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Abstract: The spreading of COVID-19 has been considered a worldwide issue, and many global 
efforts have been suggested. Suggested control strategies to minimize the impact of the disease have 
effectively worked with computational simulations and mathematical models. Model critical 
transmissions and sensitivities are also key elements to study this pandemic more widely. This work 
reviews and discusses susceptible–exposed–infected–recovered (SEIR) model to predict the spreading 
of this disease. Accordingly, the basic reproduction number and its parameter elasticity are considered 
at the equilibrium points. Furthermore, the real data of confirmed cases in the Kurdistan region of Iraq 
are used in estimating model parameters and model validating. Computational model results provide 
some important model improvements and suggest control strategies. Firstly, the model population 
states have different model dynamics using the estimated parameters and the initial values. Another 
result is that almost all model states are sensitive to the model parameters at different levels. 
Interestingly, contact rate, transition rate from exposed class to the infected class and natural recovery 
rate are the most important controllable parameters to reduce the basic reproduction number 𝑅 , and 
they become the model critical parameters. More interestingly, computational results for the real data 
provide that the basic reproduction number in the Kurdistan Region was about 1.28, which is greater 
than unity. This means that the new coronavirus still has a high potential to spread among individuals, 
and it will require more interventions and new strategies to control this disease further. 
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1. Introduction 

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). The virus was first identified in Wuhan, China, in   
December 2019, and it quickly spread to other parts of mainland China and many other       
countries [1–6]. Due to the rapid spread of the virus with consequences worldwide, the World Health 
Organization (WHO) declared a public health emergency of international concern on January 30, 2020, 
and a pandemic on March 11, 2020 [7,8]. The transmission of COVID-19 has become a global health 
threat. As of April 17, 2020, there was a total of 2,230,439 COVID-19 cases reported worldwide,   
with 150,810 deaths and 564,210 recovered cases [9]. According to the WHO’s COVID-19 global 
report, over 21.2 million people had been infected with the virus as of August 16, 2020, with       
over 761,779 deaths [10]. Moreover, till October 14, 2021, more than 239,426,728 cases of infection 
and at least 4,878,373 deaths have been confirmed in Africa, Asia, Europe, North America, Oceania, 
South America and Antarctica. This has become one of the deadliest pandemics in history according to 
the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [11]. 

Studying and analyzing complex infectious disease models are difficult tasks and require some 
computational tools and mathematical approaches. In systems biology, mathematical presentations and 
computational simulations are effective tools and will help further understanding and future predictions 
about model dynamics. The models of COVID-19 are complicated, and they are required some 
mathematical tools to improve interventions and healthcare strategies. Recently, several studies about 
COVID-19 were suggested based on mathematical tools and computational simulations to understand 
this pandemic and its control approaches. In [12–14], the SEIR model was modified by several 
researchers to understand the impacts of social distancing, rapid testing, vaccination and contaminated 
objects in controlling the spread of COVID-19. One of the most important key elements in the spreading 
of COVID-19 is the basic reproduction number (also called basic reproductive ratio). This quantity, 
denoted by 𝑅 , represents the number of secondary infections induced by a single primary infection in 
a population where everyone is susceptible [15]. According to developed techniques of mathematical 
epidemiology models, 𝑅  plays an important role for understanding epidemiological ideas and 
identifying key critical parameters for such models, and 𝑅  may have different values for reported 
cases of coronavirus. According to a published study, the basic reproduction number was computed 
using incidence data in the city of Jakarta from March 3, 2020, to May 10, 2020. The median value of 
𝑅  was about 1.75 during the first interval. After the rigorous social distancing implemented, this value 
was about 1.22. In addition, the basic reproduction number has been calculated for different infectious 
disease models. Consequently, this quantity was calculated for a mathematical model of the CD8+ T-
cell response to human T cell leukemia/lymphoma virus type I (HTLV-I) infection, given in [16]. 

According to published studies given in [14,17,18], the concept of sensitivity analysis has been 
presented to detect model sensitive parameters, including local sensitivities for each model state with 
respect to model parameters. Such sensitivities are computed by using three different methods: non-
normalization, half-normalization and full-normalization. Accordingly, there was another method of 
sensitivity analysis given in [19]. They suggested the partial rank correlation coefficient (PRCC) 
technique to determine how the glioma-immune model output is affected by changes in specific 
parameter values. 

Optimal control analysis is another effective method to identify the model critical parameters and 
to suggest control strategies. This technique has been used with the COVID-19 pandemic for deriving 
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control policies. Recently, this technique has been used to find some control strategies for the   
COVID-19 pandemic in Indonesia, given in [20]. Then, there was a study about mathematical modeling 
with optimal control analysis for the spread of the COVID-19 pandemic with a case study of Brazil and 
cost-effectiveness; this was given in [21]. More recently, there was another approach that suggested a 
mathematical model with optimal control to highlight the negative impact of quarantine on diabetic 
people, with cost-effectiveness, presented in [22]. The reader can also find more relevant works about 
different approaches and mathematical models of the COVID-19 pandemic and its control strategies  
in [23–29]. 

Although there are many mathematical models that have been suggested for prediction of the 
COVID-19 pandemic, such models can be further improved and analyzed in terms of real data. 
Calculating the basic reproduction number with local sensitivities can improve the model outcomes 
further. An issue that has not been considered enough is elasticity of basic reproduction number with 
respect to model parameters. This helps us to identify the most critical model parameters in spreading 
this disease. Another issue of modeling such phenomena is validating the model results. Therefore, 
comparing the model predictions with real data can also indicate the accuracy and reliability of such 
models. 

Estimating the model initial parameters for the suggested SEIR model is an important step forward 
in this study compared to the other existing studies about the confirmed cases of COVID-19 in the 
Kurdistan Region of Iraq. Therefore, we suggest the Metropolis–Hastings (MH) algorithm to estimate 
such model parameters, and then we use them in computational simulations. Such estimated parameters 
can also provide a good agreement between the model results and the daily infected cases. Another 
novelty here is the data collection of COVID-19 infected cases in the area that provides the future 
predictions and interventions. Accordingly, we have collected the daily confirmed cases of COVID-19 
from January 10, 2021, to March 22, 2021. The collected real data here give us a great understanding 
about this disease in the area and suggested more interventions and strategies to control this pandemic. 
Interestingly, identifying the critical model parameters based on sensitivity and elasticity methods 
becomes another novelty for the suggested SEIR model. 

This paper has some contributions. The main contribution is suggesting the simplified SEIR model 
for COVID-19 disease to predict the spreading of the disease in the Kurdistan Region of Iraq. We use 
this model to compare the model results and the daily infected cases more easily and correctly. Another 
contribution here is identifying the model critical parameters. Consequently, we suggest the local 
sensitivity methods to calculate the model sensitivities between the model variables and parameters. 
Additionally, the elasticity between the basic reproduction number, 𝑅 , and model parameters are also 
calculated and helps to identify the key critical parameters in spreading this disease. 

The organization of this paper is as follows. In Section 2, we construct the SEIR model based on 
our assumptions and model transmissions. Using the next generation matrix, we derive the formula of 
the basic reproduction number, calculate the elasticity between 𝑅  and model parameters and show 
the model local sensitivities based on the estimated values, as discussed in Section 3. We perform our 
computational model simulations of daily infected cases in Section 4. Finally, some conclusions and 
suggestions are given in Section 5. 
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2. A mathematical model of the spread of the COVID-19 pandemic 

Many infectious disease models have been suggested to understand the transmission rates of 
COVID-19. The SEIR model has been commonly applied in many infectious diseases. This model 
consists of four compartments, namely, susceptible 𝑆 𝑡 , exposed 𝐸 𝑡 , infected 𝐼 𝑡  and recovered 
𝑅 𝑡  individuals. Several authors modified the SEIR model for studying the transmission of pathogens. 
Among them, in [30], a modified SEIR model was used to describe the 2009 influenza A (H1N1) 
pandemic within local regions in Japan. It was also used for the Ebola epidemic occurring in the West 
African nations of Guinea, Liberia and Sierra Leone [31]. In this paper, we use the SEIR model for 
COVID-19 disease that describes the spreading of COVID-19 in the Kurdistan Region of Iraq. 
Accordingly, we develop the previously published work given in [32], and we add a parameter that 
shows a rate of recovery of the individuals from the exposed class. The model network of SEIR shown 
in Figure 1 includes various compartments with their transmissions. The model compartments and 
transmission rates are defined in Table 1. 

 

Figure 1. The SEIR model network of the COVID-19 pandemic that includes model 
populations with their reaction rates. 

The chemical reactions of the model can be expressed as follows: 

𝑛𝑢𝑙𝑙  
 

→  𝑆,       𝑆
µ
→ 𝑛𝑢𝑙𝑙,    𝑆 𝐸,  

𝐸
µ

𝑛𝑢𝑙𝑙,      𝐸 𝑅,       𝐸 𝐼,                      1  

𝐼 𝑅,    𝐼
µ
→ 𝑛𝑢𝑙𝑙,   𝑅

µ
𝑛𝑢𝑙𝑙.   

Furthermore, all parameters and initial states with their biological meanings are shown in Table 1. We 
use the concepts of standard chemical kinetics and the mass action law to derive a system of non–
linear ordinary differential equations [33,34]. Then, the system of nonlinear ordinary differential 
equations takes the following form: 
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𝑑𝑆
𝑑𝑡

Λ 
𝛽𝑆𝐼
𝑁

µ𝑆,                             

      
𝑑𝐸
𝑑𝑡

𝛽𝑆𝐼
𝑁

𝑘𝐸 𝛼𝐸 µ𝐸,                      2  

    
𝑑𝐼
𝑑𝑡

𝑘𝐸 𝛾𝐼 µ𝐼,                              

      
𝑑𝑅
𝑑𝑡

𝛼𝐸 𝛾𝐼 µ𝑅,                              

with non-negative initial conditions 𝑆 0 𝑆 0, 𝐸 0 𝐸 0, 𝐼 0 𝐼 0, 𝑅 0 𝑅 0. 
All parameters are defined as contact rates between individual categories. 

Table 1. The model reaction constants and initial individuals for the SEIR model with their 
biological meanings. 

3. Methods 

Infectious disease models cannot be well understood only by biological techniques. Model 
analysis techniques and computational simulations can serve a great role in predicting and analyzing 
the model dynamics and identifying critical model parameters. Recently, some techniques of model 
analysis have been applied such as sensitivity and elasticity methods. They are useful tools to 
determine which variable or parameter is sensitive to a specific condition [12,17,18]. Calculating the 
basic reproduction numbers at the equilibrium points can also provide a great environment to discuss 
infectious disease models more widely and accurately [13,14]. Here, in this study, we focus on three 
important techniques of model analysis: basic reproduction numbers, local sensitivity and elasticity 
methods. More details about the suggested techniques are discussed in the following sections. 

 
 

Symbol Biological definition 

𝑆 0  Initial susceptible individuals 

𝐸 0  Initial exposed individuals 

𝐼 0  Initial symptomatic infected individuals 

𝑅 0  Initial recovered individuals 

𝛽 Infection rate 

ᴧ Recruitment rate 

𝑘 Transition rate of exposed individuals to the infected class 

𝛼 Transition rate of exposed individuals to the recovered class 

𝛾 Natural recovery rate 

µ Natural death rate 
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3.1. Next generation method 

In epidemiology, the next-generation matrix is used to derive the basic reproduction number for 
a compartmental model of the spread of infectious disease. This method was proposed by Diekmann 
et al. (1990) [35] and van den Driessche and Watmough (2002) [36]. One of the most important 
parameters for epidemiological models is the basic reproduction number [37]. Using Equation 2, we 
can easily derive 𝑅  at an equilibrium point 𝐸 . The suggested model here includes two infected 
states, 𝐸  and 𝐼, and two uninfected states, 𝑆 and 𝑅. Let 𝑋  be a vector of infected classes and 𝑌 
be a vector of uninfected classes. They are shown below: 

𝑋 𝐸
𝐼

,       𝑌 𝑆
𝑅

.                              

To find equilibrium points for the model, let us set the right-hand side of Equation 2 equal to zero. 
Then, the equilibrium points are obtained. The first equilibrium is the COVID-19-free equilibrium 
point, which is represented by 

𝐸
ᴧ
𝜇

, 0,0,0 .                              3  

The second type of equilibrium is called the endemic equilibrium point. It is given below: 

𝐸∗ 𝑆 , 𝐸 , 𝐼 , 𝑅 ,                             4  

where 𝑆 , 𝐸 , 𝐼 , 𝑅  are positive and defined as follows: 

𝑆
𝑁
𝛽𝑘

𝑘 𝛼 𝜇 𝛾 𝜇 𝑑 ,        𝐸
𝛽𝑘Λ 𝜇𝑁 𝑘 𝛼 𝜇 𝛾 𝜇 𝑑

𝛽𝑘 𝑘 𝛼 𝜇
, 

𝐼  
𝛽𝑘Λ 𝜇𝑁 𝑘 𝛼 𝜇 𝛾 𝜇 𝑑

𝛽 𝑘 𝛼 𝜇 𝛾 𝜇 𝑑
,       𝑅

𝛼𝐸 𝛾𝐼
𝜇

. 

Using the next generation method, we have the vector functions 

𝑀 𝑆, 𝐸, 𝐼, 𝑅
𝛽𝑆𝐼
𝑁
0

,   𝐺 𝑆, 𝐸, 𝐼, 𝑅
𝑘 𝛼 µ 𝐸 
𝑘𝐸 𝛾 µ 𝐼 . 

Then, the Jacobian matrices for 𝑀 , 𝐺 at  𝐸  are given below: 

𝐻
𝜕𝑀 𝑆, 𝐸, 𝐼, 𝑅

𝜕 𝐸, 𝐼 ᴧ, , ,

0
𝛽Λ 
𝜇𝑁

0 0
, 𝑊

𝜕𝐺 𝑆, 𝐸, 𝐼, 𝑅
𝜕 𝐸, 𝐼 ᴧ, , ,

𝑘 𝛼 𝜇 0
𝑘 𝛾 𝜇 . 

Since 𝑊 is a non- singular matrix, 𝑊 can be calculated: 

𝑊
1

𝑘 𝛼 𝜇 𝛾 𝜇
𝛾 𝜇 0

𝑘 𝑘 𝛼 𝜇 . 
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Therefore, the basic reproduction number is the spectral radius of 𝐻𝑊 . Thus, the basic reproduction 
number for Equation 2 is 

𝑅
𝛽𝑘Λ

𝜇𝑁 𝑘 𝛼 𝜇 𝛾 𝜇
.                       5  

3.2. Elasticity of 𝑅  

The concept of elasticity for infectious disease models has an effective role in determining the 
sensitivity between 𝑅  and the model parameters. For calculating such coefficients, the following 
main formula is used: 

𝛤
𝜕𝑅
𝜕𝜔

∗
𝜔
𝑅

,                              6  

where 𝜔 is the set of all parameters. Using Equation 5, we can calculate the elasticity index of 𝑅  
for each model parameter. They are given below: 

𝛤
𝜕𝑅
𝜕Λ

∗
Λ

𝑅
1, 

𝛤
𝜕𝑅
𝜕k

∗
k

𝑅
𝛼 𝜇

𝑘 𝛼 𝜇
, 

𝛤
𝜕𝑅
𝜕𝛼

∗
𝛼

𝑅
𝛼

𝑘 𝛼 𝜇
, 

𝛤
𝜕𝑅
𝜕𝛾

∗
𝛾

𝑅
𝛾

𝛾 µ
, 

𝛤
𝜕𝑅
𝜕𝛽

∗
𝛽
𝑅

1, 

𝛤µ
𝜕𝑅
𝜕µ

∗
µ

𝑅
1

𝜇
𝑘 𝛼 𝜇

𝜇
𝛾 µ

. 

Using the estimated parameters, we can compute the model elasticity; see Table 2. 

Table 2. Elasticity values of 𝑅  regarding model parameters. 

Parameter 𝛤  
Λ 1 

𝑘 0.14039612 

𝛼 −0.403487536 

𝛾 −0.9996225141 

𝛽 1 

µ −1.0004274882 
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The results given in Table 2 show the positive and negative signs for the model elasticity. These 
give us the direct or indirect relations between 𝑅   and the model parameters. For example, this 
coefficient is positive for the set of parameters Λ, k, 𝛽 }. This means that when these parameters, 
Λ, k, 𝛽 , are increased, the value of 𝑅  is also increased, and this virus spreads further. On the other 

hand, the signs of {𝛾, 𝛼, µ  are negative. This means that the value of the basic reproduction number 
can be reduced by increasing such parameters. Interestingly, 𝛽  is the most significant positive 
parameter that can be utilized to reduce 𝑅 . For example, if the value of 𝛽 is decreased by 10%, then 
the basic reproduction number will be reduced to 𝑅 = 0.52886708. Furthermore, reducing the contact 
rate between individuals can impact the number of infected people from the disease. 

3.3. Sensitivity analysis 

The concept of local sensitivity analysis is another step forward for studying infection disease 
models and identifying the model critical elements. This is simply used for determining the sensitivity 
of each model species with respect to the model parameters. This method was recently considered   
in [14,17,18,38]. Assume that there are 𝑝  compartments ( 𝑦   for   𝑖  1, 2, . . . , 𝑝 ) and 
𝑞 parameters (𝑏  for 𝑗  1, 2, . . . , 𝑞) in an infectious disease model. The model balanced equations 
are represented by the following system of differential equations: 

𝑑𝑦
𝑑𝑡

𝑓 𝑦, 𝑏 , 

where 𝑦 ∈ ℝ , 𝑏 ∈ ℝ . The model sensitivities can be computed with three different techniques: non 
normalizations, half normalizations and full normalizations. 
The full-normalization sensitivities are given as follows: 

𝑆
𝑏
𝑦

 
𝑑𝑦
𝑑𝑏

.                                7  

The half-normalization sensitivities are defined as follows: 

𝑆
1
𝑦

 
𝑑𝑦
𝑑𝑏

.                                8  

The non-normalization sensitivities can be expressed as follows: 

𝑆  
𝑑𝑦
𝑑𝑏

,                                 9  

where 𝑆  stands for sensitivity for each variable 𝑦  with respect to each parameter 𝑏 . We apply 

the idea of local sensitivity for the proposed COVID-19 model (Equation 2). The model initial 
populations are 𝑆   6 10 , 𝐸  = 105.26, 𝐼 = 1027 and 𝑅  = 1027, and the model estimated 
parameters are 𝛼 0.23, 𝑘 0.34, 𝛾 0.08, 𝛽 0.17, 𝜇 0.00003 and Λ 182.46.  They are 
used in computational simulations using SimBiology Toolbox for MATLAB. The results provide a 
wide range of means of identifying the key critical model parameters. According to the non-
normalization technique, susceptible individuals, 𝑆, are very sensitive to the natural death, 𝜇. This is 
clearly shown in Figure 2a. In addition, all model states are also sensitive to these parameters: 
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{𝛽, 𝛼, 𝛾  (see Figure 2b). This means that natural death rate, infection rate, natural recovery rate and 
transition rate between exposed individuals and recovered individuals have a great impact on the model 
populations, while the rate of natural birth has less impact on the model states. In addition, using the 
half-normalization method shows that the most sensitive parameter for all model states is the natural 
death 𝜇 . In addition, the exposed and infected individuals are also very sensitive to the set of 
parameters {𝛽, 𝛾 ; see Figure 3. According to the full-normalization technique shown in Figure 4, the 
model parameters Λ, 𝜇   are the less critical model parameters, whereas the remaining model 
parameters are the most sensitive parameters. Interestingly, all model results here provide a wide range 
of means of studying such models biologically and give more suggestions. This is because identifying 
critical model parameters helps us to further model improvements and suggest control strategies and 
vaccination programs. 

 

Figure 2. Local sensitivity analysis using non-normalization technique given in  
Equation 7 for proposed model (Equation 2) using MATLAB: (a) calculating the local 
sensitivity of all model variables and model parameters, (b) calculating the local sensitivity 
of all model variables and model parameters excluding 𝜇. 

 

Figure 3. Local sensitivity analysis using half-normalization technique given in  
Equation 8 for proposed model (Equation 2) using MATLAB. This calculation includes all 
model variables and model parameters. 
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Figure 4. Local sensitivity analysis using full-normalization technique given in   
Equation 9 for proposed model (Equation 2) using MATLAB: (a) calculating the local 
sensitivity of all model variables and model parameters, (b) calculating the local sensitivity 
of all model variables and model parameters excluding 𝛽. 

4. Computational simulations and discussions 

Computational techniques are effective tools and frequently required to analyze some complex 
infectious disease models. The estimated parameter values and initial populations are obtained from 
the real data in the Kurdistan Region of Iraq given in the Appendices. The model estimated parameters 
are 𝛼 0.23, 𝑘 0.34, 𝛾 0.08, 𝛽 0.17, 𝜇 0.00003, Λ 182.46,  and the model initial 
variables are 𝑆   6 10  , 𝐸  = 105.26, 𝐼 = 1027, 𝑅  = 1027. Using System Biology Toolbox 
(SBedit) in MATLAB, we determine the numerical approximate solutions of the model (Equation 2); 
see Figures 5 and 6. Numerical simulations are calculated in two-dimensional planes. All model 
computational results here are very interesting and provide some biological aspects. Firstly, it can be 
seen that Figure 5 shows the model dynamics of susceptible, exposed, asymptomatic infected and 
recovered people. We have noticed that the number of healthy people decreases gradually and becomes 
stable after 500 days, while the dynamics of recovered people increases and then becomes more flat 
after 500 days as well. Then, from 200 to 600 days, the numbers of exposed and infected individuals 
change dramatically. More interestingly, Figure 6 shows the comparison of total populations between 
the real data cases shown in Table 3 and the model equations given in Equation 2. For example, the 
total populations of infected people for the model equations and real data are given in Figure 6a. Then, 
Figure 6b shows the total populations of recovered individuals for model equations and real data. The 
results show good agreement between the real data and the model results. Finally, it is clear that our 
model results are fitted for the confirmed cases in Kurdistan. This means that the suggested model here 
can further be used to predict and give more control strategies. 
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Figure 5. Computational simulations here show the total populations for susceptible, 
exposed, asymptomatic infected and recovered people in MATLAB using initial 
populations 𝑆   6 10  , 𝐸   = 105.26, 𝐼    = 1027, 𝑅   = 1027 and estimated 
parameters 𝛼 0.23, 𝑘 0.34, 𝛾 0.08, 𝛽 0.17, 𝜇 0.00003, Λ 182.46. 

 

Figure 6. Numerical results here show the comparison between model results given in 
Equation 2 and real data of confirmed cases for the COVID-19 pandemic in the 
Kurdistan Region, Iraq, given in Table 3: (a) the total population of infected people, (b) 
the total population of recovered people. 
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5. Conclusions 

Control strategies and preventions for the COVID-19 pandemic may not be well understood only 
by healthcare techniques and biological concepts. Mathematical models and computational 
simulations have been widely used for further improvements and identifying the model critical 
parameters. Therefore, identifying such parameters becomes an issue that can be further studied, and 
more techniques can be proposed. Sensitivity of model parameters helps international efforts to suggest 
more control strategies and preventions. Accordingly, the suggested SEIR model in this study plays an 
effective role in identifying the model critical elements using elasticity and sensitivity of 𝑅 . Thus, 
the model sensitivities were calculated using three different techniques: non normalizations, half 
normalizations, and full normalizations. The results showed that the most effective parameters for 
spreading this disease are contact rate among people, transition rate from exposed class to the infected 
class and natural recovery rate. Interestingly, identifying the model critical parameters here will help 
to suggest further interventions and control strategies in the Kurdistan Region of Iraq. The suggested 
SEIR model can be further developed and can have added more transmission rates between model 
states. For example, the vaccination compartment with its contact rates can be added to the model. 
This helps to study this disease more widely and accurately. Further techniques of model analysis such 
as optimal control will also be applied to the model to find more control strategies. 
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