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Abstract: The coronavirus disease (COVID-19) is a global health care problem that international
efforts have been suggested and discussed to control this disease. Although, there are many researches
have been conducted on the basis of the clinical data and recorded infected cases, there is still scope
for further research due to the fact that a number of complicated parameters are involved for future
prediction. Thus, mathematical modeling with computational simulations is an important tool that
estimates key transmission parameters and predicts model dynamics of the disease. In this paper, we
review and introduce some models for the COVID-19 that can address important questions about the
global health care and suggest important notes. We suggest three well known numerical techniques
for solving such equations, they are Euler’s method, Runge–Kutta method of order two (RK2) and of
order four (RK4). Results based on the suggested numerical techniques and providing approximate
solutions give important key answers to this global issue. Numerical results may use to estimate the
number susceptible, infected, recovered and quarantined individuals in the future. The results here
may also help international efforts for more preventions and improvement their intervention programs.
More interestedly, for both countries, Turkey and Iraq, the basic reproduction numbers R0 have been
reported recently by several groups, a research estimation by 9 April 2020 revealed that R0 for Turkey is
7.4 and for Iraq is 3.4, which are noticeably increased from the beginning of the pandemic. In addition,
on the basis of WHO situation reports, the new confirmed cases in Turkey on 11 April are 5138, and
in Iraq on 29 May are 416, which can be counted as the peak value from the beginning of the disease.
Thus, we investigate the forecasting epidemic size for Turkey and Iraq using the logistic model. It can
be concluded that the suggested model is a reasonable description of this epidemic disease.
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1. Introduction

There is a novel worldwide outbreak of a new type of coronavirus (2019-nCoV), COVID-19 is
the new coronavirus that has spread among human beings specifically it was first detected in Wuhan
in China and has now reached to 196 countries. COVID-19 is a respiratory virus that is transmitted
through contact with an infected person through droplets when a person coughs or sneezes, or through
saliva droplets [1]. More precisely, for both countries, Turkey and Iraq, the basic reproduction numbers
R0 have been reported by [2, 3], the estimation by 9 April 2020 revealed that R0 for Turkey is 7.4 and
for Iraq is 3.4 [2], obviously, the larger value of R0, means the spreading is faster, and the harder it is to
control the epidemic. Moreover, according to the daily data of the pandemic on the number confirmed
new cases reported from WHO situation reports, the new cases in Turkey on 11 April are 5138 [4],
and in Iraq on 29 May are 416 [5], which can be counted as the peak value from the beginning of
the disease. Also, WHO declared that it is a pandemic disease. Governments in the world are under
pressure to stop the infection. The cause of the current coronavirus infection has been determined as
bats. In addition to that, some virologists who dealt with the gene sequence of novel coronavirus, after
comparing coronaviruses in other creatures, their results revealed that bats and minks might be the
couple probable hosts that were found to be most similar to those of the new coronavirus. It has been
confirmed that COVID-19 is more contagious than SARS and MERS. The awareness of humanity is
the only way to prevent the COVID-19 massive outbreak from turning into an economic, social, and
security crisis that threatens world peace and prosperity. The WHO warned people that they must wash
their hands frequently, and stay at home, for necessary stuff when they are out they have to wear mask
and wear gloves [6].

Although a significant number of individuals are estimated to be infected with COVID-19 globally,
sadly, there is no cure yet for it. Along with, the international organizations like the WHO play a vital
role in reducing panic and removing stigma. Also, China as the main front line in the fight against the
COVID-19 contagion, has made the greatest effort, achieved the most firsthand experience, and
attained the most outstanding results. It stands ready to contribute its experience with the international
community and enhance collaboration with other countries and international organizations to win the
battle against the COVID-19. Furthermore, biomedical research cooperation is essential in any
prevention and control efforts, especially in countries with low levels of public health emergency
preparedness. For instance, Scientists at Harvard Medical School have joined forces with an expert
team to work on diagnostic reagents. Beside this, international aid helps alleviate shortages of
medical supplies [7].

There are some recently published works about the COVID-19 pandemic. One of the recent
studies is about the prediction and control of covid-19 some models have been used based on
dynamics to lessen the disease transmission three States in India have been forecast to control
measure to reduce the contact of exposed and susceptible humans [8]. Also, another step forward
work in this area is in the absence of vaccines or effective treatments in the world, in some countries
like South Korea, Italy and Brazil some strategies have been adopted such as social isolation,
lock-down of cities and border control to reduce the concerns of people [9]. Apart from this,
COVID-19 outbreak in Canada using deep learning (DL) models key futures have been evaluated to
predict the trends and possible stopping time of the novel COVID-19 outbreak around the world. The
long short-term memory (LSTM) networks have been presented [10].While in another study it is dealt
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with how the transmission dynamics of infection took place in society, the mathematical modeling of
fourteen nonlinear FDEs was presented [11].Furthermore, in another study a short - term predicting
COVID-19 has been predicted in Brazil. As long as developing short-term forecasting models allow
forecasting the number of future cases [12]. Back to predicting as it has been proposed that scientific
community should come together provide novel and better methods, strategies, forecasting techniques
and models, to understand and lessen the effects of this and future pandemics [13]. At this time in a
different study an optimal regression tree algorithm has been applied to find the main causal variables
that significantly affect the case fatality rates for different countries such as Canada, France, India,
South Korea and the UK [14].

The COVID-19 mathematical modelling is confidentially working to comprehend and predict how
infections spread. The use of mathematical models are to create a simplified depiction of infection
spread in a population and to understand how an infection might increase in the future. These
predictions could assist us to use public health resources such as vaccination programs, treatments,
preventions and interventions. The development of computational models used to simulate dynamical
equations for coronavirus disease. Clinicians and administrators are accepting the conclusions drawn
from modeling, often without realizing the data are simulated. A new application for mathematical
modeling is the determination of sample size requirement. Estimates of the population parameters can
direct a simulation that increases one patient at a time until a statistically significant difference is
detected between the experimental groups. A series of such simulations can give investigators a range
and midpoint of a sample size that should satisfy the test of their hypothesis [15].

Covid-19 is novel and appeared at the end of 2019 for this reason there are not many imperial studies
regarding coronavirus. Although, there are some studies that have been proposed in this field but are
not sufficient. For example; a study has been conducted by Biao Tang , et al. in [16]. They suggested a
deterministic compartmental model based on the clinical development of the disease, epidemiological
status of the individuals, and intervention measures. According to their study, the estimations based
on likelihood and model analysis show that the control reproduction number may be as high as 6.47.
At the same time, Sha He1, et al. developed a model on the impact of the timing of working that is
categorized on the disease transmission given different strength of protection and control measures [1].
On the other hand, Altaf Khan and Atangana proposed a model with the assumptions that the seafood
market has enough source of infection that can be effective to infect people [17]. The reader can find
more improvements for the COVID-19 models in [18–21].

Although, there are some mathematical modelling that have been proposed for new coronavirus
disease prediction, but some of them can be further improved. Applying numerical methods to calculate
some approximate solutions for this virus, could improve the predictions and estimations. A problem
that has not been studied yet is Runge-Kutta methods for COVID-19. In a complicated coronavirus
model, it is essential to find some numerical results more accurately and widely.

After announcing a curfew by the government for long time and banning travel between all Iraqi
provinces, Iraqi citizens who have been abroad in the past fourteen days will be quarantined for
fourteen days. The first case was in one of the provinces of Iraq in February; however, at the end of
May it reached to 4848 Coronavirus cases since the epidemic began, according to the WHO.
Initiation, Iraq reported 169 coronavirus deaths. Comparing infected coronavirus cases in Turkey in
March and May, a few cases where confirmed but the number is increasing sharply in May to 158762
cases, and the number of death people is 4397.
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The contribution of this work is applying the idea of Euler’s method and Runge-Kutta methods
to analyze the COVID-19 model equations and identifying the critical model elements. The main
contributions in this work can be summarized as follows:

• The recently published papers about the COVID-19 have reviewed and discussed.
• The transmission rates are modeled as a system non-linear differential equations.
• The Runga Kutta and Euler method are suggested to find some numerical solutions for such

equations.
• Another goal here is investigating forecasting epidemic size for Turkey and Iraq using the logistic

model. The data for the confirmed cases in Turkey and Iraq have used in our computational
simulations, some predications are discussed.
• Based on the computational simulations, the number of infected people has increased gradually

until April 2020, then it will be decreased slightly after May 2020.

2. Metheods

Many scientific and technological problems are modeled mathematically by systems of ordinary
differential equations, for example, chemical reactions, ecological interactions, biological process.
Most realistic systems of ordinary differential equations do not have exact analytic solutions.
Therefore, numerical techniques and computational tools help in providing model solutions [22].

There are many types of practical numerical methods that produce numerical approximations to
solution of initial value problems (IVP) in ordinary differential equations. Historically, the ancestor of
all numerical methods in use today was originated by Leonhard Euler in 1768, improved Euler’s
method and Runge-Kutta methods described by Carl Runge and Martin Kutta in 1895 and 1905
respectively. Accordingly, Euler’s method, Runge–Kutta method of order two (RK2) and
Runge–Kutta method of order four (RK4) can be easily used for solving non–linear system of
infectious disease models with initial populations. More details and details regarding such numerical
methods with application examples can be found in [23–26]. In this paper, we review some basic
concepts for such numerical techniques.

2.1. Euler’s method

Euler’s method is basic explicit method for solving systems of ordinary differential equations with
initial conditions. More details and applications of this method can be seen in [27]. The basic Euler’s
method formula is given below:

ui+1 = ui + h f (ti, ui), (2.1)

to apply this formula for the following system of first order differential equations and t ∈ [a, b] ⊂ R,
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du1

dt
= f1(t, u1, u2, . . . , um),

du2

dt
= f2(t, u1, u2, . . . , um),

du3

dt
= f3(t, u1, u2, . . . , um),

...
dum

dt
= fm(t, u1, u2, . . . , um), (2.2)

with the initial conditions

ui(a) = αi, for i = 1, 2, . . . , m. (2.3)

Updating the function u1 by f1, u2 by f2 ,. . . , um by fm and using the step size h = b−a
n , formula (2.1)

takes the form

u j(i + 1) = u j(i) + h f j(t(i), u1(i), u2(i), . . . , um(i)), (2.4)

where i = 0, 1, . . . , n − 1 and j = 1, 2, . . . , m.

2.1.1. Advantages of Euler’s method

Euler’s method is easy to use and direct because in this method no integration appeared in
calculation. It is also less time-consuming [27]. Moreover, Euler’s method can be successfully
applied to solve a problem where an analytic solution is impossible, for its recurring ability.

2.1.2. Disadvantages of Euler’s method

Euler’s method is less accurate and numerically unstable because du
dt changes rapidly over an

interval; this gives not a good approximation at the beginning of the process in comparison with the
average value over the interval. The approximation error is proportional to the step size h. Hence, if h
is not small enough this method is too inaccurate [27, 28].

2.2. Runge-Kutta method

The Runge-Kutta method is the most popular numerical approach because it is quite accurate, stable
and easy to program. This technique is the most widely used one since it gives starting values and is
particularly suitable when the compilation of higher derivatives is complicated [27]. In this work, we
review two types of Runge-Kutta method such as Runge-Kutta method of order two (RK2) and Runge-
Kutta method of order four (RK4). They are effective numerical tools to solve high dimensional system
of differential equations.

The idea of Runge-Kutta (RK) method is the same as Euler’s method; that is, we update each
unknown function u1, u2, u3, . . . , and um, using the basic RK formulas and the appropriate right-hand-
side function, f1 or f2 or f3 . . . or fm. We now consider the the two-stage RK method (known as the
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“midpoint method”) [28]. For the midpoint method, if we denote the two update parameters as k1 and
k2, then the basic second-order Runge-Kutta formulas are given below:

k1 =h f (ti, ui),
k2 =h f (ti + 0.5h, ui + 0.5k1),

ui+1 =ui + k2. (2.5)

To apply these formulas to the system (2.2), The parameters k1 and k2 for each unknown function
should be computed. Consider an integer n > 0 and h = b−a

n when a ≤ t ≤ b, and ui(a) = αi for each
i = 1, 2, . . . , m. The values of the parameter k1 for the unknown functions u1, u2, . . . , um−1, and um are

k1, j = h f j(t(i), u1(i), u2(i), . . . , um(i)), for j = 1, 2, . . . , m. (2.6)

Similarly, the values of k2 are

k2, j = h f j(t(i) + 0.5h, u1(i) + 0.5k1,1, u2(i) + 0.5k1,2, . . . , um(i) + 0.5k1,m), (2.7)

for j = 1, 2, . . . , m. Finally, the values of the unknown functions at the next grid point are given:

u j(i + 1) = u j(i) + k2, j, for i = 0, 1, . . . , n − 1 (2.8)

It can be noticed that all the values k1,1, k1,2, . . . , k1,m should be computed before identifying the
values k2, j, for j = 1, 2, . . . , m.

Another method for a single first order equation is the classical Runge-Kutta method of order four,
it is given by

u0 = α,
k1 = h f (ti, ui),

k2 = h f (ti +
h
2

, ui +
1
2

k1),

k3 = h f (ti +
h
2

, ui +
1
2

k2),

k4 = h f (ti+1, ui + k3),

ui+1 = ui +
1
6
(k1 + 2k2 + 2k3 + k4), for i = 0, 1, . . . , n − 1, (2.9)

They can be used to solve the first-order initial-value problem given below:

du
dt

= f (t, u), a ≤ t ≤ b, u(a) = α. (2.10)

We now consider the classic fourth-order Runge-Kutta method for the system of ODEs (2.2). Let n
be an integer > 0, set h = b−a

n , when a ≤ t ≤ b, and ui(a) = αi for each i = 1, 2, . . . , m. Suppose that
the values u1(i), u2(i), . . . , um(i) have been computed. We obtain u1(i + 1), u2(i + 1), . . . , um(i + 1)
by first calculating

k1, j = h f j(ti, u1(i), u2(i), . . . , um(i)),
k2, j = h f j(ti +

h
2 , u1(i) + 1

2k1,1, u2(i) + 1
2k1,2, . . . , um(i) + 1

2k1,m),
k3, j = h f j(ti +

h
2 , u1(i) + 1

2k2,1, u2(i) + 1
2k2,2, . . . , um(i) + 1

2k2,m),
k4, j = h f j(ti + h, u1(i) + k3,1, u2(i) + k3,2, . . . , um(i) + k3,m).

(2.11)
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Finally, the values of the unknown function at the next grid point are computed from

u j(i + 1) = u j(i) +
1
6
(k1, j + 2k2, j + 2k3, j + k4, j), (2.12)

for i = 0, 1, . . . , n − 1 and j = 1, 2, . . . , m.

2.2.1. Advantages of Runge-Kutta method

Runge-Kutta method is easy to implement and stable since it gives reliable values starting values
and particularly suitable when the computation of higher-order derivatives are complicated [27]. It
scores over the earlier methods in obtaining a better approximation of the solution and at the same
time, it doesn’t need to know derivatives of f .

2.2.2. Disadvantages of Runge-Kutta method

Though the Runge-Kutta method is quite accurate, stable, and easy to program, it is also very
laborious. It is a lengthy process and needs to check back the values computed earlier [27]. Also, error
estimation is not easy to be done. Moreover, it does not work well for stiff differential equations [28].

2.3. Chemical kinetics

The classical theory of chemical kinetics helps to understand and show the biological process in
terms of mathematical modeling. The basic assumptions are introduced for set of components,
reactions and their relations. We consider n reversible reactions which are given below

m∑
j=1

ai jx j

k+i


k−i

m∑
j=1

bi jx j, i = 1, 2, ..., n, (2.13)

where x j, j = 1, 2, ..., m are chemical components, ai j and bi j are non–negative integers. The reaction
constants are k+i > 0 and k−i ≥ 0. Using the idea of mass action law, the model reaction rates are
expressed as follows

vi = k+i

m∏
j=1

xai j

j (t) − k−i

m∏
j=1

xbi j

j (t). (2.14)

Therefore, the model mathematical equations are defined below

dx
dt

=

∑
i∈J⊂R

πivi. (2.15)

where πi j = bi j − ai j, for i = 1, 2, ..., n and j = 1, 2, .., m. Equation (2.15) can be written as follows:

dx j

dt
= h j(x, k), (2.16)

where x ∈ Rm and k ∈ Rn. The more details and descriptions about chemical reactions and their
differential equations with some applications in system biology can be found in [29–32].
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3. Mathematical modeling for coronavirus disease

The current coronavirus outbreak becomes a global health care problem. There are some
preventions announced as strategies for controlling the infection such as reducing contacts as much as
possible and advice people to stay at home. Mathematical models for this virus are effectively role to
show model dynamics and estimate the infected number in the future. Recently, a mathematical
model was suggested for showing individual interactions and calculating the model reproduction
number. The model is based on the clinical progression, epidemiological individuals and intervention
measures. Accordingly, the model combined with the intervention compartments such as treatment,
isolation (hospitalization) and quarantine [16]. More recently, the model has been updated for
time-dependent dynamic system [20]. We develop the model diagram and the interaction individual
components with their interaction rates given in Figure 1. The model includes eight groups
(individuals): susceptible S , exposed E, symptomatic I, pre-symptomatic A, quarantine susceptible
S q, quarantine exposed Eq, hospitalized H and recovered R. The model initial populations and
interaction parameters are obtained for the confirmed cases in China. All parameter values and initial
populations are given in Table 1. The estimated values were first defined in [16], then they were
updated in [20]. We have mainly followed reference [20], and we used such values in our
computational simulations. They used the Markov Chain Monte Carlo (MCMC) method to fit the
model to the data, and assumed an adaptive Metropolis-Hastings (M-H) algorithm to carry out the
MCMC procedure.

Death

Death

Figure 1. The model diagram the coronavirus disease (COVID-19) with interaction rates.

The model reactions for the COVID–19 with their rats are defined below:

S
v1
−→E, S

v2
−→Eq, S

v3
−→S q. S q

v4
−→S ,

E
v5
−→A, E

v6
−→I, Eq

v7
−→H, A

v8
−→R,

I
v9
−→R, I

v10
−→H, I

v11
−→Death, H

v12
−→R,

H
v13
−→Death,

(3.1)

where v1 = k1(1 − k3)U1S (I + k4A), v2 = k1k2U1S (I + k4A), v3 = k2(1 − k1)U1S (I + k4A),
v4 = k5S q, v5 = k3(1 − k6), v6 = k3k6, v7 = k7Eq, v8 = k9A, v9 = k8I, v10 = U2I, v11 = k11I,
v12 = k10H, v13 = k11H.
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Table 1. The estimated initial populations and parameters for coronavirus disease (COVID-
19) with their biological definitions that have been updated from the confirmed cases in
China [20].

Parameters Biological definitions Values

S (0) Initial susceptible individuals 11081000

E(0) Initial exposed individuals 105.1

I(0) Initial symptomatic individuals 27.679

A(0) Initial pre-symptomatic individuals 53.839

S q(0) Initial quarantine susceptible individuals 739

Eq(0) Initial quarantine exposed individuals 1.1642

H(0) Initial hospitalized individuals 1

R(0) Initial recovered individuals 2

k1 Transmission per contact 2.1011 × 10−8

k2 Quarantined exposed rate 1.2858 × 10−5

k3 Transition rate between exposed and infected classes
1
7

k4 The multiple of the transmissibility of A to I 0.3

k5 Quarantined uninfected contact rate 1
14

k6 Probability of symptomatic among infected people 0.86834

k7 Transition rate between quarantined exposed quarantined
infected classes

0.1259

k8 Recovery rate from symptomatic infected 0.33029

k9 Recovery rate from asymptomatic infected 0.13978

k10 Recovery rate from quarantined infected 0.11624

k11 Infected death rate 1.7826 × 10−5

a Initial contact rate 14.781

b Minimum contact rate 2.9253

d Initial transition rate between symptomatic infected and
quarantined infected class

0.13266

1/e The shortest period of diagnosis 0.3654

r1 Exponential decreasing rate of contact rate 1.3768

r2 Exponential decreasing rate of diagnose rate 0.32029
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The estimated values of initial populations and parameters given in Table 1. Using Eqs (2.14)–
(2.16), the model dynamics are described by the following system of non–linear ordinary differential
equations

dS (t)
dt

= −(k1U1(t) + k2U1(t)(1 − k1))(I(t) + k4A(t))S (t) + k5S q(t),

dE(t)
dt

= k1U1(t)(1 − k2)(I(t) + k4A(t))S (t) − k3E(t),

dI(t)
dt

= k3k6E(t) − (U2(t) + k8 + k11)I(t),

dA(t)
dt

= k3(1 − k6)E(t) − k9A(t),

dS q(t)
dt

= (1 − k1)k2U1(t)(I(t) + k4A(t))S (t) − k5S q(t),

dEq(t)
dt

= k1k2U1(t)(I(t) + k4A(t))S (t) − k7Eq(t),

dH(t)
dt

= U2(t)I(t) + k7Eq(t) − (k10 + k11)H(t),

dR(t)
dt

= k8I(t) + k9A(t) + k10H(t),

U1(t) = (a − b)e−r1t + b. U2(t) =
e

1 + ( e
d − 1)e−r2t

.

(3.2)

The model initial populations are expressed in the following equation

S (0) = S 0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, A(0) = A0 > 0,
S q(0) = S 0

q ≥ 0, Eq(0) = E0
q ≥ 0, H(0) = H0 ≥ 0, R(0) = R0 ≥ 0.

(3.3)

The non–linear system of differential equations given in Eq (3.2) can not solved analytically.
Therefore, the suggested numerical techniques given in this paper can provide some approximate
solutions for the COVID-19 model states. We use MATLAB for calculating numerical predictions
using initial populations and estimated parameters given in Table 1.

The high dimensional models of the spread of infectious diseases often can not be well understood
only by biological approaches. This is why mathematical methods and computational simulations are
effective tools that provide us more understanding and numerical predictions about model states. In
this work, we applied three numerical approaches for describing the COVID-19 model dynamics and
identifying critical model parameters. The numerical methods applied in this study are Euler method
and Runge–Kutta method for order two and order four. The parameter values and initial populations
in this study are obtained from the WHO situation report (the National Health Commission of the
Republic of China ) presented in [16, 20]. We present these estimated values in Table 1.

We calculate the numerical approximate solutions of the model Eq (3.2) for different parameters
and initial populations using MATLAB, see Figures 2 and 3. Accordingly, this concludes that there is
a different model dynamic for population model states. Numerical simulations are computed in two
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dimensional planes for the model variables using parameters and initial populations. More
interestingly, there are a good agreement among all numerical approximate solutions based on the
three proposed numerical approaches. Results in this study based on the computational simulations
provide a good step forward in predicting the model dynamics in the future for development
programs, interventions and health care strategies.

Particularly, results in Figure 2 show the numerical predictions for the number of susceptible,
exposed, symptomatic infected and pre-symptomatic infected individuals. It is clear that there are a
good agreement among the suggested numerical approaches and they become more stable after 100
days. In addition, the dynamics of quarantine susceptible and hospitalized people are gradually
changed when t ∈ [0, 100] then they become more flat. On the other hands, the number of quarantine
exposed individuals become stable quickly after t > 40 but the number of recovered people increases
slightly and it is stable very slowly, see Figure 3. All numerical approximate results are presented in
Tables A1–A6.

(a) (b)

(c) (d)

Figure 2. Numerical approximate solutions for the coronavirus disease model Eq (3.2) using
Euler method, Runge-Kutta method for order two (RK2) and order four (RK4); (a): the
number of susceptible populations S , (b): the number of exposed populations E, (c): the
number of symptomatic populations I, (d): the number of pre-symptomatic populations A.
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(a) (b)

(c) (d)

Figure 3. Numerical approximate solutions for the coronavirus disease model Eq (3.2) using
Euler method, Runge-Kutta method for order two (RK2) and order four (RK4); (a): the
number of quarantine susceptible populations S q, (b): the number of quarantine exposed
populations Eq, (c): the number of hospitalized populations H, (d): the number of recovered
populations R.

4. Estimated infected people in Turkey and Iraq

The function fitVirus03 applies a logistic model for estimation of final epidemic size from daily
estimations [33]. The model is data–driven, so its forecast is as good as data are. Additionally, it
is supposed that the model is a conceivable definition of the one-stage epidemic. In this section,
we investigate the results of the two countries by the proposed model. All confirmed cases for Iraq
and Turkey presented in Tables A7 and A8. We gave the results from 11 March 2020 to 9 April
2020 for Turkey. We demonstrated the results by Figure 4. We presented the results from 28 March
2020 to 4 April 2020 for Iraq. We demonstrated these results by Figure 5. Our results show that the
infected rate is plotted with blue lines and blue dots are represented actual the daily number of cases.
Separated phases given in Figures 4a and 5a are epidemic regions: red colors represent fast growth
phase, yellow colors represent transition to steady-state and green colors show ending infected. Based
on the computational results presented in Figures 4 and 5, the number of infected people in the two
countries reached to the maximum on the April 2020, then it will gradually decreased and gets stable
after June 2020.
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(a) Predicted evaluation in Turkey (b) The predicted final size in Turkey

Figure 4. Estimation of coronavirus COVID-19 epidemic size by the logistic model for
Turkey.

(a) Predicted evaluation in Iraq (b) The predicted final size in Iraq

Figure 5. Estimation of coronavirus COVID-19 epidemic size by the logistic model for Iraq.

5. Discussions

There are also many strategies and preventions as global efforts to reduce the impact of the
COVID-19 around the world. Although, this pandemic becomes a global issue and speeding very fast
but all clinical and theoretical studies give a great effort to control this disease. One of the theoretical
tools that provide a wide range of predictions and estimations about this issue is mathematical
modeling. Mathematical modeling with computational simulations give model predictions and
identify key critical parameters. However, having many approaches for identifying such estimations
and understanding this disease makes this issue remain unclear. Machine Learning (ML) and Cloud
Computing effectively give predict growth of the epidemic and design strategies and policy to manage
its spread [34]. This study provides an essential way to suggest more preventions compared to the
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previous approaches. Another step forward to analyze the dynamics of the COVOD-19 is using the
idea of local sensitivity [35]. Based on this study, the sensitivity of each variable concerning the
model parameters are calculated, and some model key elements are identified for more preventions
and suggestions. More recent study about this issue is a qualitative and quantitative analysis for the
model dynamics [36]. According to this study, some critical model parameters are identified, and this
becomes an important tool to understand the global issue more effectively and widely. Comparing to
all previous studies, our numerical approaches give a another great step forward to understand the
model dynamics and predict the spreading of this disease on the community.

6. Conclusions

Global efforts around the world are focused and discussed several health care strategies for
controlling the spreading of the new coronavirus on community. It can be seen that this virus becomes
a public health threat and spreading easily among individuals. The coronavirus disease (COVID–19)
model is a complicated one, and it requires some mathematical tools to have improvements about
interventions and healthcare programs. The COVID-19 is modeled based on clinical data and reported
cases in Wuham-China. The model equations are non-linear differential equations that numerical
approaches are required to have some numerical solutions.

We applied the idea of Euler and Runge–Kutta methods to calculate some approximate solutions for
each model state based on the reported cases. These provide us an important step forward to identify
model critical elements and future model improvement. Computational results may help international
efforts to reduce number of infected individuals from the disease and to prevent the conronavirus more
widely on the community.

Accordingly, some findings and computational results are given based on the suggested approaches
for the COVID-19 model. Firstly, the model dynamics of all compartments are computed using three
different numerical techniques. The dynamics of all compartment are investigated, the results provide a
great step forward to predict and analyze the population of each model state. All estimated parameters
and initial populations obtained for the confirmed cases in China. Secondly, the number of infected
and recovered people for confirmed cases in Iraq and Turkey are also discussed. The computations
simulations obtained using Matlab.

Results in this study suggested that health care programs should more pay attention on the key
critical model parameters. This may help community interventions that can reduce the impact of
coronavirus disease. Computational results provide a key estimation and future predict easily about
the number of infected individuals, susceptible individuals and recovered individuals. Accordingly,
we have investigated forecasting epidemic size for Turkey and Iraq using the logistic model. It can be
concluded that the suggested model is a reasonable description of this epidemic disease. Interestingly,
the proposed steps here can further be developed and applied to a wide range of coronavirus models
for different cases a round the world. They will be useful for future model improvements, interventions
and vaccination programs.
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