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Abstract: This paper presents a mathematical model governing the dynamics of a morphogenetic
vascular endothelial cell (EC) during angiogenesis, and vascular growth formed by EC. Especially, we
adopt a multiparticle system for modeling these cells. This model does not distinguish a tip cell from a
stalk cell. A formed vessel is modeled using phase-field equation to prevent capillary expansion with
time stepping in particular. Numerical simulation reveals that all cells are moving in the direction of
high concentration of vascular endothelial growth factor (VEGF), and that they are mutually repellent
in cases in which they are closer than some threshold.
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1. Introduction

Angiogenesis is a multicellular phenomenon by which new blood vessels emerge from an existing
vascular system. Especially, tip cell selection plays an important role not only for lateral inhibitation
but also for elongation, branching, anastomosis, vessel stabilization, lumen formation, and so on [1,2].
These events have elucidated the roles of endothelial cell (EC) signaling with the vascular endothelial
growth factor (VEGF)-receptor, angiopoitin-Tie2 and Eprin–Eph pathways [1, 3, 4]. Moreover, it has
been increasingly clarified that interaction between ECs and mural cells, including vascular smooth
muscle cells and pericytes, has been implicated in the maintenance of the angiogenic process for
appropriate organization [3–7].

In fact, mathematical modeling for vascular growth has attracted considerable interest in the last few
years along with elucidation of the mechanisms of development and proliferative and quiescent features,
not only of normal cells but also of tumor cells. As a result, an enormous number of phenomena in
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biochemistry can be subject to mathematical modeling, such as proteins, capillaries, and tumors. Prime
examples include the work of Frieboes et al., who coupled phase fields to discrete tumor growth with
discrete random walks to model angiogenesis [8–10]. Also, Lima et al. [11] proposed the ten-species
model. Perfahl et al. [12] considered multiscale modeling of vascular tumor growth.

Cellular automata can be a type of mathematical model that is useful for simulating systems and
diseases at the cellular level. Features of cellular automata are simple and discrete systems in which a
limited number of states are defined for one cell. Cellular automata can generate complicated behavior
based on simple and local rules that determine the states of cells and neighboring cells, whereas distant
cells exert no influence [13]. To date, using cellular automata, many models have been presented to
elucidate cancer behavior, especially tumor growth and its effective factors [12, 14–16]. Competition
for nutrients among normal and cancerous cells has been analyzed, as has the influence of the immune
system response on tumor growth, as described in an earlier study [17].

Despite the numerous earlier studies, how the spatiotemporal regulation of molecules affects
morphogenetic cell movement, and what type of cell collective/cell movement is involved in
angiogenesis have remained elusive, largely because of the lack of a stable methodology for
visualizing and assessing EC movement during angiogenesis. To clarify the relation between
individual cell movements and angiogenesis morphology, and to dissect the underlying molecular and
cellular mechanisms, Arima et al. [18] first established a system in which dynamic cell behavior is
visualized using time-lapse microscopy. They set out to identify patterns of cellular behavior in an
angiogenesis model through computational data processing. As a result, cell movements were quite
dynamic. The ECs moved while changing their mutual relative positions at the tip in elongating
branches. On the other hand, Takubo et al. [19] analyzed EC behaviours in an in− vitro angiogenic
sprouting assay using mouse aortic explants in combination with mathematical modelling. From an
experimentally validated mathematical model, cohesive movements with anisotropic cell-to-cell
interactions charactarized the EC motolity, which may drive branch elongation depending on a
constant cell supply.

In light of the findings described above, we suggest a multilevel model to simulate dynamic cell
movement affected by VEGF. Particularly, a multi-agent model is applied to describe cell movement.
Some particles with a position vector and polarity mutually interact constantly, with effects of
chemotaxis deriving from VEGF. Such cell movement leads to blood vessel formation based on a
phase–field equation. The Cahn–Hilliard type, a representative fourth-order partial differential
equation, is adopted. As described herein, both mathematical models are coupled to simulate
angiogenesis. Then an arbitrary numerical scheme is prepared.

Thermodynamically consistent phase field models refer to a class of models satisfying the second
law of thermodynamics. These models have been used for modeling numerous non-equilibrium multi-
phase thermodynamical processes ranging from material science and fluid science to life sciences. For
this study, we specifically examined a phase field model for time-dependent dynamic of binary material
systems in which A is represented by a phase variable at φ = 1 and phase B at φ = 0. We chose the
phase variable φ ∈ [0,1] with φ identified at the volume fraction of material A and 1− φ the volume
fraction of material B. The interface between the two phases, known as the transition layer between the
two phases in the phase field model, is given as 0 < φ < 1. The interface is defined mathematically at
φ = 1

2 .
The Cahn-Hilliard, introduced by J. Cahn and J. Hilliard in [20] to describe processes of phase
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separation, includes components of a binary fluid separated and forming pure domains for each
component. It can be interpreted as the H−1 gradient flow of the Cahn–Hilliard energy functional as

F(φ) =
∫
Ω

[ ε1
2
|∇φ|2+ f (φ)

]
dx, (1.1)

where ε1 is a parameter expressing the strength of the conformational entropy. For immiscible binary
materials, we chose the bulk energy density as a double well potential for this study

f (φ) = ε2φ2(1−φ)2, (1.2)

where ε2 represents the strength of the bulk mixing free energy.
Such aCahn–Hilliard equation is a typical fourth-order partial differential equation. It is very difficult

to obtain a numerical solution stably. A structure-preserving scheme based on the discrete variational
derivative method (DVDM) proposed by Furihata and Matsuo [21] has successfully calculated the
Cahn–Hilliard equation stably. However, the discontinuous Galerkin method has also been used to
trace an interface between material A and material B with high efficiency [22,23]. Nevertheless, these
numerical techniques involve quite cumbersome procedures. Often, we face difficulties in implementing
these numerical schemes into our mathematical model with fourth-order partial differential equations.
For the study described herein, we chose the Morley finite element method discussed in [24, 25]. The
Morley element is implemented in Freefem++ [26] using numerical calculations.

This paper is organized as follows. Section 2 introduces a governing equation representing cell
movement as a multi-agent system, with vessel development based on a phase-field model, particularly
the Cahn–Hilliard equation. Numerical procedures used to calculate such a coupling model between
multi-agent system and phase-field equation are presented in Section 3. Throughout the numerical
calculations, numerical results are described in Section 4. Finally, Section 5 concludes this paper.

2. Problem formulation

In this section, we present some basic concepts related to the suggested mathematical multicellular
model for angiogenesis. For these purposes, one must describe some mathematical notations.

One can letΩ ⊂ Rd (d = 1,2,3) be a bounded domain, where a position vector is expressed as x ∈ Ω.
Cells are located at a position vector xi and more moving at a velocity vector (polarity) qi at a time
0 < t ≤ T for a positive constant T , where 0 < i ≤ Ncell represents an index for distinguishing each cell.
In fact, VEGF c attracts such cells to be closer. Consequently, a new blood vessel (capillary) is formed
after each cell degenerates fibronectin f and passes. At the next section, a position vector xi (t), a
velocity vector (polarity) qi (t), and a fibronectin concentration f (t,x) are constructed under a given
VEGF c (t,x).

2.1. Governing equation

As discussed above, we suggest equations of three kinds for modeling a mathematical multicellular
model for angiogenesis, position vector, polarity for cells, and the fibronectin concentration. Hereinafter,
it is assumed that VEFG is given. Also, arbitrary parameters cell mobility a1, repulsive force between
cells and fibronectin a2 for a position vector xi and Mq, chemotaxis to VEGF concentration a3, cell
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alignment effect a4, reference size of cell polarity q0 for polarity qi and square of transition area
width of fibronectin phase variable D, mobility of fibronectin regions M , radius of influence of cells
a5, fibronectin enzyme µ for the fibronectin concentration f are prepared. Let ∆t represent a time
increment, with n and N respectively denoting a time step for a time t = n∆t and a maximum times step
for T = N∆t. These equations are expressed as described hereinafter.

2.1.1. Equation of cell motion

From the discussion presented in the section above, a governing equation of a position vector xi

with the index i distinguishing each cell at a time t, is defined as follows

dxi

dt
= ϕ( f )

q̂i +

Ncell∑
j,i,j=1

g1(ri,j)
x j −xi

ri,j

− a2∇ f inΩ×(0,T), (2.1)

xi = x
0
i at t = 0. (2.2)

The first term on the right-hand side represents that a particle can move in a vessel for f = 0, and not
outside of a vessel for f = 1, where ϕ( f ) is expressed as

ϕ( f ) = a1 exp(−4 f ), (2.3)

and where q̂i represents the unit vector of qi, expressed as

q̂i =
qi

|qi |
. (2.4)

The second term on the right-hand side depicts a collision: interaction between particles. Also,
ri,j,g1

(
ri,j

)
studied in [19, 27] are a distance and a restitution coefficient between xi and x j as

ri,j = |x j −xi |, (2.5)

g1
(
ri,j

)
=



Frep
ri, j−dcore

dcore
if ri,j < dcore

0 if dcore ≤ ri,j < dneutral

Fatt
ri, j−dneutral

dadh−dneutral
if dneutral ≤ ri,j < dadh

Fatt
dreach−ri, j

dreach−dadh
if dadh ≤ ri,j < dreach

0 if dreach ≤ ri,j

. (2.6)

The third term on the right-hand side describes that cells are reaching and bouncing on the vessel wall.
Also, x0

i is an initial condition of xi.

2.1.2. Polarity of cell

We present a governing equation of a polarity qi with the index i at a time t, defined as
dqi

dt
= Mq

(
q2

0 − |qi |
2
)
qi + a3∇c+ζi + a4

dxi

dt
inΩ×(0,T), (2.7)

qi = q
0
i at t = 0. (2.8)

The first term on the right-hand-side has an effect of adjustment by which polarity qi comes to meet
q2

0 = |qi |
2, where q0 is decided arbitrarily. Chemotaxis is modeled by ∇c and ζi represents a random

number obtained under a stochastic distribution. Fictitious force is given as dxi

dt . Also, q
0
i is an initial

condition of qi.
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2.1.3. Field of fibronectin concentration

Finally, for real-valued parameters D,M, µ, a governing equation for a fibronectin concentration is
defined as

df
dt
= [∇ ·M∇{D∆ f +w′} − f µ]H inΩ×(0,T), (2.9)

n · ∇ f = 0 on ∂Ω×(0,T), (2.10)
n · ∇(D∆ f +w′) = 0 on ∂Ω×(0,T), (2.11)
f = f 0 at t = 0, (2.12)

where f 0 is an initial condition for f , and

H(x,xi,t) =
Ncell∑
i=1

exp
(
−
|x−xi |

a5

)
, (2.13)

w′ ( f ) = 2 f ( f −1) (2 f −1) . (2.14)

3. Numerical scheme

Letting t,∆t respectively stand for time and a time increment, then from discretizing the governing
equation in the time direction at a time step 0 < n ≤ N for t = n∆t, one can deduce

xn+1
i −xn

i

∆t
= ϕ( f n)

q̂n
i +

Ncell∑
j,i,j=1

g1
xn

j −x
n
i

rn
i,j

− a2∇ f n, (3.1)

qn+1
i −qn

i

∆t
= Mq

(
q2

0 − |q
n
i |

2
)
qn

i +∇c+ζn
i + a3

xn+1
i −xn

i

∆t
, (3.2)

Hn+1 =

Ncell∑
i=1

exp

(
−
|x−xn+1

i |

a5

)
, (3.3)

f n+1− f n

∆t
= ∇ ·

[
M∇

{
D∆ f n+1+w′( f n)

}
− f n+1µ

]
Hn+1. (3.4)

A random number ζn
i is defined as

ζn
i = ζ

n−1
i −αζn−1

i +N
√
∆t, (3.5)

andN ∈ Rd is a vector-valued function. A standard distribution with mean 0 and variance 1 is set at
every element. All numerical simulations are performed by Freefem++ [26]. Especially, a fibronectin
concentration is governed by the fourth-order partial differential equation. This paper using Morley
element implemented in Freefem++ [26] to calculation the weak form of the Cahn–Hilliard equation.

4. Numerical result

A domain Ω is defined as

Ω =
{
x = [x,y]T ;0 ≤ x ≤ 50,−25 ≤ y ≤ 25

}
. (4.1)
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4.1. Basic features of the model

Before applying and assessing our suggested mathematical model, we confirm basic features of the
model for particle collision and chemotaxis. For all cases, 10 particles are prepared initially. The
position vector xi and polarity qi of each cell are expressed as

xi = [25+N(0,1),N(0,1)], (4.2)
qi = [N(0,1),N(0,1)], (4.3)

where all the parameters are listed in Table 1.

Table 1. Parameters.
Symbol Parameter Value

a1 Cell mobility 10
a2 Repulsive force between cells and fibronectin 1
a3 Chemotaxis to VEGF concentration 1
a4 Cell alignment effect 0.1
a5 Radius of influence of cells 0.1
D Square of transition area width of fibronectin phase variable 1
M Mobility of fibronectin regions 1
µ Fibronectin Enzyme 1,10,100
q0 Reference size of cell polarity 10
α Persistence of cell polarity 0.1

dcore Diameter of the cell (repulsive area) 12
dneutral Diameter of the cell (neutral area) 1.5dcore

dadh Diameter of the cell (adhesive area) 1.534dcore

dreach Diameter of the cell (interactable area) 1.834dcore

Frep Intercellular repulsive force 5
Fatt Intercellular attraction force 1
∆t Time increment 0.002

This paper is our first trial to simulate a dynamics of angiogenesis by coupling multi-agent model
and phase-field model. Therefore, there is few of previous reserches, and we set most of arbitrary
parameters in temporal and spatial scales. As a result, this numerical results might be helpful to
understand a dynamics of angiogenesis qualitatively, not quantitatively.

4.1.1. Particle collision

For investigation of particle collisions, VEGF is ignored with c = 0. The interparticle distance ri,j

is much less than dcore = 12 because of an initial position vector xi = [25+N(0,1),N(0,1)]. Therefore
all particles are mutually repulsive, with no effects of chemotaxis by c = 0. Figures 1 and 2 show f
and H to visualize the time evolution of vessel development and cell behaviors. In the early stages of
numerical calculations, effects of repulsive force are the spreading of all cells. Subsequently, such cells
with no effect of chemotaxis move slowly and become distant in the radial direction.

AIMS Bioengineering Volume 9, Issue 1, 44–60.



50

(a) t =0.1 (b) t =0.15

(c) t =0.2 (d) t =0.25

Figure 1. Time evolution of f without chemotaxis for c = 0.

(a) t =0.1 (b) t =0.15

(c) t =0.2 (d) t =0.25

Figure 2. Time evolution of H without chemotaxis for c = 0.
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4.1.2. Chemotaxis

Next, chemotaxis generated by VEGF is considered numerically with c = 100x. In the early stages
of numerical calculations, effects of repulsive force are spreading of all cells, as discussed in the section
above, because of stronger repulsive force than chemotaxis. Also, interparticle distance ri,j increases.
After the repulsive force weakens sufficiently to become weaker than chemotaxis, all particles are
moving in the right direction, where VEGF c has a larger value, as portrayed in Figures 3 and 4.

(a) t =0.1 (b) t =0.15

(c) t =0.2 (d) t =0.25

Figure 3. Time evolution of f with chemotaxis for c = 100x.

(a) t =0.1 (b) t =0.15

(c) t =0.2 (d) t =0.25

Figure 4. Time evolution of H with chemotaxis for c = 100x.
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4.2. Numerical simulations of angiogenesis

Based on our suggested mathematical model and numerical techniques constructed in the sections
presented above, we are performing numerical simulations not only of lateral inhibitation but also of
elongation, branching, which are basic features of angiogenesis. The initial condition of position vector
xi and polarity qi of each cell is expressed as

xi = [0.05+N(0,1),N(0,1)], (4.4)
qi = [1,0], (4.5)

where the number of cells is 20. Then we set xi = 0.05 in the case of xi < 0; also, c = 100x is used as
VEGF. In fact, as a governing equation of fibronectin concentration f , the Cahn–Hilliard equation is
representative of PDE models, but reduces to an ODE model by substituting M = 0. We calculate both
to compare the results obtained from calculations.

Figure 5 portrays the time evolution of fibronectin f obtained in the case of ODE model with M = 0.
The model has behavior of lateral inhibition and elongation, branching, and anastomosis. By contrast,
Figure 6 portrays results obtained for the PDE model. The Cahn–Hilliard equation shows fibronectin
f to be a distribution from 0 to 1. The structure of the vessel is therefore visualized as clearer than
that of the ODE model. Next, we present Figure 7 in which the x coordinate of all cells is shown. As
Figure 7 shows, all cells are moving quickly in the early stage because of mutual repulsion. Thereafter,
chemotaxis ∇c attracts them to move slowly in the positive-x direction. Figure 8 presents data for
comparison, illustrating differences of the same particles between the ODE model and PDE model.
Some particles are observed to move with very different behaviors because of the effects of distribution
of fibronectin f attributable to the distribution of the fibronectin concentration f in the ODE model,
which differs from that of the PDE model.
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(a) t =8.75 (b) t =17.5

(c) t =26.25 (d) t =35

(e) t =43.75 (f) t =52.5

(g) t =61.25 (h) t =70

Figure 5. Time evolution of f with chemotaxis in the case of c = 100x for the ODE model.
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(a) t =8.75 (b) t =17.5

(c) t =26.25 (d) t =35

(e) t =43.75 (f) t =52.5

(g) t =61.25 (h) t =70

Figure 6. Time evolution of f with chemotaxis for c = 100x for the PDE model.
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(b) M =1

Figure 7. x coordinates of all cells with time steps up to t = 20.
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Figure 8. Particle difference between M = 0 and M = 1.

4.3. Attraction of vessels by tumor cells

Finally, on the assumption that tumor cells express vascular endothelial growth factor receptors and
respond to autocrine and paracrine VEGF signals, this section defines VEFG as

c = 1000exp
[
−0.001

{
(x−50)2+ y2}] , (4.6)

where Figure 9 depicts the distribution of this c. An initial condition of position vector xi and polarity
qi of each cell is expressed as

xi = [0.05+N(0,1),N(0,6)], (4.7)
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qi = [1,0], (4.8)

where the number of cells is 20. We set xi = 0.05 in the case of xi < 0. By the way, N(0,1) is used in
section 4.1 and 4.2. In the case of N(0,1), it is seemed that effects of cross-interaction between particles
themselves are strong in eraly stage. Thereofre, we set N(0,6) in section 4.3 to focus on effects of a
tumor cell.

Figure 10 shows the time evolution of f with chemotaxis at t = 62, unlike in the case of Figures 5
and 6, not all particles are moving in the x-direction. They coming in the direction of a coordinate
(x,y) = (50,0) with a maximum value of c. However, apparently, some particles are going to the lower
right. Therefore we are concerned that this phenomenon is attributable to cell adhesion effects. The
domain used for this simulation is 50× 50 square. The cell diameter is dadh ≈ 18 from Table 1.
Therefore, the top position cell affected by VEGF is moving in the lower right. Subsequent cells are
following the top position cell because of cell adhesion.

Next, we observe vessel development depending on µ representing the strength for degenerating
fibronectin and its corresponding x coordinate at each cell in the case of the PDE model. As presented
in Figures 11–13, a small µ as in Figure 11 with µ = 1 can suppress vessel development more than that
shown in Figure 13 with µ = 100 because a cell can be moving much more in the area of fibronectin
f = 0 than f = 1. Consequently, numerical simulations of Figures 11–13 represent biochemically
adequate numerical results.

Figure 9. Distribution of c.

Figure 10. Time evolution of f .
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(b)
Figure 11. (a) Fibronectin f at t = 30 and (b) x coordinate at each cells up to t=20 for µ = 1.
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Figure 12. (a) Fibronectin f at t = 30 and (b) x coordinate at each cells up to t=20 for µ = 10.
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(b)
Figure 13. (a) Fibronectin f at t = 30 and (b) x coordinate at each cells up to t=20 for
µ = 100.
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5. Conclusion

We demonstrated the characteristic features of angiogenic endothelial cell (EC) behaviors. Taken
together with findings reported from earlier studies using experimentation such as that reported by
Arima et al. [18], we suggest a multi-agent model coupled with phase-field model for angiogenic
morphogenesis. Such a model enables us to dissect cellular mechanisms regulating dynamic and
complex multicellular processes systematically. The Cahn–Hilliard equation is regarded as phase-field
model, and ODE and PDE equation are prepared by switching M = 0,1.

Our first numerical result is that multi-agent based EC movements with ODE model, represented
as a process driven by a simple stochastic rule in this suggested multi-agent model, can adequately
describe branch elongation, which plays an important role as one angiogenic model. However, EC
behaviors were insufficiently explained using cell processes alone because the ODE model was not
able to consider an effect of elasticity of a vessel wall. This numerical result leads to our second result
suggesting that PDE model might be necessary for degenerating fibronectin f in the whole cell. This
prediction was verified biologically. Consequently, this study advances our mathematical understanding
of angiogenic morphogenesis as coordinated multicellular processes.

As described herein, a smaller area is adopted to suppress calculation cost to the greatest degree
possible. Effects of cell adhesion are increased as result. It is too difficult to survey some biochemical
phenomena precisely. Future work must be done for numerical calculation with a larger area than this
study to investigate additional details about relations with chemotaxis ∇c and enzyme of fibronectin µ.

In fact, we need to analyze correlation between chemotaxis and heterogeneous directionality, cell
mixing, cell overtaking, branching morphogenesis. However, it is seemed that effects of chemotaxis is
much stronger than that of them, and we did not observe about details of the movement of ECs from
our numerical simulation.

In the future, a multi cellular model suggested here will be quantitatively leading a life science
reserch on molecular level and a cellular level to acquisitions of a macroscopic histogenesis and a vital
function.
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