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Abstract: Our brain is a complex information processing network in which the nervous system
receives information from the environment to quickly react to incoming events or learns from
experience to sharp our memory. In the nervous system, the brain states translate collective activities
of neurons interconnected via synaptic connections. In this paper, we study coupled effects of channels
and synaptic dynamics under the stochastic influence of healthy brain cells with applications to
Parkinson’s disease (PD). In particular, we investigate the effects of random inputs in a subthalamic
nucleus (STN) cell membrane potential model. The STN bursting phenomena and parkinsonian
hypokinetic motor symptoms are closely connected, as electrical and chemical maneuvers modulating
STN bursts are sufficient to ameliorate or mimic parkinsonian motor deficits. Deep brain stimulation
(DBS) of the STN is an important surgical technique used in the treatment to improve PD symptoms.
Our numerical results show that the random inputs strongly affect the spiking activities of the STN
neuron not only in the case of healthy cells but also in the case of PD cells in the presence of DBS
treatment. Specifically, the existence of a random refractory period together with random input current
in the system may substantially influence an increased irregularity of spike trains of the output neurons.

Keywords: neurodegenerative disorders; coupled synaptic connections; damaged cells; burst
discharges; systems with random fluctuations; deep brain stimulation; parkinsonian symptoms;
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1. Introduction

One of the most common age-associated human neurodegenerative disorders is Parkinson’s
disease (PD). PD is characterized by cardinal motor symptoms such as static tremor, bradykinesia,
and muscle rigidity. Many different treatments focus on the subthalamic nucleus (STN) to improve
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such motor symptoms, for instance, ablation surgery of STN or its fiber connections. Deep brain
stimulation (DBS) of the STN has recently become an effective therapy of PD [1]. The DBS is a very
impressive method [2] due to the fact that PD, characterized by the inadequacy of a chemical
substance in the brain, can also be successfully treated with passage of only electrical currents
without concomitant supply of biological or chemical reactions/factors. In general, biological neurons
in the brains transmit information by generating spikes and such neurons are connected by synapses
that process and store information. To better understand the brain activities, therefore, we need to
know how synapses work [3]. Many models have been proposed to analyze the dynamics of synaptic
coupling of human brains in neurodegenerative disorders and therapeutic targets for such diseases
(e.g., [4] and references therein). In particular, a model of T-type Ca2+ channels as a new therapeutic
target for Parkinson’s disease has been proposed in [1]. The authors in [5] have shown that
subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they
critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.
The role of the CaV1.3 channels in calcium and iron uptake in the context of pharmacological
targeting for improving the PD pathology has been discussed in [6]. A review [7] gives the evaluation
of the therapeutic potential of L-type calcium channels (LTCC), R-type calcium channels (RTCC),
and T-type calcium channels (TTCC) inhibition in light of novel preclinical and clinical data and the
feasibility of available Ca2+ channel blockers to modify PD progression. The authors in [8] have
considered an engineering selectivity into RGK (Rad, Rem, Rem2, Gem/Kir) GTPase inhibition of
voltage-dependent calcium channels that is in connection with treatment strategies for diseases
including chronic pain and Parkinson’s disease. Beside the effects of calcium channels on PD, the
potassium (K+) channels also play an important role in managing and controlling the PD. There are
several results available along this line. In particular, the authors in [5] have shown that subthalamic
burst discharges are dependent on input from the motor cortex, causing erroneous re-entrant
information relays from corticosubthalamic to pallido-thalamocortical loops and thus parkinsonian
tremors. In [9], the authors have summarized the physiological and pharmacological effects of three
K+ channels as a potential therapeutic target for PD. The effects of pharmacological blockade or
activation of K+ channels in the progression and treatment of PD have been discussed in [10].

To get closer to the real scenarios in the application of neuronal models for PD, we should account
for the existence of random fluctuations in the system. Specifically, the stochastic inputs arise through
sensory fluctuations, brainstem discharges and thermal energy as well as random fluctuations at a
microscopic level, such as the Brownian motion of ions. The stochasticity can arise even from the
devices which are used for medical treatments, e.g. devices for injection currents in DBS. The authors
in [11] have shown that brain rhythm bursts are enhanced by multiplicative noise. The presence of
noise in gamma oscillations in a model of neuronal networks with different reversal potentials has
been reported in [12]. However, the presence of random factors is not always disadvantageous, such
noisy factors can also bring benefits to nervous systems. The noises in the neuronal system are not only
a problem for neurons, they can also be a solution in information processing [13,14]. The detectability
of weak signals in nonlinear systems (a phenomenon known as stochastic resonance) can be enhanced
by random noise [15]. The authors in [15] have also indicated that the phase-based simplification of
the STN neurons can accurately predict responses to temporally complex trains of inputs even when
the perturbations in timing are large enough to obscure the oscillatory nature of the neuron’s firing.

Taking the inspiration from the fields of PD studies together with the effects of natural random

AIMS Bioengineering Volume 9, Issue 2, 213–238.



215

factors in biological system dynamics, we develop and investigate a model of coupled effects of
channels and synaptic dynamics by using stochastic modelling of healthy brain cells with applications
in PD. In particular, we consider a cell membrane potential model in the STN part of the human brain.
Our analysis focuses on considering a Langevin stochastic equation in a numerical setting for a cell
membrane potential with random inputs. We provide numerical examples and discuss the effects of
random inputs on the time evolution of the STN cell membrane potential as well as the spiking
activities of the STN neuron. Furthermore, we know that the STN bursting phenomenon is one of the
main factors that cause parkinsonian hypokinetic motor symptoms, whereas. DBS is a surgical
technique used in the treatment to improve PD. Our numerical results show that random inputs
strongly affect the spiking activities in the STN neuron in the absence and in the presence of DBS.

2. Model description

The second most common neurodegenerative disease after Alzheimer’s disease is PD. PD is
caused by naturally occurring proteins that fold into the wrong shape and stick together with other
proteins, eventually forming thin filament-like structures called amyloid fibrils. Researchers in [16]
have found that calcium influences the way alpha-synuclein proteins interact with synaptic vesicles.
In fact, alpha-synuclein is almost like a calcium sensor. In the presence of calcium, alpha-synyclein
changes its structure and the way interacts with its environment, which is likely to be very important
for its normal function. In nervous systems, calcium channels play an important role in the release of
neurotransmitters. In particular, when the level of calcium in the nerve cell increases, the
alpha-synuclein binds to synaptic vesicles at multiple points causing the vesicles to come together.
The normal role of alpha-synuclein is to help the chemical transmission of information across nerve
cells. Losing dopaminergic (DA) midbrain neurons within the substantia nigra (SN) can cause
prevalent movement disorder. One of the most prevalent disorders is PD. In general, a significant
increase of the calcium currents in the neuronal system could cause burst discharges in STN. This
phenomenon of burst discharges is linked to the loss of DA neurons in the midbrain STN. Therefore,
in our model, taking the inspiration from [17], we consider a low-threshold calcium current together
with a calcium-activated potassium channel to reduce the effects of calcium currents in the system.

Furthermore, motivated by [1, 9, 10, 17], we consider a modified Hodgkin-Huxley (HH) system
modelling a STN cell membrane potential. In particular, we choose first a STN healthy cell, then
switch to a PD cell, and study the effects of random inputs on the STN cell membrane potential under
synaptic conductance dynamics.

In biological systems of brain networks, instead of physically joined neurons, a spike in the
presynaptic cell causes a release of a chemical, or a neurotransmitter. Neurotransmitters are released
from synaptic vesicles into a small space between the neurons called the synaptic cleft [18]. In what
follows, we will focus on investigating the chemical synaptic transmission and study how excitation
and inhibition affect the patterns in the neurons’ spiking output in our HH model.
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In this section, we consider a HH model of synaptic conductance dynamics. In particular, neurons
receive a myriad of excitatory and inhibitory synaptic inputs at dendrites. To better understand the
mechanisms of synaptic conductance dynamics, we use the description of Poissonian trains to
investigate the dynamics of the random excitatory (E) and inhibitory (I) inputs to a neuron [19, 20].

We consider the transmitter-activated ion channels as an explicitly time-dependent conductivity
(gsyn(t)). The conductance transients can be defined by the following equation (see, e.g., [18, 19]):

dgsyn(t)
dt

= −ḡsyn

∑
k

δ(t− tk)−
gsyn(t)
τsyn

, (2.1)

where ḡsyn (synaptic weight) denotes the maximum conductance elicited by each incoming spike,
while τsyn is the synaptic time constant, and δ(·) is the Dirac delta function. Note that the summation
runs over all spikes received by the neuron at time tk. We have the following formula for converting
conductance changes to the current by using Ohm’s law:

Isyn(t) = gsyn(t)(V(t)−Esyn), (2.2)

where V is the membrane potential, while Esyn represents the direction of current flow and the
excitatory or inhibitory nature of the synapse.

The total synaptic input current Isyn is the combination of both excitatory and inhibitory inputs.
Assume that the total excitatory and inhibitory conductances received at time t are gE(t) and gI(t), and
their corresponding reversal potentials are EE and EI , respectively. Then, the total synaptic current can
be defined by the following equation (see, e.g., [20]):

Isyn(V(t), t) = −gE(t)(V −EE)−gI(t)(V −EI) = −IE− II. (2.3)

In [17], the authors have used the quantity IGPe,STN in the STN model. However, we know that STN-
DBS generate both excitatory and inhibitory postsynaptic potentials in STN neurons [21]. In our
current consideration, instead of using the current IGPe,STN, we consider the current ISTN,DBS =−IE− II.
Let us define the following synaptic dynamics of the STN cell membrane potential (V) described by
the following model (based on [17])

Cm
d
dt

V(t) = −IL− INa− IK− IT− ICa− Iahp− ISTN,DBS + Iapp + Idbs if V(t) ≤ Vth, (2.4)

V(t) = Vreset otherwise, (2.5)

where Iapp is the external input current, while Cm is the membrane capacitance and t ∈ [0,T ].
Additionally, in (2.4), Vth denotes the membrane potential threshold to fire an action potential.
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In this model, we assume that a spike takes place whenever V(t) crosses Vth in the STN membrane
potential. In that case, a spike is recorded and V(t) resets to Vreset value. Hence, the reset condition is
summarized by V(t) = Vreset if V(t) ≥ Vth. The quantity Iahp represents the calcium-activated potassium
current for the spike after hyperpolarization in STN.

The concentration of intracellular Ca2+ is governed by the following calcium balance equation

d
dt

Ca(t) = ε(ICa− IT − kCaCa(t)), (2.6)

where ε = 3.75× 10−5 is a scaling constant, kCa = 22.5 (ms−1) is a given time constant (see, e.g.,
[22, 23]).

Furthermore, we consider an external random (additive noise) input current as follows: Iapp = µapp +

σappη(t), where η is the zero-Gaussian white noise with µapp > 0 and σapp > 0. Using the description
of such random input current in our system, the first equation (2.4) can be considered as the following
Langevin stochastic equation (see, e.g., [24]):

Cm
d
dt

V(t) = −IL− INa− IK− IT− ICa− Iahp− IE− II + Idbs +µapp +σappη(t) if V(t) ≤ Vth. (2.7)

Therefore, the system (2.4)–(2.6) (t ∈ [0,T ]) can be rewritten as

Cm
d
dt

V(t) = −IL− INa− IK− IT− ICa− Iahp− IE− II + Idbs +µapp +σappη(t) if V(t) ≤ Vth, (2.8)

V(t) = Vreset otherwise. (2.9)

Furthermore, we consider the following gating variable dynamics (see, e.g., [17])

d
dt

h(t) = 0.75
h∞(V)−h(t)

τh(V)
, (2.10)

d
dt

n(t) = 0.75
n∞(V)−n(t)

τn(V)
, (2.11)

d
dt

r(t) = 0.2
r∞(V)− r(t)

τr(V)
, (2.12)

d
dt

c(t) = 0.08
c∞(V)− c(t)

τc(V)
, (2.13)

d
dt

Ca(t) = ε(ICa− IT − kCaCa(t)). (2.14)

The initial data we use for the system (2.8)–(2.14) define its initial conditions:
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V(0) = V0, (2.15)
h(0) = h∞(V0), (2.16)
n(0) = n∞(V0), (2.17)
r(0) = r∞(V0), (2.18)
c(0) = c∞(V0), (2.19)

Ca(0) =
a∞(V0)

a∞(V0) + b∞(V0)
, (2.20)

where h∞,n∞,r∞,c∞,a∞,b∞ are described as in Table 1.
In our model (2.8)–(2.20), as we mentioned above, we use the simplest input spike train with

Poisson process in which the stochastic process of interest provides a suitable approximation to
stochastic neuronal firings [25]. The input spikes will be carried out by the quantity

∑
k δ(t− tk) in the

equation (2.1) and the input spikes are given when every input spike arrives independently of other
spikes. The process will be described as follows:

• For designing a spike generator of spike train, we define the probability of firing a spike within a
short interval (see, e.g. [19]) as P(1 spike during ∆t) = r j∆t, where j = e, i with re,ri representing
the instantaneous excitatory and inhibitory firing rates, respectively.
• Then, a Poisson spike train is generated by first subdividing the time interval into a group of short

sub-intervals through small time steps ∆t. In our model, we use ∆t = 0.1 (ms).
• We define a random variable xrand with uniform distribution over the range between 0 and 1 at

each time step.
• Finally, we compare the random variable xrand with the probability of firing a spike, which reads:

r j∆t > xrand, generates a spike,
r j∆t ≤ xrand, no spike is generated.

(2.21)

By using model (2.8)–(2.20), we also investigate the effects of random refractory periods. We
consider the random refractory periods tref as tref = µref +σrefη̃(t), where η̃(t) ∼ N(0,1) is the standard
normal distribution, µref > 0 and σref > 0.

In general, the information on stimulating activities in a neuron can be provided by the irregularity
of spike trains. The time interval between adjacent spikes is called the inter-spike-interval (ISI). The
coefficient of variation (CV) of the ISI in a cell membrane potenial with multiple inputs can bring
useful information about the output of a decoded neuron. In what follows, we will demonstrate that
when we increase the value of σref, the irregularity of the spike trains increases (see also [26]).
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The spike irregularity of spike trains can be described via the coefficient of variation of the inter-
spike-interval (see, e.g., [26, 27]) as follows:

CVISI =
σISI

µISI
, (2.22)

where σISI is the standard deviation and µISI is the mean of the ISI of an individual neuron.
In the next section, let us consider the output firing rate as a function of Gaussian white noise mean

or direct current value, namely, the input-output transfer function of the neuron.
In our model, we choose the parameter set as in the following Table 1:

Table 1. Steady-state functions for channel gating variables and time constants for the
different ion channels (see, e.g., [17]).

Current Gating variables Gating variables Parameters

IL = gL(v−EL) gL = 2.25 (nS)
EL = −60 (mV)

INa = gNam3
∞(V)h(V)(V −ENa) m∞(V) = 1/(1 + exp(−V+30

15 )) h∞(V) = 1/(1 + exp(−V+39
3.1 ) gNa = 37

τh(V) = 1 + 500/(1 + exp(−V+57
−3 ) ENa = 55 (mV)

IK = gKn4(V)(V −EK) n∞(V) = 1/(1 + exp(−V+32
8 )) gK = 45 (nS)

τn(V) = 1 + 100/(1 + exp(−V+80
−26 ) EK = −80 (mV)

IT = gTa3
∞(V)b2

∞(r)r(V)(V −ET) a∞(V) = 1/(1 + exp(−V+63
7.8 )) r∞(V) = 1/(1 + exp(V+67

2 ) gT = 0.5 (nS)
b∞(V) = 1/(1 + exp(−V−0.4

0.1 )) τr(V) = 7.1 + 17.5/(1 + exp(−V+68
−2.2 ) ET = 0 (mV)

−1/(1 + exp(4))
ICa = gCac2(V)(V −ECa) c∞(V) = 1/(1 + exp(−V+20

8 )) gCa = 2 (nS)
τc(V) = 1 + 10/(1 + exp(V+80

26 ) ECa = 140 (mV)
Iahp = gahp(V −Eahp)( Ca

Ca+15 ) gahp = 20 (nS)
Eahp = −80 (mV)

Idbs = 5 + 5sin(2πt) (pA)

Since these parameters have also been used in [17] for STN cell membrane potential experiments,
we take them for our model validation. Moreover, in our consideration, we use not only the parameters
from Table 1, but also the following parameters: Vth = −55 (mV), Vreset = −70 (mV), V0 = −65 (mV),
∆t = 0.1, Cm = 10 (nF), τE = 2 (ms), τI = 5 (ms), ḡE = 1.5 (nS), ḡI = 0.5 (nS), re = 10, ri = 10, nE = 20
spike trains, nI = 80 spike trains. Here, nE and nI represent the number of excitatory and inhibitory
presynaptic spike trains, respectively.

Mathematically, the developed model (2.8)–(2.20) is an evolutionary system that combines
stochastic differential equations and ordinary differential equations (SDEs-ODEs), where the
stochastic membrane potential equation is coupled to the activation and inactivation ion channels
equations, as well as to the calcium-activated potassium current equation. This system can be
considered as a modified HH system.

Models proposed in [17] represent the responses of STN neurons to the depolarization of current
injection with repetitive firing and exhibit rebound bursts with more rapid de-activation of T-type
calcium currents IT. However, in their models, they consider a modified version of a basal
Ganglia-Thalamic network model with a special focus on the dynamics of membrane potentials in a
deterministic case. In real-world applications, the stochastic factors become important in capturing
the effects of ion channels. Taking the inspiration from the studies in [24, 28], our focus in the
remainder of this paper will be on the effects of random inputs on a STN cell membrane potential
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under synaptic dynamics with applications in PD. In general, the external current controls the firing
mode in neuronal systems. A wrong thalamic transmission could lead to errors such as misses, bursts
and/or spurious events. Moreover, the contribution of random factors could reduce the response of the
neuron to each stimulus in the STN. In the next section, we will be analyzing the effects of Gaussian
white noise input current and random refractory periods on the spiking activities in a STN cell
membrane potential in the absence and in the presence of DBS.

3. Numerical results

In this section, we take a single STN neuron and study how the neuron behaves under random
inputs and when it is bombarded with both excitatory and inhibitory spike trains. The numerical
results reported in this section are obtained by using a discrete-time integration based on the Euler
method implemented in Python.

In particular, we use the coupled SDEs-ODEs system (2.8)–(2.20) that describes the dynamics of
the STN membrane potential. As we have mentioned in the previous section, we will focus on the
effects of Gaussian white noise input current together with the random refractory periods on the STN
cell membrane potential.

In what follows, we use the excitatory and inhibitory conductances provided in Figure 1 for all of
our simulations. The main numerical results of our analysis are shown in Figures 2–16, where we have
plotted the time evolution of the membrane potential calculated based on model (2.8)–(2.20), along
with the spike count profile and the corresponding spike irregularity profile. We investigate the effects
of additive type of random input currents in presence of a random refractory period in a modified
HH neuron under synaptic conductance dynamics. We observe that with a Poissonian spike input, the
random external currents and random refractory period influence the spiking activity of a neuron in the
cell membrane potential.

Figure 1. Left: Excitatory conductances profile corresponding to the dynamics (2.1). Right:
Inhibitory conductances profile corresponding to the dynamics (2.1).

In order to switch from healthy conditions to Parkinsonian conditions in the basal ganglia model,
we consider a decrease in the current Iapp applied to the STN. In particular, we have Iapp = 33 (pA) for
a healthy STN cell and Iapp = 23 (pA) for a Parkinsonian STN cell (see, e.g., [17]). Therefore, a STN
cell in the case of injected current input Iapp = 33 (pA) results in a healthy STN cell, while a STN cell
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in the case of injected current Iapp = 23 (pA) is considered as a PD-affected STN cell.

In Figure 2, we have plotted the Gaussian white noise current profile, the time evolution of the
membrane potential V(t) with various input values of currents and refractory period for the case of a
healthy STN cell (Iapp = 33 (pA)), see e.g. in [17]. In the second row of Figure 2, we plot the time
evolution of the membrane potential under an additive type of random input current Iapp = 33 + η(t)
(pA) together with a random refractory period tref = 3 +σrefη̃(t) (ms). As expected, we obsevere that
there are fluctuations in the time evolution of the membrane potential. Note that a miss state occurs
when a neuron is failed to spike, whereas when the state of a neuron spikes more than once within 25
(ms) we observe a burst (see, e.g., [17]). In the last three rows of Figure 2, there exist missing moods
in the behavior of the membrane potential (e.g., from time equal to 300 to 500 (ms)). This is caused by
the presence of the additive noise input current and the random refractory period in the system. This is
visible also in the last two rows of Figure 2, but the fluctuations are smaller than the case shown in the
second row of the same figure. Further analysis of the last two rows of Figure 2 in the case of direct
input currents reveals that the time evolution of the membrane potential looks similar in both cases:
direct and random refractory periods.

Figure 2. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 33 + η(t) (pA) and random
refractory period tref = 3 +σrefη̃(t) (ms). Third row: Time evolution of membrane potential
V(t) with direct input current Iapp = 33 (pA) and with random refractory period tref = 3 +

σrefη̃(t) (ms). Fourth row: Time evolution of membrane potential V(t) with direct input
current Iapp = 33 (pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 0.5,
Idbs = 0 (pA). The dash line represents the spike threshold Vth = −55 (mV).
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In Figure 3, we switch from the healthy condition to the Parkinsonian condition by decreasing the
value of Iapp compared to the previous cases in Figure 2. In particular, in the second row of Figure 3,
we consider the time evolution of membrane potential V(t) with additive noise current Iapp = 23 +η(t)
(pA) and random refractory period tref = 3 + η̃(t) (ms). We observe that there is an increase in the
missing moods in the time evolution of the membrane potential in all last three rows. Moreover, there
still exist fluctuations in the second row of Figure 3 because of the presence of additive noise input
current and a random refractory period in the system.

Figure 3. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 23 + η(t) (pA) and random
refractory period tref = 3 + η̃(t) (ms). Third row: Time evolution of membrane potential V(t)
with direct input current Iapp = 23 (pA) and with random refractory period tref = 3+ η̃(t) (ms).
Fourth row: Time evolution of membrane potential V(t) with direct input current Iapp = 23
(pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 0.5, Idbs = 0 (pA).
The dash line represents the spike threshold Vth = −55 (mV).

In order to reduce the misses in the cases presented in Figure 3, we applied intracellularly a DBS
frequency input current Idbs = 5 + 5sin(2πt) (pA) to the STN cell, as shown in Figure 4. It is clear that
the spiking activities increase in the last three rows of Figure 4. The cases presented in Figure 4 look
similar to the cases of the healthy STN cell presented in Figure 3. There are fluctuations in the last
three rows of Figure 4 due to the presence of random factors.
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Figure 4. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 23 + η(t) (pA) and random
refractory period tref = 3 + η̃(t) (ms). Third row: Time evolution of membrane potential V(t)
with direct input current Iapp = 23 (pA) and with random refractory period tref = 3 + η̃(t)
(ms). Fourth row: Time evolution of membrane potential V(t) with direct input current
Iapp = 23 (pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 0.5, Idbs =

5 + 5sin(2πt) (pA). The dash line represents the spike threshold Vth = −55 (mV).

Next, we increase the value of σref from 0.5 to 2 for the cases presented in Figures 5–7. Specifically,
in the presence of a random refractory period with σref = 2, the misses and bursts are slightly increased
in the second and third rows of Figure 5, while the time evolutions in the last two rows look more
stable. In the presence of a random refractory period together with a large enough value of σref, the
healthy conditions may be switched to the Parkinsonian conditions even without decreasing the value
of Iapp. This is due to the fact that the presence of random factors could contribute to the changes in
neuron responses in a cell membrane potential.

In Figure 6, we consider similar quantities as in the cases presented in Figure 5. The only difference
is that we decrease the values of Iapp. We observe that the silence moods seem to be increased more
than in the cases presented in the second and third rows of Figure 5.

Similarly, we add a DBS frequency input current to the system to reduce the misses in the STN
cell. In particular, in Figure 7, we see that the presence of the DBS frequency input current leads to a
significant increase in the spiking activity of the STN neuron. The cases presented in Figure 7 looks
similar to the cases with healthy STN cells presented in Figure 5.
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Figure 5. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 33 + η(t) (pA) and random
refractory period tref = 3 +σrefη̃(t) (ms). Third row: Time evolution of membrane potential
V(t) with direct input current Iapp = 33 (pA) and with random refractory period tref = 3 +

σrefη̃(t) (ms). Fourth row: Time evolution of membrane potential V(t) with direct input
current Iapp = 33 (pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 2,
Idbs = 0 (pA). The dash line represents the spike threshold Vth = −55 (mV).
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Figure 6. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 23 + η(t) (pA) and random
refractory period tref = 3 + η̃(t) (ms). Third row: Time evolution of membrane potential V(t)
with direct input current Iapp = 23 (pA) and with random refractory period tref = 3+ η̃(t) (ms).
Fourth row: Time evolution of membrane potential V(t) with direct input current Iapp = 23
(pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 2, Idbs = 0 (pA).The
dash line represents the spike threshold Vth = −55 (mV).
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Figure 7. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 23 + η(t) (pA) and random
refractory period tref = 3 + η̃(t) (ms). Third row: Time evolution of membrane potential V(t)
with direct input current Iapp = 23 (pA) and with random refractory period tref = 3+ η̃(t) (ms).
Fourth row: Time evolution of membrane potential V(t) with direct input current Iapp = 23
(pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 2, Idbs = 2 + sin(2πt)
(pA). The dash line represents the spike threshold Vth = −55 (mV).
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Since the plots of Figures 5–7 show high firing rates, we also provide the corresponding plots to
zoom these figures in Figures 8–10 below. When we zoom Figures 5–7 in the time interval [50,500]
(ms), we observe that the random input current and random refractory period could cause not only
silences but also bursts. This is visible in the first to rows of Figures 8–10.

Figure 8. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 23 + η(t) (pA) and random
refractory period tref = 3 + η̃(t) (ms). Third row: Time evolution of membrane potential V(t)
with direct input current Iapp = 23 (pA) and with random refractory period tref = 3+ η̃(t) (ms).
Fourth row: Time evolution of membrane potential V(t) with direct input current Iapp = 33
(pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 2, Idbs = 0 (pA). The
dash line represents the spike threshold Vth = −55 (mV).
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Figure 9. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 23 + η(t) (pA) and random
refractory period tref = 3 + η̃(t) (ms). Third row: Time evolution of membrane potential V(t)
with direct input current Iapp = 23 (pA) and with random refractory period tref = 3+ η̃(t) (ms).
Fourth row: Time evolution of membrane potential V(t) with direct input current Iapp = 23
(pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 2, Idbs = 0 (pA). The
dash line represents the spike threshold Vth = −55 (mV).
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Figure 10. First row: Gaussian white noise current profile. Second row: Time evolution
of membrane potential V(t) with additive noise current Iapp = 23 + η(t) (pA) and random
refractory period tref = 3 + η̃(t) (ms). Third row: Time evolution of membrane potential V(t)
with direct input current Iapp = 23 (pA) and with random refractory period tref = 3+ η̃(t) (ms).
Fourth row: Time evolution of membrane potential V(t) with direct input current Iapp = 23
(pA) and with direct refractory period tref = 3 (ms). Parameters: σref = 2, Idbs = 2 + sin(2πt)
(pA). The dash line represents the spike threshold Vth = −55 (mV).
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Further analysis for investigating the spiking activities is provided based on Figures 11–16, where
we present the input-output transfer function and spike irregularity profiles of the neuron.

Figure 11. The input-output transfer function of the neuron with the output firing rate as
a function of input mean for the case with additive noise input current (σapp = 1). Top left
panel: direct time refractory period tref = 3 (ms) with Idbs = 0 (pA). Top right panel: random
refractory period tref = 3 + 2η̃(t) (ms) with Idbs = 0. Bottom left panel: direct time refractory
period tref = 3 (ms) with Idbs = 2 + sin(2πt) (pA). Bottom right panel: random refractory
period tref = 3 + 2η̃(t) (ms) with Idbs = 5 + 5sin(2πt) (pA).

The phenomena observed in Figures 5–7 are visible also in Figure 11. We have plotted the input-
output transfer function of the neuron with the output firing as a function of average injected current
in cases presented in Figures 5–7. We consider the values of average injected current belonging to
the interval Iaverage = [22,34] (pA). This Iaverage quantity includes the values of healthy STN and PD-
affected STN cells. We aim at revealing the dynamic behavior of the input-output transfer function of
the neuron changing over a short interval including values switched from healthy to PD conditions.
However, we look mainly at the values at Iapp = 23 (pA) and Iapp = 33 (pA). In our consideration,
we first determine a set of current injection values to use as Iaverage = [22,34] (pA). Then, for each
injection level, we count the number of spikes in milliseconds to determine the firing rate. Specifically,
in the top left panel of Figure 11, by considering the direct refractory period we see that the presence
of additive noise input current in the system increases the spiking activity of the STN neuron more
than in the case of direct input current. Looking at the top right panel of Figure 11, it is clear that
the presence of a random refractory period strongly affects the spiking activity in our system. There
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are fluctuations in both cases of direct input current and additive noise input current. Moreover, in the
presence of the random refractory period together with the random input current, the spiking activity
of the neuron increases dramatically compared with the case presented in the top left panel of Figure
11. In the bottom left panel of Figure 11, we investigate also the case of injecting Idbs current into
the system. There is a significant increase in the spiking activity of the STN neuron. Furthermore, the
spike count profiles in the case of direct input current look quite similar to those in both the top left and
right panels of Figure 11. In the bottom right panel of Figure 11, at Iapp = 23 (pA) and Iapp = 33 (pA)
with a DBS frequency input current, the firing activity is more efficient compared to the case presented
in the bottom right panel of the same figure. In the presence of DBS frequency input current, we also
observe that the contribution of the random refractory period makes the spiking activity of the STN
neuron more efficient compared to the case with a direct refractory period.

Figure 12. Spike irregularity profiles in the case with the direct input current and the ISI
distribution. First column: direct time refractory period tref = 3 (ms). Second column:
random refractory period tref = 3 + η̃(t) (ms). Middle row: ISI distribution of a healthy cell.
Last row: ISI distribution of a PD-affected cell.

In Figures 12–16, we look at the corresponding spike irregularity profile of the spike count in
Figures 5–7. In general, the variability of the ISI is measured by its coefficient of variation CVISI. Our
representative examples focus on the values at Iapp = 23 (pA) and Iapp = 33 (pA). We first determine
a set of current injection values to use as Iaverage = [22,34] (pA). Next, the ISI is calculated by the
following steps: calculate the spike times, and take the differences between spike times. Then, the
CVISI is defined as in (2.22). In particular, in the top left panel of Figure 12, with direct input current
and direct refractory period, we have high irregularity values of CVISI = 1.7 at the injected current
values Iapp = 23 (pA) and CVISI = 1.5 at the injected current values Iapp = 33 (pA). In the top right
panel of Figure 12, using direct input current with a random refractory period, we have values of CVISI
similar to the case presented in the top left panel of the same figure. However now, there is a slight
fluctuation due to the presence of the random refractory period. We look also at the ISI distribution
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profiles of the two cases of healthy STN and PD-affected STN cells in the last two rows of Figure
12. We produce histograms of the ISI data, binned into 20 bins running from 0 to 40. The shapes
of the histograms in Figure 12 approximate the exponential probability density function which is the
probability density function for Poisson processes. Moreover, the spiking activity in both healthy and
PD-affected STN cells in the case of a direct refractory period is more stable than in the case of a
random refractory period.

Figure 13. Spike irregularity profiles in the case with the additive noise input current and
the ISI distribution. First column: random refractory period tref = 3 + 2η̃(t) (ms) with Iapp =

Iaverage + η(t). Second column: random refractory period tref = 3 + 2η̃(t) (ms) with Iapp =

Iaverage + 3η(t). Middle row: ISI distribution of a healthy cell in presence of Gaussian white
noise Iapp = 33 + η(t) (pA). Last row: ISI distribution of a PD-affected cell in presence of
Gaussian white noise Iapp = 23 +η(t) (pA).

In Figure 13, we consider the cases of random input current with different values of standard
deviations and in the presence of random refractory period. In particular, in the top left panel of
Figure 13, we see that there exist high irregularity values of the variability of the ISI with CVISI = 1.3
at the injected current values Iapp = 23 (pA) and CVISI = 1.37 at the injected current values Iapp = 33
(pA). However, when we increase the value of standard deviation σapp from 1 to 3, the spike trains is
more regular with CVISI = 0.87 < 1 (the Poisson train has CVISI = 1) at the injected current values
Iapp = 23 (pA) and CVISI = 0.725 at the injected current values Iapp = 33 (pA). The shapes of
histograms still approximate the exponential probability density function. There is a decrease of the
spike irregularity coefficient CVISI from 1.3 to 0.87 (Iapp = 23 (pA)) and from 1.37 to 0.725 (Iapp = 33
(pA)) when we increase the values of σapp. This is due to the fact that when we increase the standard
deviation of the Gaussian white noise, at some point, the fluctuations of the random input current also
increase. Hence, as the input is highly oscillating, the neuron is charged up to the spike threshold and
then it is reset. This essentially gives an almost regular spiking.

In Figure 14, we examine the same quantities as in the cases presented in Figure 12. The only
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difference is that we add a DBS frequency input current Idbs = 5 + 5sin(2πt) (pA) into the system. The
spike irregularity is slightly reduced in both cases: direct and random refractory periods compared
with the cases presented in Figure. The shapes of the histograms in Figure 14 also approximate the
exponential probability density function. We have an increase in the spiking activity of the neuron in
the cases presented in Figure 14 compared with the cases presented in Figure 12.

Figure 14. Spike irregularity profiles in the case with the additive noise input current and
the ISI distribution. First column: direct time refractory period tref = 3 (ms) with Idbs =

5 + 5sin(2πt) (pA). Second column: random refractory period tref = 3 + η̃(t) (ms) with Idbs =

5 + 5sin(2πt) (pA). Middle row: ISI distribution of a healthy cell. Last row: ISI distribution
of a PD-affected cell.

In Figure 15, we consider the cases of direct refractory period in the presence of DBS frequency
input current Idbs = 5+5sin(2πt) (pA) together with random input current. In the first row of Figure 15,
when we add random input currents into the system, the spike irregularity values are strongly reduced
compared with the cases presented in Figure 12–14. In particular, in the top left panel of Figure 15, we
have CVISI = 0.625 at the injected current value Iapp = 23 (pA) and CVISI = 0.51 at the injected current
value Iapp = 33 (pA). This is caused by the presence of the DBS frequency input current which makes
the spiking activity of the neuron increased. However, when we increase the value of σapp from 1 to 3,
the spike trains are more regular with CVISI = 0.48< 0.5 at the injected current value Iapp = 23 (pA) and
CVISI = 0.40 < 0.5 at the injected current value Iapp = 33 (pA). Note that increased ISI regularity could
result in bursting [29]. The spike trains are substantially more regular with a range CVISI ∈ (0;0.5),
and more irregular when CVISI > 0.5 [30]. Therefore, the presence of random input current with high
oscilations could lead to the burst discharge.

In Figure 16, we analyze at the case of random refractory period in the presence of DBS frequency
input current Idbs = 5 + 5sin(2πt) (pA) together with random input current. In the top left panel of
Figure 16, we see that the spike irregularity looks similar to the top left panel of Figure 15. However,
when we increase the value of σapp from 1 to 3, the spike irregularity increases compared with the
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case presented in the top right panel of Figure 15. This phenomenon is quite interesting since the
presence of random refractory periods could reduce the effects of random input currents on the system
in the presence of DBS frequency input current. From the histograms in Figure 12–16 we see that their
shapes approximate the exponential probability density function except the case presented in the right
panel of the second row in Figure 16 for the healthy STN cell with a different shape. This is due to
the effects of high fluctuations arising from random factors. However, the DBS treatment is commonly
used in the case of Parkinsonian cells. Hence, in our consideration of DBS frequency input current, we
have concentrated on the results of Parkinsonian conditions.

Additionally, we remark that the presence of the random refractory period and random input
current affects the spiking activity of the STN neuron even in the presence of the DBS frequency input
current. When we increase values of the standard deviation in random input currents and random
refractory periods, the irregularity of spike trains decreases. This effect may lead to an improvement
in the carrying out the information about stimulating activities in the neuron (see also, e.g., [31]).
Furthermore, the presence of random refractory periods could reduce the effects of random input
currents on the system in presence of DBS frequency input current. The interplay between random
refractory period and random input current in the STN cell membrane potential would contribute to
further progress and model developments for the DBS therapy.

Figure 15. Spike irregularity profiles in the case with the additive noise input current and
the ISI distribution. First column: direct time refractory period tref = 3 (ms) with Idbs =

5 + 5sin(2πt) (pA). Second column: direct time refractory period tref = 3 (ms) with Idbs =

5 + 5sin(2πt) (pA). Middle row: ISI distribution of a healthy cell in presence of Gaussian
white noise Iapp = 33 + η(t) (pA) (left) and Iapp = 33 + 3η(t) (pA) (right). Last row: ISI
distribution of a PD-affected cell in presence of Gaussian white noise Iapp = 23 + η(t) (pA)
(left) and Iapp = 23 + 3η(t) (pA) (right).
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Figure 16. Spike irregularity profiles in the case with the additive noise input current and
the ISI distribution. First column: random refractory period tref = 3 + 2η̃(t) (ms) with Idbs =

2 + sin(2πt) (pA). Second column: random refractory period tref = 3 + 2η̃(t) (ms) with Idbs =

2+sin(2πt) (pA). Middle row: ISI distribution of a healthy cell in presence of Gaussian white
noise Iapp = 33 +η(t) (pA) (left) and Iapp = 33 + 3η(t) (pA) (right). Last row: ISI distribution
of a PD-affected cell in presence of Gaussian white noise Iapp = 23 + η(t) (pA) (left) and
Iapp = 23 + 3η(t) (pA) (right).

4. Conclusions

We have proposed a new modified HH model and described the process of synaptic conductance
with random inputs. Using the description based on Langevin stochastic dynamics in a numerical
setting, we analyzed the effects of random inputs in an STN cell membrane potential. Specifically, we
provided details of the corresponding models along with representative numerical examples and
discussed the effects of random inputs on the time evolution of the cell membrane potentials, the
associated spiking activities of neurons and the spike time irregularity profiles. Our numerical results
have shown that the random inputs strongly affect the spiking activities of neurons in the STN even in
the presence of DBS in the system. Furthermore, we have shown that an increase in the standard
deviations in the random input current can lead to a decreased irregularity of spike trains of the output
neuron. However, the presence of a random refractory period together with the random input current
can increase the irregularity of spike trains of the output neuron. More efficient managing of random
factors in STN cell membrane potential models would allow for further improvements of smart
treatments and bioengineering technique modalities for PD. A better understanding of cell membrane
potential models developed for the targeted area of the brain that is responsible for the movement
symptoms caused by PD would allow for supporting and improving the DBS therapy and other
applications in the fields of biomedicine.
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