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Abstract: Surface electromyographic (sEMG)-based motion recognition has been successfully
applied in the exoskeleton, human—machine interaction, and rehabilitation engineering. To improve
the accuracy of motion recognition and then achieve accurate control of the exoskeleton, this paper is
devoted to proposing a one-dimensional (1D) convolutional neural network (1D-CNN) to classify
seven daily lower-limb motions from the eight main muscles of human lower limbs. The proposed
model architecture mainly consisted of three 1D convolutional layers, three max-pooling layers, and
one global average pooling layer. The Teager—Kaiser energy operator was adopted for the starting and
ending points detection of SEMG signals. To avoid overfitting, only two features (i.e., mean absolute
value (MAV) and root mean square (RMS)) were extracted in this study and used as the input of the
proposed model. The results show that the accuracy of motion recognition based on our proposed
model had been improved to more than 97.0 + 0.8% and was higher than that based on the deep neural
network (DNN) and support vector machine (SVM) models (95.0 = 0.6% and 92.8 £+ 0.7%). The
research results and proposed model of this study are significant for research into exoskeleton control
based on sSEMG signals.
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1. Introduction

Surface electromyographic (SEMG)-based human motion recognition has been successfully
applied in the exoskeleton, human—machine interaction, and rehabilitation engineering [1-3]. sSEMG
signals, which contains a lot of information about muscle movement, are a type of physiological signal
caused by human muscle activity. Since SEMG is a predictor of motion patterns, a common use of
sEMG signals is to convert the signal into a control signal for an executable command of a device e.g.,
prosthesis or exoskeleton [2]. To control the exoskeleton more accurately, the classification algorithm,
which is also known as the classifier, is commonly used to recognize human motion patterns and in
control strategies [4].

Currently, several different classifiers have been developed to recognize human motion patterns.
Zhang et al. [5] established a back-propagation neural network (BPNN) based on the arm sEMG
signals from seven muscles to discriminate seven classes of arm motions. Asai et al. [6] utilized a
convolutional neural network (CNN) model based on frequency conversion of sSEMG signals to
estimate four finger motions, including thumb close, thumb open, fingers except thumb close, and
fingers except thumb open. Crepin et al. [7] classified 13 hand motions on the basis of forearm SEMG
singles from seven channels using a linear discriminant analysis (LDA) approach. Zhao et al. [8]
proposed a model based on sEMG signals, which combined convolutional neural networks,
bidirectional long short-term memory (LSTM) networks, and an attention mechanism, to classify five
upper limb motions, including static loading-bearing, dynamic load-bearing, mild activity, rapid
movement, and resting. Zhou et al. [9] established a CNN-Transformer—-LSTM (CNN-TL) fusion
model based on the lower limb SEMG signals from seven muscles to classify four lower limb motions,
including walking, ascending stairs, descending stairs, and squatting. Shi et al. [10] proposed a scale
unscented Kalman neural network based on sSEMG signals from three lower limb muscles to classify
five motions, including walking, crossing obstacles, standing up, ascending stairs, and descending
stairs. In general, most of the current studies focus on the recognition of upper limb motions, while
there are relatively fewer studies on the recognition of lower limb motions. For lower limb motion
recognition, the recognition accuracy of current studies is relatively low and the types of recognized
motions of current studies are relatively limited.

The sEMG signal is the input of the classifier, which can learn very complex functions and then
classify the motions. However, the raw SEMG signal contains a lot of useless signal noise. If the raw
signal is used as the input of the classifier, the efficiency of classification will be reduced. The raw
sEMG signal has to be preprocessed before being fed into the classifier. Common preprocessing
processes of SEMG signals include signal filtering, starting and ending detection, and feature extraction.
The frequency of the raw sSEMG signal is 0-500 Hz. However, the available frequency of the SEMG
signal is dominant between 50 and 150 Hz [11,12]. For signal filtering, band-pass filters, band-stop
filters, and other filters are used to extract useful frequency bands from the raw sSEMG signal. As a
micro-electric signal, the signal-to-noise ratio (SNR) of the SEMG signal is relatively low. It is difficult
to make an accurate judgment of the starting time and ending time of muscle movement. The Teager—
Kaiser energy operator (TKEO) method, which amplifies the useful part of the signal while minimizing
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the noise, can be used in the detection of voice energy [13]. In recent years, it has been used for the
detection of the starting and ending time of SEMG signals. The TKEO method can improve the SNR
of the sSEMG signal by emphasizing both the amplitude and frequency of motor-unit action potentials.
Therefore, the accuracy of the starting and ending detection could be improved [14,15]. For feature
extraction, the computational complexity, maximum class separability, and robustness must be
considered [16]. The commonly used features include the time-domain and the frequency-domain
features. For the time-domain features, there are several common features such as the mean absolute
value (MAV), root mean square (RMS), and variance (VAR), among others [ 17—19]. For the frequency
domain, the common features are the coefficients of the wavelet transform (WT) and the short-time
Fourier transform (STFT) [20,21].

To improve the accuracy of motion recognition and then achieve accurate control of the
exoskeleton, this paper is devoted to (1) proposing a one-dimensional (1D) convolutional neural
network (ID-CNN) to classify daily lower limb motions from the main lower limb muscles; (2)
adopting a Teager—Kaiser energy operator to improve the detection accuracy of the starting and ending
points of the SEMG signals; and (3) improving the recognition accuracy of daily lower limb motions.
We hypothesized that the proposed model could improve motion recognition accuracy compared with
the commonly used deep neural network (DNN) algorithm and support vector machine (SVM).

2. Materials and methods
2.1. Subject and sEMG data acquisition

Three healthy men (age: 23 £ 1 years; mass: 67.7 + 2.5 kg; and height: 176 + 4 cm) were recruited
in our study. The recruited subjects had no previous history of lower limb injuries or other
neuromuscular disease. The study was approved by the Ethics Committee of Honghui Hospital, Xi’an
Jiaotong University (Registration Number 202309006). Prior to the experiments, the subjects provided
written informed consent.

A wireless SEMG acquisition system (Biovision, Germany) was utilized to capture the sSEMG
signal of the lower limbs. The data were sampled at a sampling rate of 1000 Hz. Eight electronics were
attached to the eight main muscles of the subject’s right lower limb (rectus femoris, vastus medial,
vastus lateralis, biceps femoris, gastrocnemius medial, gastrocnemius lateralis, soleus, and tibialis
anterior). Before the test, the subject’s skin below the electronics was prepared by shaving off hair,
exfoliated, and cleaned with an alcohol swab to improve the electronic—skin contact and minimize skin
impedance.

Seven daily motions, namely walking forward, walking back, jogging, going upstairs, going
downstairs, standing up, and sitting down, were selected in this study. For standing up and sitting
down, 150 repetitions were utilized. To avoid muscle fatigue, the subject rested for 5 minutes every 15
trials. For walking forward, jogging, and walking back, the experiment was repeated 30 times on a 10-
m walkway, with a 5-minute break every 10 trials. For going up and down stairs, the number of stairs
was 12, and the exercise was repeated 30 times, with a 5-minute rest every 10 trials.

2.2. sSEMG preprocessing

Once the data had been acquired, the SEMG time series were digitally filtered channel-wise. First,
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an 8™-order band-stop filter (50 Hz) was used to exclude the power line interference, and then an 8-
order band-pass filter (20—450 Hz) was used to suppress the noise and remove any DC offsets [11,16].

Since the TKEO method was adopted in this paper to detect the starting and ending points of the
filtered signal, the SEMG signal was transformed into a TKEO signal first [22]. The discrete TKEO ¥
is calculated by:

Y[x(m)] =x*(n) —x(n+ Dx(n—1) (1)

where n is the sample number and x is the signal. Then the mean values and variance of the 10-s
baseline sSEMG signal were calculated for each motion, and the threshold of onset detection could be
obtained by:

Ti = U; + hiSi ) i = 1, 2, ,7 (2)

where 4 is a preset variable, and ¢ and s are the mean values and variance, respectively.

Because the range of signal amplitude for each type of motion was different, the values of T were
calculated separately by Eq. (2). After comparing the sSEMG signal amplitude of eight lower limb
muscles, the rectus femoris was the most active muscle during the seven motions. Therefore, the SEMG
signals of rectus femoris were used to detect the beginning and ending points. After the SEMG signals
of seven motions were intercepted, the datasets used for feature extraction could be obtained.

Due to the need for the Fourier transform, the relatively low real-time performance, and the
relatively large computational resources, the frequency domain and the time-frequency domain
features were not suitable for this study. Therefore, the time domain features, which were directly
obtained from the time series of the SEMG signals, were used for feature extraction. To prevent
overfitting and minimize computational resource consumption, the two commonly used time domain
features, i.e., MAV and RMS, were extracted in this study.

N
1
MAV = =[x, 3)
n=1

RMS = 4)

where x» 1s the SEMG signal for each subwindow.

According to the study of [23], the calculation latency of real-time execution should be less
than 300 ms to ensure fluidity of movement. Therefore, the time window of this study was set to 256
ms. As shown in Figure 1, in each 256-ms window, the overlapped subwindow with a 32-ms increment
and a 128-ms length (overlap) was used to segment the window. The high overlap ratio (75%) was
adopted to ensure the temporal continuity of the SEMG signals, prevent the loss of transient motion
features, and achieve an optimal balance between computational efficiency and feature resolution. This
aligns with previous studies, where a similar overlap ratio was used to ensure recognition
accuracy [24,25]. The window slid five steps in the data to get five subwindows (128 x 1 vectors). In
general, two times domain features were extracted from these five subwindows for eight channels
(eight muscles) to obtain 80 features.
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Figure 1. Feature extraction process.
2.3. Algorithm development

To improve the motion recognition accuracy, a 1D-CNN model was proposed in this study. As
shown in Figure 2, a total of 80 features were fed into the 1D-CNN. In the model, there were three 1D
convolutional layers, three max-pooling layers, and one global average pooling layer. Moreover, the
width of all filter detectors was 10 x 1. The number of feature detectors in each convolutional layer
was 64, 128, and 256, respectively. The feature detectors slid through the output data of the 1D
convolutional layers and max-pooling layers with a stride of 1 and 2, respectively. In addition to the
softmax activation function applied to the last layer (global average pooling layer), the rectified linear
unit (ReLU) activation function was adopted to the output of each convolutional layer. These activation
functions were used to help the network acquire nonlinear characteristics, while the pooling functions
were reflected in the reduction in sampling: retaining significant characteristics, reducing feature
dimensions, and increasing the receptive field of the detectors. The dropout technique was applied on
all of the convolutional layers (dropout rate: 0.4). The global average pooling layer was applied as the
last layer in our proposed algorithm. Compared with the traditional fully connected layer, this last layer
could enhance the correspondence between feature mapping and category and avoid overfitting in this
layer [26]. In the layer, a softmax activation function was used to calculate the probability for each
class.

To compare the accuracy of lower-limb motion recognition, a DNN model and an SVM model
were constructed. For the DNN, the model with five hidden layers was adopted (see Figure 3). The
input layer accepted 80 features, and the last hidden layer ran a softmax activation function to output
the probability of seven classes of movement. The node number of each hidden Ilayer
was 512, 256, 128, 64, and 32, respectively. For the output of each hidden layer, the ReLU activation
function was adopted. The dropout technique was applied on all hidden layers (dropout rate: 0.4).

For the SVM, the kernel function (K) was set as the radial basis function (RBF) and can be
calculated by:

_lx=xil

K(x,x;) =e 202 (5)
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where x; is a support vector (SV). To make the SVM computationally very efficient, the number of
SVs is considerably lower than the number of training samples in our study. The SVM included two
parameters: C and y. C reflects the penalty coefficient of the model to the error. The larger the C, the
easier the model is to overfit. Here, y is the coefficient of the kernel, which reflects the distribution of
data mapping to higher-dimensional feature spaces. The larger the y, the more the SVs, and vice versa.
The grid search method was used to traverse the values of C and y to find the optimal values. Eight
values of C and y were set from 1 to 100,000, increasing by a factor of 10. Then these values were
paired with each other. Finally, it was found that the accuracy was highest when y was 1 and C
was 1000.
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Figure 2. The architecture of the ID-CNN.
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Figure 3. The architecture of the DNN.
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2.4. Model Training and Evaluating

In this study, the dataset was divided into training and test sets, with a split rate of 4:1. Before
feeding the data into the three models, random shuffling was implemented for this matrix. Next, the
data were normalized by using the following normalization algorithm to avoid dilution of the
effectiveness of lower-scale features in dealing with different-scale features:

, _ v—min(4)
V' T max(4) — min(4)

(6)

where A4 is an input matrix, and v’ and v are the new and old values of the matrix, respectively.

For the 1D-CNN and DNN, the weights with random values should be initialized in a normal
distribution. In this study, the Adam optimizer was chosen to update the weights [27]. The training
epoch, batch size, and learning rate were set as 2000, 800, and 0.001, respectively. The loss function
was used to evaluate the model’s performance in training. To minimize the loss, the gradient of the
loss variation was back-propagated and used to update the weights. In our study, the categorical cross-
entropy was selected to calculate the gap between the model output and the true label, which could be
calculated by:

Cc
CE@) = = ) yiloghi(x) ™

where C denotes the categorical number (C equals 7 in our study), y is the expected output, and f(x) is
the model output and can be calculated by the activation function of x. Since the batch size samples
are fed into the model, the average of the cross entropy is

_ Zb=1 CE(x")

CE (x)final - N (8)

where N is the batch size and is set to 800.
3. Results

After finishing the feature extraction, the SEMG data were organized in a 4109 x 80 matrix (each
row of the matrix was made up of 80 features). The dataset was divided into two parts: the training set
and test set. To avoid uneven distribution of the test set, a five-fold cross-validation was applied in
model training. The dataset was divided into training and test sets, with a split rate of 4:1. In our case,
the training and test sets were 3288 x 80 and 821 x 80, respectively. For comparing the predicted
results of lower limb motion recognition based on the 1D-CNN, DNN, and SVM models, both models
were fed the same data, which had been preprocessed in the same way.

Figure 4 shows the confusion matrices of one fold in the five-fold cross-validation, which were
the results of the recognition of seven daily motions based on the ID-CNN, DNN, and SVM methods,
respectively. Based on the confusion matrices, the precision, recall, F1-score, and accuracy were
obtained (see Table 1). The results showed that the precision (1D-CNN: 97.5 + 0.7; DNN: 95.5 + 1.1;
SVM: 93.8 + 3.1, P < 0.05), recall (ID-CNN: 97.7 + 0.9; DNN: 95.0 + 3.5; SVM: 93.4 + 2.9,
P <0.05), and F1-score (1D-CNN: 97.6 + 0.6; DNN: 95.3 £ 2.2; SVM: 93.6 £ 2.2, P <0.05) based on
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the 1D-CNN model were significantly higher than that based on the DNN and SVM model. Moreover,
the accuracy of motion recognition based on our proposed 1D-CNN model improved to more
than 97.7% and was higher than that based on the DNN and SVM model (95.5% and 93.7%,
respectively).

Table 2 presents the precision, recall, F1-score, and accuracy of the five-fold cross-validation for
recognition of all of the seven daily motions. Our proposed 1D-CNN model achieved consistent
performance metrics, with a precision of 97.1 = 0.6% (range: 96.5-98.0%), a recall of 96.9 £ 0.9%
(range: 96.1-98.0%), a F1-score of 97.0 = 0.8% (range: 96.3-98.0%), and an accuracy of 97.0 + 0.8%
(range: 96.3-98.1%). In addition, the precision, recall, F1-score, and accuracy of the five-fold cross-
validation based on our proposed 1D-CNN model were all significantly improved compared with those
based on DNN (precision: 95.0 £+ 0.6%; recall: 94.6 + 0.6%; Fl-score: 94.8 = 0.6%;
accuracy: 95.0 £ 0.6%) and SVM (precision: 92.9 + 0.7%; recall: 92.5 + 0.8%; F1-score: 92.7 = 0.7%;
accuracy: 92.8 + 0.7%) models (P < 0.05).

Moreover, the operating environment of all of the models was an Intel 17-10700 CPU @ 2.90
GHz, GTX-1660 GPU, and 16 GB RAM. To evaluate the real-time feasibility of the methods, the
actual online computational costs were measured. The total preprocessing time, including single
filtering, starting and ending detection, and feature extraction time, was 7.4 s. The model training time
for ID-CNN, DNN, and SVM was 4421 s, 2123 s, and 75 s, respectively. The model testing time for
1D-CNN, DNN, and SVM was 82 ms, 59 ms, and 0.4 ms, respectively.

1D-CNN DNN
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Figure 4. The confusion matrices for recognition of seven daily motions based on the 1D-
CNN, DNN, and SVM models (one fold’s results in the five-fold cross-validation; the
training and test sets were 3288 x 80 and 821 x 80, respectively).
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Table 1. Comparison of the precision, recall, F1-score, and accuracy of lower limb motion recognition
based on the 1D-CNN, DNN, and SVM models (one fold’s result in the five-fold cross-validation; the
training and test sets were 3288 x 80 and 821 x 80, respectively).

Sitting Walking ) Going Standing Walking Going Average +
down back foaging upstairs up forward downstairs  SD
Precision 97.3 98.9 96.5 97.5 97.1 97.6 97.5 97.5+0.7
Recall 97.3 97.4 97.6 99.2 96.2 97.6 98.3 97.7+0.9
1D-CNN Fl-score 97.3 98.2 97.1 98.3 96.7 97.6 97.9 97.6 +0.6
Accuracy  97.7
Precision  94.2 94.9 96.4 95.8 95.3 94.6 97.5 955+ 1.1
Recall 87.8 95.9 95.3 95.0 95.3 96.9 99.1 95.0+3.5
PN Fl-score 90.9 95.4 95.9 95.4 95.3 95.7 98.3 953+2.2
Accuracy  95.5
Precision ~ 92.9 91.4 90.0 97.4 96.1 91.7 97.4 93.8+3.1
Recall 87.8 93.3 95.3 93.3 92.5 95.3 96.6 934+29
SVM Fl-score 90.3 92.3 92.6 95.3 94.2 93.4 97.0 93.6+2.2

Accuracy  93.7

Table 2. Comparison of the precision, recall, F1-score, and accuracy of lower limb motion recognition
based on the 1D-CNN, DNN, and SVM models for the five-fold cross-validation.

1D-CNN DNN SVM

Fold 1 5 3 4 5 Mean+SDI 2 3 4 5 Men+SDI 2 3 4 5 Mean+SD
Precision 97.5 98.0 96.7 96.5 96.7 97.1+0.6 95.5 954 94.6 94.1 95.4 95.0+0.6 93.8 93.4 92.7 91.9 92.8 92.9+0.7
Recall 977 98.0 963 96.1 964 96.9+0.9 95.0 952 94.1 93.8 94.9 94.6+0.6 93.4 93.1 922 91.5 923 92.5+0.8
Fl-score 97.6 98.0 96.5 96.3 96.5 97.0+0.8 953 953 94.3 94.0 95.1 94.8+0.6 93.6 93.2 92.4 91.7 92.5 92.7+0.7

Accuracy 97.7 98.1 96.5 96.3 96.6 97.0+0.8 95.5 954 945 942 952 95.0+0.6 93.7 934 92.6 91.8 92.6 92.8 +0.7

4. Discussion

A 1D-CNN model was proposed in this study to recognize seven daily motions based on the eight-
channel SEMG signals obtained from the eight main muscles of the human lower limbs. The results
show that the proposed 1D-CNN had higher motion recognition accuracy than the traditional SVM
and DNN models.

Compared with the DNN and SVM models, the proposed 1D-CNN model can significantly
enhance the nonlinearity of neural networks, and then learn more complex functions like the
transformation from sSEMG signals to lower limb motions. Thus, the motion recognition accuracy
based on the proposed 1D-CNN model was higher than that based on the DNN and SVM models.
However, because of the more complex model structure and increased model parameters, the training
time of 1D-CNN was longer than that of the DNN and SVM models. Through the convolutional and
pooling operations, the 1D-CNN model can represent the local characteristics. In our study, three
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convolutional layers and three pooling layers were constructed in our proposed 1D-CNN model. The
more convolutional layer and pooling layers, the higher the accuracy of motion recognition and the
longer the training time of the neural network. Therefore, the accuracy and time consumption should
be weighed on a case-by-case basis.

In this study, the TKEO method was applied for the detection of the starting and ending points of
the SEMG signals. Delayed or early detection of muscle activation may lead to misclassification of
movements. Due to the small amount of computation and ease of implementation, the TKEO method
is suitable for the detection of the starting and ending points of the SEMG signals. The MAV and RMS
were extracted as features to input into the proposed model. We all know that the more features
extracted, the higher the accuracy of motion recognition. However, an increase in the number of
features leads to an increase in the amount of computation and the input dimensions of the model. A
compromise must be made between computation and accuracy.

At present, there are some studies that have classified more than three lower limb motions based
on sEMG signals from lower limb muscles. Zhou et al. [9] classified four lower limb motions,
including walking, going upstairs, going downstairs, and squatting, using a CNN-Transformer—LSTM
(CNN-TL) fusion model, achieving an accuracy of 96.13%. Shi et al. [10] employed a scale unscented
Kalman neural network to recognize five lower limb motions, including walking, crossing obstacles,
standing up, going upstairs, and going downstairs, with an accuracy of 93.7%. Gautam et al. [28]
applied a long-term recurrent convolution network (LRCN) to classify three lower limb motions,
including walking, sitting down, and standing up, achieving an accuracy of 98.1%. Tu et al. [18]
utilized an improved SVM model to distinguish three lower limb motions, including walking, standing,
and sitting, with an accuracy of 96.03%. Furthermore, some studies have combined SEMG signal with
accelerometer signals to classify lower limb motions. Hao et al. [29] recognized five lower limb
motions, including walking, going upstairs, going downstairs, walking upslope, and walking
downslope, based on combining SEMG and three-axis acceleration signals, using a two-stream hidden
Markov model. The accuracy of motion recognition in their study was 94.3%. Ai et al. [30] classified
five lower limb motions, including walking, going upstairs, going downstairs, standing, and squatting
based on the sSEMG and accelerometer signals. Based on the SVM model, the accuracy of motion
recognition achieved was 98.1%. Compared with the above studies, our study employed the sSEMG
signal as the sole signal to classify up to seven lower limb motions, with our proposed 1D-CNN model
achieving an exceptional classification accuracy of 97.0 £ 0.8%.

A number of limitations associated with this study are worth discussing. Firstly, the SNR of the
sEMG signal is relatively low for the current SEMG acquisition devices. With the development of
acquisition devices, the motion recognition accuracy of the proposed model can be further improved.
Secondly, only three healthy men were recruited in this study. In order to further improve the
generalization performance, larger cross-subject experiments will be conducted in our next work.
Thirdly, a high window overlap (75%) was adopted in this study. Although high window overlap may
introduce local similarity between adjacent samples, our classification accuracy demonstrates that the
retained dynamic features outweigh any potential redundancy. In future work, we will further optimize
the window parameters for specific motion types. Finally, only seven daily motions, i.e., walking
forward, walking back, jogging, going upstairs, gping downstairs, standing up, and sitting down, were
selected in our study. More daily motions, e.g., squatting, walking uphill, walking downhill, etc., will
be used for motion recognition in the future.

The purpose of sSEMG-based lower limb motion recognition is to achieve accurate control of an
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exoskeleton. Our next work will be focused on the application of the proposed method to the control
of an exoskeleton. The research results and proposed model of this study are significant for research
into exoskeleton control based on SEMG signals.

5. Conclusion

In this study, we proposed a 1D-CNN model to recognize seven daily motions, i.e., walking
forward, walking back, jogging, sitting down, standing up, going upstairs, and going downstairs, based
on the SEMG signals obtained from eight lower limb muscles, i.e, rectus femoris, vastus medial, vastus
lateralis, biceps femoris, gastrocnemius medial, gastrocnemius lateralis, soleus, and tibialis anterior.
The proposed model architecture mainly consisted of three 1D convolutional layers, three max-pooling
layers, and one global average pooling layer. The TKEO method was applied for the detection of the
starting and ending points of the SEMG signals. The MAV and RMS were extracted as the features to
input into the proposed model. The results showed that the proposed 1D-CNN had higher motion
recognition accuracy (97.0 £ 0.8%) than the DNN (95.0 + 0.6%) and SNM (92.8 £ 0.7%) models. This
study has significant implications for research into exoskeleton control based on SEMG signals.
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