to typical concentration magnitudes, we also computed the normalized RMSE 

(NRMSE) using the CPU-based mean concentration as the normalization factor. The NRMSE values 

are 1.35% (Protein A), 1.85% (Protein B), and 1.97% (Protein C), indicating that the FPGA 

implementation reproduces the MATLAB reference with deviations below 2% of the typical 

concentration values. These low percentages confirm the high numerical fidelity of the FPGA-based 

simulation besides significant execution-time improvements. Figure 12(b) illustrates the NMRSE 

values of the three proteins. 

Furthermore, execution time measurements in Figure 12(c) show that the CPU-based simulation 

requires 1.500 s, whereas the FPGA-based implementation completes the same simulation in 0.315 s, 

yielding a 5× acceleration. This performance improvement highlights the suitability of FPGA 

architectures for real-time biochemical network simulation. 
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Figure 10. Simulation Results. (a) Results from MATLAB-based implementation; and (b) 

results from FPGA-based implementation in Vivado Simulator using analog waveform. 

 

Figure 11. Simulation Results. (a) Results from MATLAB-based implementation with 

time scale from 0 to 1.5 seconds; and (b) results from FPGA-based implementation with 

time scale from 0 to 0.3 seconds. 
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Figure 12. Statistical Analysis of CPU-based and FPGA-based results. (a) RMSE and 

MAE for proteins A , B , and C  (CPU-based and FPGA-based simulations); (b) 

NRMSE for proteins A, B, and C; and (c) execution time comparison between CPU 

and FPGA-based simulations. 

5. Conclusion 

In this work, we propose a reconfigurable platform-based hardware realization using 

floating-point IP cores for various arithmetic operations in ordinary differential equations to simulate 

a biological process of soil bacteria. We design our modules to capitalize on the parallelism that can 

be achieved by starting independent arithmetic operations in a single ordinary differential equation 

simultaneously, as well as starting the solution of ordinary differential equations at the same time, in 

contrast to CPU-based algorithms, where solutions are attained sequentially. The AXI protocol 
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enables us to control the start and end of various arithmetic functions. The results are validated 

against CPU-based simulation, and we observe a speed-up of 5 against software-based realization. 

Moreover, the results are more accurate due to single floating-point representation of numbers 

instead of fixed-point representation in software-based implementation. To further strengthen the 

validation, we conduct a rigorous statistical comparison between FPGA- and CPU-based results 

using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Normalized RMSE 

(NRMSE) for all simulated protein concentrations. The low RMSE values (A: 0.09546, B: 0.27655, 

C: 0.23648) and NRMSE values below 2% confirm a close numerical match between the two 

implementations, demonstrating that the hardware realization preserves the accuracy of the original 

simulation. Furthermore, this work can be improved by using Block RAMs (BRAMs) and Ultra 

RAMs (URAMs) for constants, initial values, and intermediate values instead of internal registers, 

thus making the design optimized through parallel implementation techniques. With the techniques 

and resources available on FPGA chips, it is very likely to continue using such platforms, either for 

the actual design or for networking of such designs or for both. 
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