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Abstract: Surface electromyographic (sEMG)-based motion recognition has been successfully 

applied in the exoskeleton, human–machine interaction, and rehabilitation engineering. To improve 

the accuracy of motion recognition and then achieve accurate control of the exoskeleton, this paper is 

devoted to proposing a one-dimensional (1D) convolutional neural network (1D-CNN) to classify 

seven daily lower-limb motions from the eight main muscles of human lower limbs. The proposed 

model architecture mainly consisted of three 1D convolutional layers, three max-pooling layers, and 

one global average pooling layer. The Teager–Kaiser energy operator was adopted for the starting and 

ending points detection of sEMG signals. To avoid overfitting, only two features (i.e., mean absolute 

value (MAV) and root mean square (RMS)) were extracted in this study and used as the input of the 

proposed model. The results show that the accuracy of motion recognition based on our proposed 

model had been improved to more than 97.0 ± 0.8% and was higher than that based on the deep neural 

network (DNN) and support vector machine (SVM) models (95.0 ± 0.6% and 92.8 ± 0.7%). The 

research results and proposed model of this study are significant for research into exoskeleton control 

based on sEMG signals. 
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1. Introduction 

Surface electromyographic (sEMG)-based human motion recognition has been successfully 

applied in the exoskeleton, human–machine interaction, and rehabilitation engineering [1–3]. sEMG 

signals, which contains a lot of information about muscle movement, are a type of physiological signal 

caused by human muscle activity. Since sEMG is a predictor of motion patterns, a common use of 

sEMG signals is to convert the signal into a control signal for an executable command of a device e.g., 

prosthesis or exoskeleton [2]. To control the exoskeleton more accurately, the classification algorithm, 

which is also known as the classifier, is commonly used to recognize human motion patterns and in 

control strategies [4]. 

Currently, several different classifiers have been developed to recognize human motion patterns. 

Zhang et al. [5] established a back-propagation neural network (BPNN) based on the arm sEMG 

signals from seven muscles to discriminate seven classes of arm motions. Asai et al. [6] utilized a 

convolutional neural network (CNN) model based on frequency conversion of sEMG signals to 

estimate four finger motions, including thumb close, thumb open, fingers except thumb close, and 

fingers except thumb open. Crepin et al. [7] classified 13 hand motions on the basis of forearm sEMG 

singles from seven channels using a linear discriminant analysis (LDA) approach. Zhao et al. [8] 

proposed a model based on sEMG signals, which combined convolutional neural networks, 

bidirectional long short-term memory (LSTM) networks, and an attention mechanism, to classify five 

upper limb motions, including static loading-bearing, dynamic load-bearing, mild activity, rapid 

movement, and resting. Zhou et al. [9] established a CNN–Transformer–LSTM (CNN-TL) fusion 

model based on the lower limb sEMG signals from seven muscles to classify four lower limb motions, 

including walking, ascending stairs, descending stairs, and squatting. Shi et al. [10] proposed a scale 

unscented Kalman neural network based on sEMG signals from three lower limb muscles to classify 

five motions, including walking, crossing obstacles, standing up, ascending stairs, and descending 

stairs. In general, most of the current studies focus on the recognition of upper limb motions, while 

there are relatively fewer studies on the recognition of lower limb motions. For lower limb motion 

recognition, the recognition accuracy of current studies is relatively low and the types of recognized 

motions of current studies are relatively limited. 

The sEMG signal is the input of the classifier, which can learn very complex functions and then 

classify the motions. However, the raw sEMG signal contains a lot of useless signal noise. If the raw 

signal is used as the input of the classifier, the efficiency of classification will be reduced. The raw 

sEMG signal has to be preprocessed before being fed into the classifier. Common preprocessing 

processes of sEMG signals include signal filtering, starting and ending detection, and feature extraction. 

The frequency of the raw sEMG signal is 0–500 Hz. However, the available frequency of the sEMG 

signal is dominant between 50 and 150 Hz [11,12]. For signal filtering, band-pass filters, band-stop 

filters, and other filters are used to extract useful frequency bands from the raw sEMG signal. As a 

micro-electric signal, the signal-to-noise ratio (SNR) of the sEMG signal is relatively low. It is difficult 

to make an accurate judgment of the starting time and ending time of muscle movement. The Teager–

Kaiser energy operator (TKEO) method, which amplifies the useful part of the signal while minimizing 
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the noise, can be used in the detection of voice energy [13]. In recent years, it has been used for the 

detection of the starting and ending time of sEMG signals. The TKEO method can improve the SNR 

of the sEMG signal by emphasizing both the amplitude and frequency of motor-unit action potentials. 

Therefore, the accuracy of the starting and ending detection could be improved [14,15]. For feature 

extraction, the computational complexity, maximum class separability, and robustness must be 

considered [16]. The commonly used features include the time-domain and the frequency-domain 

features. For the time-domain features, there are several common features such as the mean absolute 

value (MAV), root mean square (RMS), and variance (VAR), among others [17–19]. For the frequency 

domain, the common features are the coefficients of the wavelet transform (WT) and the short-time 

Fourier transform (STFT) [20,21]. 

To improve the accuracy of motion recognition and then achieve accurate control of the 

exoskeleton, this paper is devoted to (1) proposing a one-dimensional (1D) convolutional neural 

network (1D-CNN) to classify daily lower limb motions from the main lower limb muscles; (2) 

adopting a Teager–Kaiser energy operator to improve the detection accuracy of the starting and ending 

points of the sEMG signals; and (3) improving the recognition accuracy of daily lower limb motions. 

We hypothesized that the proposed model could improve motion recognition accuracy compared with 

the commonly used deep neural network (DNN) algorithm and support vector machine (SVM). 

2. Materials and methods 

2.1. Subject and sEMG data acquisition 

Three healthy men (age: 23 ± 1 years; mass: 67.7 ± 2.5 kg; and height: 176 ± 4 cm) were recruited 

in our study. The recruited subjects had no previous history of lower limb injuries or other 

neuromuscular disease. The study was approved by the Ethics Committee of Honghui Hospital, Xi’an 

Jiaotong University (Registration Number 202309006). Prior to the experiments, the subjects provided 

written informed consent. 

A wireless sEMG acquisition system (Biovision, Germany) was utilized to capture the sEMG 

signal of the lower limbs. The data were sampled at a sampling rate of 1000 Hz. Eight electronics were 

attached to the eight main muscles of the subject’s right lower limb (rectus femoris, vastus medial, 

vastus lateralis, biceps femoris, gastrocnemius medial, gastrocnemius lateralis, soleus, and tibialis 

anterior). Before the test, the subject’s skin below the electronics was prepared by shaving off hair, 

exfoliated, and cleaned with an alcohol swab to improve the electronic–skin contact and minimize skin 

impedance. 

Seven daily motions, namely walking forward, walking back, jogging, going upstairs, going 

downstairs, standing up, and sitting down, were selected in this study. For standing up and sitting  

down, 150 repetitions were utilized. To avoid muscle fatigue, the subject rested for 5 minutes every 15 

trials. For walking forward, jogging, and walking back, the experiment was repeated 30 times on a 10-

m walkway, with a 5-minute break every 10 trials. For going up and down stairs, the number of stairs 

was 12, and the exercise was repeated 30 times, with a 5-minute rest every 10 trials. 

2.2. sEMG preprocessing 

Once the data had been acquired, the sEMG time series were digitally filtered channel-wise. First, 
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an 8th-order band-stop filter (50 Hz) was used to exclude the power line interference, and then an 8th-

order band-pass filter (20–450 Hz) was used to suppress the noise and remove any DC offsets [11,16]. 

Since the TKEO method was adopted in this paper to detect the starting and ending points of the 

filtered signal, the sEMG signal was transformed into a TKEO signal first [22]. The discrete TKEO Ψ 

is calculated by: 

 𝛹[𝑥(𝑛)] = 𝑥2(𝑛) − 𝑥(𝑛 + 1)𝑥(𝑛 − 1) (1) 

where n is the sample number and x is the signal. Then the mean values and variance of the 10-s 

baseline sEMG signal were calculated for each motion, and the threshold of onset detection could be 

obtained by: 

 𝑇𝑖 = 𝜇𝑖 + ℎ𝑖𝑠𝑖 ,      𝑖 = 1, 2, … ,7 (2) 

where h is a preset variable, and μ and s are the mean values and variance, respectively. 

Because the range of signal amplitude for each type of motion was different, the values of Ti were 

calculated separately by Eq. (2). After comparing the sEMG signal amplitude of eight lower limb 

muscles, the rectus femoris was the most active muscle during the seven motions. Therefore, the sEMG 

signals of rectus femoris were used to detect the beginning and ending points. After the sEMG signals 

of seven motions were intercepted, the datasets used for feature extraction could be obtained. 

Due to the need for the Fourier transform, the relatively low real-time performance, and the 

relatively large computational resources, the frequency domain and the time-frequency domain 

features were not suitable for this study. Therefore, the time domain features, which were directly 

obtained from the time series of the sEMG signals, were used for feature extraction. To prevent 

overfitting and minimize computational resource consumption, the two commonly used time domain 

features, i.e., MAV and RMS, were extracted in this study. 

 

MAV =
1

𝑁
∑|𝑥𝑛|

𝑁

𝑛=1

 (3) 

 

RMS = √
1

𝑁
∑(𝑥𝑛)2

𝑁

𝑛=1

 (4) 

where xn is the sEMG signal for each subwindow. 

According to the study of [23], the calculation latency of real-time execution should be less   

than 300 ms to ensure fluidity of movement. Therefore, the time window of this study was set to 256 

ms. As shown in Figure 1, in each 256-ms window, the overlapped subwindow with a 32-ms increment 

and a 128-ms length (overlap) was used to segment the window. The high overlap ratio (75%) was 

adopted to ensure the temporal continuity of the sEMG signals, prevent the loss of transient motion 

features, and achieve an optimal balance between computational efficiency and feature resolution. This 

aligns with previous studies, where a similar overlap ratio was used to ensure recognition     

accuracy [24,25]. The window slid five steps in the data to get five subwindows (128 × 1 vectors). In 

general, two times domain features were extracted from these five subwindows for eight channels 

(eight muscles) to obtain 80 features. 
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Figure 1. Feature extraction process. 

2.3. Algorithm development 

To improve the motion recognition accuracy, a 1D-CNN model was proposed in this study. As 

shown in Figure 2, a total of 80 features were fed into the 1D-CNN. In the model, there were three 1D 

convolutional layers, three max-pooling layers, and one global average pooling layer. Moreover, the 

width of all filter detectors was 10 × 1. The number of feature detectors in each convolutional layer 

was 64, 128, and 256, respectively. The feature detectors slid through the output data of the 1D 

convolutional layers and max-pooling layers with a stride of 1 and 2, respectively. In addition to the 

softmax activation function applied to the last layer (global average pooling layer), the rectified linear 

unit (ReLU) activation function was adopted to the output of each convolutional layer. These activation 

functions were used to help the network acquire nonlinear characteristics, while the pooling functions 

were reflected in the reduction in sampling: retaining significant characteristics, reducing feature 

dimensions, and increasing the receptive field of the detectors. The dropout technique was applied on 

all of the convolutional layers (dropout rate: 0.4). The global average pooling layer was applied as the 

last layer in our proposed algorithm. Compared with the traditional fully connected layer, this last layer 

could enhance the correspondence between feature mapping and category and avoid overfitting in this 

layer [26]. In the layer, a softmax activation function was used to calculate the probability for each 

class. 

To compare the accuracy of lower-limb motion recognition, a DNN model and an SVM model 

were constructed. For the DNN, the model with five hidden layers was adopted (see Figure 3). The 

input layer accepted 80 features, and the last hidden layer ran a softmax activation function to output 

the probability of seven classes of movement. The node number of each hidden layer            

was 512, 256, 128, 64, and 32, respectively. For the output of each hidden layer, the ReLU activation 

function was adopted. The dropout technique was applied on all hidden layers (dropout rate: 0.4). 

For the SVM, the kernel function (K) was set as the radial basis function (RBF) and can be 

calculated by: 

 
𝐾(𝑥, 𝑥𝑖) = 𝑒

−
||𝑥−𝑥𝑖||

2𝜎2  (5) 
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where xi is a support vector (SV). To make the SVM computationally very efficient, the number of 

SVs is considerably lower than the number of training samples in our study. The SVM included two 

parameters: C and γ. C reflects the penalty coefficient of the model to the error. The larger the C, the 

easier the model is to overfit. Here, γ is the coefficient of the kernel, which reflects the distribution of 

data mapping to higher-dimensional feature spaces. The larger the γ, the more the SVs, and vice versa. 

The grid search method was used to traverse the values of C and γ to find the optimal values. Eight 

values of C and γ were set from 1 to 100,000, increasing by a factor of 10. Then these values were 

paired with each other. Finally, it was found that the accuracy was highest when γ was 1 and C     

was 1000. 

 

Figure 2. The architecture of the 1D-CNN. 

 

Figure 3. The architecture of the DNN. 
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2.4. Model Training and Evaluating 

In this study, the dataset was divided into training and test sets, with a split rate of 4:1. Before 

feeding the data into the three models, random shuffling was implemented for this matrix. Next, the 

data were normalized by using the following normalization algorithm to avoid dilution of the 

effectiveness of lower-scale features in dealing with different-scale features: 

 
𝜈’ =

𝜈 − 𝑚𝑖𝑛(𝐴)

𝑚𝑎𝑥(𝐴) − 𝑚𝑖𝑛(𝐴)
 (6) 

where A is an input matrix, and ν′ and ν are the new and old values of the matrix, respectively. 

For the 1D-CNN and DNN, the weights with random values should be initialized in a normal 

distribution. In this study, the Adam optimizer was chosen to update the weights [27]. The training 

epoch, batch size, and learning rate were set as 2000, 800, and 0.001, respectively. The loss function 

was used to evaluate the model’s performance in training. To minimize the loss, the gradient of the 

loss variation was back-propagated and used to update the weights. In our study, the categorical cross-

entropy was selected to calculate the gap between the model output and the true label, which could be 

calculated by: 

 

𝐶𝐸(𝑥) = − ∑ 𝑦𝑖

𝐶

𝑖=1

𝑙𝑜𝑔𝑓𝑖(𝑥) (7) 

where C denotes the categorical number (C equals 7 in our study), y is the expected output, and f(x) is 

the model output and can be calculated by the activation function of x. Since the batch size samples 

are fed into the model, the average of the cross entropy is 

 
𝐶𝐸(𝑥)𝑓𝑖𝑛𝑎𝑙 =

∑ 𝐶𝐸(𝑥𝑏)𝑁
𝑏=1

𝑁
 (8) 

where N is the batch size and is set to 800. 

3. Results 

After finishing the feature extraction, the sEMG data were organized in a 4109 × 80 matrix (each 

row of the matrix was made up of 80 features). The dataset was divided into two parts: the training set 

and test set. To avoid uneven distribution of the test set, a five-fold cross-validation was applied in 

model training. The dataset was divided into training and test sets, with a split rate of 4:1. In our case, 

the training and test sets were 3288 × 80 and 821 × 80, respectively. For comparing the predicted 

results of lower limb motion recognition based on the 1D-CNN, DNN, and SVM models, both models 

were fed the same data, which had been preprocessed in the same way. 

Figure 4 shows the confusion matrices of one fold in the five-fold cross-validation, which were 

the results of the recognition of seven daily motions based on the 1D-CNN, DNN, and SVM methods, 

respectively. Based on the confusion matrices, the precision, recall, F1-score, and accuracy were 

obtained (see Table 1). The results showed that the precision (1D-CNN: 97.5 ± 0.7; DNN: 95.5 ± 1.1; 

SVM: 93.8 ± 3.1, P < 0.05), recall (1D-CNN: 97.7 ± 0.9; DNN: 95.0 ± 3.5; SVM: 93.4 ± 2.9,        

P < 0.05), and F1-score (1D-CNN: 97.6 ± 0.6; DNN: 95.3 ± 2.2; SVM: 93.6 ± 2.2, P < 0.05) based on 
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the 1D-CNN model were significantly higher than that based on the DNN and SVM model. Moreover, 

the accuracy of motion recognition based on our proposed 1D-CNN model improved to more     

than 97.7% and was higher than that based on the DNN and SVM model (95.5% and 93.7%, 

respectively). 

Table 2 presents the precision, recall, F1-score, and accuracy of the five-fold cross-validation for 

recognition of all of the seven daily motions. Our proposed 1D-CNN model achieved consistent 

performance metrics, with a precision of 97.1 ± 0.6% (range: 96.5–98.0%), a recall of 96.9 ± 0.9% 

(range: 96.1–98.0%), a F1-score of 97.0 ± 0.8% (range: 96.3–98.0%), and an accuracy of 97.0 ± 0.8% 

(range: 96.3–98.1%). In addition, the precision, recall, F1-score, and accuracy of the five-fold cross-

validation based on our proposed 1D-CNN model were all significantly improved compared with those 

based on DNN (precision: 95.0 ± 0.6%; recall: 94.6 ± 0.6%; F1-score: 94.8 ± 0.6%;         

accuracy: 95.0 ± 0.6%) and SVM (precision: 92.9 ± 0.7%; recall: 92.5 ± 0.8%; F1-score: 92.7 ± 0.7%; 

accuracy: 92.8 ± 0.7%) models (P < 0.05). 

Moreover, the operating environment of all of the models was an Intel i7-10700 CPU @ 2.90 

GHz, GTX-1660 GPU, and 16 GB RAM. To evaluate the real-time feasibility of the methods, the 

actual online computational costs were measured. The total preprocessing time, including single 

filtering, starting and ending detection, and feature extraction time, was 7.4 s. The model training time 

for 1D-CNN, DNN, and SVM was 4421 s, 2123 s, and 75 s, respectively. The model testing time for 

1D-CNN, DNN, and SVM was 82 ms, 59 ms, and 0.4 ms, respectively. 

 

Figure 4. The confusion matrices for recognition of seven daily motions based on the 1D-

CNN, DNN, and SVM models (one fold’s results in the five-fold cross-validation; the 

training and test sets were 3288 × 80 and 821 × 80, respectively). 
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Table 1. Comparison of the precision, recall, F1-score, and accuracy of lower limb motion recognition 

based on the 1D-CNN, DNN, and SVM models (one fold’s result in the five-fold cross-validation; the 

training and test sets were 3288 × 80 and 821 × 80, respectively). 

  
Sitting 

down 

Walking 

back 
Jogging 

Going 

upstairs 

Standing 

up 

Walking 

forward 

Going 

downstairs 

Average ± 

SD 

1D-CNN 

Precision 97.3 98.9 96.5 97.5 97.1 97.6 97.5 97.5 ± 0.7 

Recall 97.3 97.4 97.6 99.2 96.2 97.6 98.3 97.7 ± 0.9 

F1-score 97.3 98.2 97.1 98.3 96.7 97.6 97.9 97.6 ± 0.6 

Accuracy 97.7 

DNN 

Precision 94.2 94.9 96.4 95.8 95.3 94.6 97.5 95.5 ± 1.1 

Recall 87.8 95.9 95.3 95.0 95.3 96.9 99.1 95.0 ± 3.5 

F1-score 90.9 95.4 95.9 95.4 95.3 95.7 98.3 95.3 ± 2.2 

Accuracy 95.5 

SVM 

Precision 92.9 91.4 90.0 97.4 96.1 91.7 97.4 93.8 ± 3.1 

Recall 87.8 93.3 95.3 93.3 92.5 95.3 96.6 93.4 ± 2.9 

F1-score 90.3 92.3 92.6 95.3 94.2 93.4 97.0 93.6 ± 2.2 

Accuracy 93.7 

Table 2. Comparison of the precision, recall, F1-score, and accuracy of lower limb motion recognition 

based on the 1D-CNN, DNN, and SVM models for the five-fold cross-validation. 

 1D-CNN DNN SVM 

Fold 1 2 3 4 5 Mean ± SD 1 2 3 4 5 Mean ± SD 1 2 3 4 5 Mean ± SD 

Precision 97.5 98.0 96.7 96.5 96.7 97.1 ± 0.6 95.5 95.4 94.6 94.1 95.4 95.0 ± 0.6 93.8 93.4 92.7 91.9 92.8 92.9 ± 0.7 

Recall 97.7 98.0 96.3 96.1 96.4 96.9 ± 0.9 95.0 95.2 94.1 93.8 94.9 94.6 ± 0.6 93.4 93.1 92.2 91.5 92.3 92.5 ± 0.8 

F1-score 97.6 98.0 96.5 96.3 96.5 97.0 ± 0.8 95.3 95.3 94.3 94.0 95.1 94.8 ± 0.6 93.6 93.2 92.4 91.7 92.5 92.7 ± 0.7 

Accuracy 97.7 98.1 96.5 96.3 96.6 97.0 ± 0.8 95.5 95.4 94.5 94.2 95.2 95.0 ± 0.6 93.7 93.4 92.6 91.8 92.6 92.8 ± 0.7 

4. Discussion 

A 1D-CNN model was proposed in this study to recognize seven daily motions based on the eight-

channel sEMG signals obtained from the eight main muscles of the human lower limbs. The results 

show that the proposed 1D-CNN had higher motion recognition accuracy than the traditional SVM 

and DNN models. 

Compared with the DNN and SVM models, the proposed 1D-CNN model can significantly 

enhance the nonlinearity of neural networks, and then learn more complex functions like the 

transformation from sEMG signals to lower limb motions. Thus, the motion recognition accuracy 

based on the proposed 1D-CNN model was higher than that based on the DNN and SVM models. 

However, because of the more complex model structure and increased model parameters, the training 

time of 1D-CNN was longer than that of the DNN and SVM models. Through the convolutional and 

pooling operations, the 1D-CNN model can represent the local characteristics. In our study, three 
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convolutional layers and three pooling layers were constructed in our proposed 1D-CNN model. The 

more convolutional layer and pooling layers, the higher the accuracy of motion recognition and the 

longer the training time of the neural network. Therefore, the accuracy and time consumption should 

be weighed on a case-by-case basis. 

In this study, the TKEO method was applied for the detection of the starting and ending points of 

the sEMG signals. Delayed or early detection of muscle activation may lead to misclassification of 

movements. Due to the small amount of computation and ease of implementation, the TKEO method 

is suitable for the detection of the starting and ending points of the sEMG signals. The MAV and RMS 

were extracted as features to input into the proposed model. We all know that the more features 

extracted, the higher the accuracy of motion recognition. However, an increase in the number of 

features leads to an increase in the amount of computation and the input dimensions of the model. A 

compromise must be made between computation and accuracy. 

At present, there are some studies that have classified more than three lower limb motions based 

on sEMG signals from lower limb muscles. Zhou et al. [9] classified four lower limb motions, 

including walking, going upstairs, going downstairs, and squatting, using a CNN–Transformer–LSTM 

(CNN-TL) fusion model, achieving an accuracy of 96.13%. Shi et al. [10] employed a scale unscented 

Kalman neural network to recognize five lower limb motions, including walking, crossing obstacles, 

standing up, going upstairs, and going downstairs, with an accuracy of 93.7%. Gautam et al. [28] 

applied a long-term recurrent convolution network (LRCN) to classify three lower limb motions, 

including walking, sitting down, and standing up, achieving an accuracy of 98.1%. Tu et al. [18] 

utilized an improved SVM model to distinguish three lower limb motions, including walking, standing, 

and sitting, with an accuracy of 96.03%. Furthermore, some studies have combined sEMG signal with 

accelerometer signals to classify lower limb motions. Hao et al. [29] recognized five lower limb 

motions, including walking, going upstairs, going downstairs, walking upslope, and walking 

downslope, based on combining sEMG and three-axis acceleration signals, using a two-stream hidden 

Markov model. The accuracy of motion recognition in their study was 94.3%. Ai et al. [30] classified 

five lower limb motions, including walking, going upstairs, going downstairs, standing, and squatting 

based on the sEMG and accelerometer signals. Based on the SVM model, the accuracy of motion 

recognition achieved was 98.1%. Compared with the above studies, our study employed the sEMG 

signal as the sole signal to classify up to seven lower limb motions, with our proposed 1D-CNN model 

achieving an exceptional classification accuracy of 97.0 ± 0.8%. 

A number of limitations associated with this study are worth discussing. Firstly, the SNR of the 

sEMG signal is relatively low for the current sEMG acquisition devices. With the development of 

acquisition devices, the motion recognition accuracy of the proposed model can be further improved. 

Secondly, only three healthy men were recruited in this study. In order to further improve the 

generalization performance, larger cross-subject experiments will be conducted in our next work. 

Thirdly, a high window overlap (75%) was adopted in this study. Although high window overlap may 

introduce local similarity between adjacent samples, our classification accuracy demonstrates that the 

retained dynamic features outweigh any potential redundancy. In future work, we will further optimize 

the window parameters for specific motion types. Finally, only seven daily motions, i.e., walking 

forward, walking back, jogging, going upstairs, gping downstairs, standing up, and sitting down, were 

selected in our study. More daily motions, e.g., squatting, walking uphill, walking downhill, etc., will 

be used for motion recognition in the future. 

The purpose of sEMG-based lower limb motion recognition is to achieve accurate control of an 
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exoskeleton. Our next work will be focused on the application of the proposed method to the control 

of an exoskeleton. The research results and proposed model of this study are significant for research 

into exoskeleton control based on sEMG signals. 

5. Conclusion 

In this study, we proposed a 1D-CNN model to recognize seven daily motions, i.e., walking 

forward, walking back, jogging, sitting down, standing up, going upstairs, and going downstairs, based 

on the sEMG signals obtained from eight lower limb muscles, i.e, rectus femoris, vastus medial, vastus 

lateralis, biceps femoris, gastrocnemius medial, gastrocnemius lateralis, soleus, and tibialis anterior. 

The proposed model architecture mainly consisted of three 1D convolutional layers, three max-pooling 

layers, and one global average pooling layer. The TKEO method was applied for the detection of the 

starting and ending points of the sEMG signals. The MAV and RMS were extracted as the features to 

input into the proposed model. The results showed that the proposed 1D-CNN had higher motion 

recognition accuracy (97.0 ± 0.8%) than the DNN (95.0 ± 0.6%) and SNM (92.8 ± 0.7%) models. This 

study has significant implications for research into exoskeleton control based on sEMG signals. 
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