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Abstract: Coffee is the most widely traded and popular beverage globally, and its flavor and quality 

depend significantly on the absence of defective beans. This study aimed to automate the 

identification and classification of impurities in green coffee beans, enabling more uniform roasting, 

as peaberries roast differently due to their unique shape. The automated system enhances efficiency 

and precision over manual checks, using 4367 green coffee bean images from Bangladesh, divided 

into six categories: black, sour, fade, broken, normal, and peaberry. The main contribution of this 

study is providing the first Bangladesh-origin dataset for coffee bean defect detection, paired with 



963 

AIMS Agriculture and Food  Volume 10, Issue 4, 962–983. 

recent YOLOv10-N advances tailored to small, subtle defects. The study took an innovative step 

forward for Bangladesh’s coffee sector, which has traditionally relied on labor-intensive and 

error-prone manual sorting methods. This approach addresses key inefficiencies and enhances 

quality control, boosting global market competitiveness. This study shows that Bangladesh’s coffee 

industry can benefit from using YOLOv10-N to detect defects in green coffee beans, providing a 

cost-effective and accurate quality control system. We evaluated the following models: Efficient-Net, 

ResNet-50, Faster R-CNN, and several versions of YOLO (v3-v10). Among them, YOLOv10-N was 

identified as the most successful model, with the highest precision of 0.992, recall of 0.984, 

F1-scoreof 0.987, and mean average precision (mAP) of 0.995; YOLOv8 had precision of 0.959 and 

recall of 0.944, and ResNet-50 had precision of 0.837 and recall of 0.853. The model’s accuracy and 

resilience can be further improved by creating a larger and more diverse dataset, which will enable it 

to better detect subtle differences in defects across batches of green coffee beans under varying 

environmental conditions.  

Keywords: Arabica; Robusta; normal; peaberry; defective; YOLO 

 

1. Introduction 

Coffee is one of the most widely traded agricultural commodities globally, with more than two 

billion cups consumed daily, making it a highly popular beverage [1-3]. The quality of coffee beans is 

crucial for competitive market pricing, consumer acceptance, and storage stability, particularly in 

developing countries [4]. It is a major source of foreign exchange in tropical and subtropical regions, 

with nations like Brazil, Vietnam, Colombia, and Indonesia significantly benefiting from its trade, 

which supports the livelihoods of millions [5]. As global coffee consumption rises, so does the demand 

for high-quality beans. 

Many factors determine the quality and price of coffee [6–8]. We classify coffee beans into two 

types based on their shape: peaberry (special) and normal (good) [9,10]. Peaberries, which make up 

only about 7% of the coffee harvest, are more expensive due to their lower yield [5]. This study used 

defective (e.g., black, broken, faded, and sour) green coffee beans alongside peaberry (special) and 

normal (good) green coffee beans. Peaberry beans are rounder and smaller than traditional flat-sided 

beans because they develop from a single fertilized embryo inside the coffee cherry [11,12]. Their 

unique shape and higher market value require separation from regular beans, a process typically done 

manually by farmers. Defective beans, such as black, broken, faded, and sour, significantly reduce 

quality and market value. In less developed countries, defect removal is often manual, making the 

process time-consuming and inaccurate, which highlights the need for affordable, efficient automated 

solutions [4,5]. 

In addition to clearly defective beans, the “normal” and “peaberry” categories also show 

considerable variation in shape and appearance [13]. Even within acceptable quality grades, beans can 

differ in size, aspect ratio, flatness or roundness, surface texture, and color [14]. These differences are 

influenced by cultivar, growing conditions, and post-harvest handling [14]. In practice, some normal 

flat beans may look slightly shriveled or partially discolored but are still classified as acceptable. 

Peaberries can also vary widely in diameter and roundness. This variation within each class can 

resemble early or mild defects, making it difficult and subjective for human graders to distinguish 
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between normal, peaberry, and defective beans [4]. Therefore, an automated inspection system must 

not only detect clear defects but also handle the large morphological variation in normal and peaberry 

beans to ensure consistent, large-scale quality control and uniform roasting [4]. 

Recent advancements in image processing and deep learning have enabled the development of 

automatic classification systems for various agricultural products. For example, deep learning models 

have achieved high accuracy in detecting tomato crop diseases and sorting carrots using image 

processing techniques [15,16]. Similarly, researchers have applied machine learning methods such as 

support vector machines (SVM), multi-layer perceptrons (MLP), and decision trees to classify 

different crop types [17]. In object detection, researchers have employed the YOLO (You Only Look 

Once) model for diverse applications, including detecting apples in orchards and monitoring social 

distancing during the COVID-19 pandemic [18–20]. Previous studies have widely employed YOLOv5 

for social distancing tracking and face mask detection [21,22]. Deep learning models are used in image 

processing for quality classification across various crops, with tomato achieving 97.29% and 97.49% 

accuracy [15]. A straightforward image processing technique has been used for carrot fruit 

classification, achieving accuracies of 92.59% and 96.30%, respectively [16]. Another study used 

machine learning techniques, such as C4.5 decision tree, logistic regression, SVM, and multi-layer 

perceptron, to classify nine major summer crops, achieving an accuracy of 88% [17]. There is a need 

for reliable and cost-effective systems that can classify and identify different types of coffee beans, 

such as peaberry, normal, and defective beans, to improve the quality and competitiveness of coffee in 

less developed countries. Using a dataset of 5044 images, our previous study evaluated six object 

identification models for classifying coffee beans. Architecture modifications and hyperparameter 

tuning were responsible for the higher performance of the custom-YOLOv8n model, which had a 

precision of 0.977 [23]. In another study, the YOLOv7 object identification model was used to identify 

tea leaf diseases. With a mAP of 98.2% and a detection accuracy of 97.3%, the model demonstrated its 

potential for increased disease detection effectiveness [24]. 

Our research focuses on coffee beans from Bangladesh (Arabica and Robusta) using a localized 

dataset, whereas most existing research is based on coffee from Brazil, Vietnam, Indonesia, and 

Colombia [25]. This approach improves local coffee quality and provides a model for agricultural 

quality management in regions with limited human sorting capabilities. The study also addresses the 

unique challenges faced by the coffee sector in Bangladesh. This study proposes using deep learning to 

identify various types of green coffee beans. Several deep learning models, including YOLO (versions 

3-10), ResNet-50, Efficient-Net, and Faster R-CNN, are employed to analyze a coffee bean dataset. 

The models are evaluated based on their performance, with the best model selected for bean detection. 

Implementing this automated system aims to reduce labor costs, improve bean quality, and increase 

market value. It also opens new market opportunities, helping producers secure higher prices and 

strengthen their position in the global coffee market. 

Our earlier studies explored machine learning approaches for classifying green coffee as normal, 

peaberry, and defective. While these methods produced good classification results, they focused solely 

on category prediction without incorporating object detection [26–28]. In a subsequent study [23], we 

conducted a comparative evaluation of YOLO (v3-v8) models for defect detection in green coffee 

beans, which showed strong performance. Building on this, the current research achieved higher recall 

and F1-score, demonstrating more effective detection and classification of diverse defect types than 

the previous study [23]. This performance highlights the model’s reliability in identifying defects. 

Moreover, integrating object detection enhances the overall accuracy and practicality of the 
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classification system, supporting the development of robust quality control mechanisms in the coffee 

production process. 

Despite progress with YOLOv3-YOLOv8 and traditional classifiers, no study has yet introduced 

a Bangladesh-origin coffee bean defect dataset or evaluated YOLOv10-N for this task. This gap limits 

both the localization of coffee quality research and the exploration of recent object detection advances 

for small, subtle defects. 

The proposed work addresses this gap by preparing a Bangladesh-origin dataset of green coffee 

beans, conducting a comparative evaluation of multiple deep learning models, namely ResNet-50, 

EfficientNet, Faster R-CNN, and YOLO (versions 3-10), and optimizing YOLOv10-N through data 

augmentation and hyperparameter tuning. This combination ensures robust detection performance 

across normal, peaberry, and defective bean classes while highlighting the practical advantages of 

YOLOv10-N for small-defect detection. 

This study introduces YOLOv10-N, an advanced deep learning model for precise detection of 

coffee bean flaws. Utilizing techniques such as mosaic data augmentation, it enhances flaw 

identification. Its application in countries like Bangladesh can improve quality control and market 

competitiveness. By addressing limitations in manual sorting, this model modernizes agricultural 

quality assessment and serves as a template for similar industries. 

1.1. Contributions 

The main contributions of this study are as follows: 

• Development of the first Bangladesh-origin dataset of green coffee beans encompassing normal, 

peaberry, and defective classes. 

• Implementation of YOLOv10-N without mosaic augmentation and optimized hyperparameters to 

improve detection of small and subtle defects. 

• Evaluation of multiple deep learning models, including ResNet-50, EfficientNet, Faster R-CNN, 

and YOLO (v3-v10), to benchmark performance. 

• Demonstration of superior recall and F1-score with YOLOv10-N, showing improved reliability 

over earlier approaches and datasets. 

• Support for affordable automated quality control systems that can reduce manual sorting limitations 

in developing countries. 

1.2. Related work 

1.2.1. Coffee defect detection 

Our previous study [23] compared multiple YOLO variants on coffee beans from Timor-Leste, 

reporting a custom-YOLOv8n model with precision of 0.977, recall of 0.990, F1-score of 0.983, and 

mAP of 0.995. This approach confirmed the effectiveness of lightweight YOLO architectures; 

however, the study used a geographically limited dataset and failed to explore the advances introduced 

in later YOLO versions. Chang and Liu [29] developed a multiscale CNN with inception-style fusion 

for coffee defect classification, using 7300 images across eight classes and achieving an overall 

accuracy of 96%. The framework showed competitive results against standard CNN baselines; 

however, the low-resolution 64×64 inputs and reliance on a non-public dataset restrict robustness and 
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broader applicability. Zhou et al. [30] designed a convolutional neural network for coffee defect 

detection using a dataset of green coffee beans, achieving an overall accuracy of about 96%. Their 

study confirmed that CNN-based methods can serve as a foundation for automated quality evaluation. 

However, the approach was limited to conventional CNN architectures and moderate classification 

accuracy, without exploring more advanced object-detection frameworks or larger, more diverse 

datasets. 

1.2.2. YOLO applications in agriculture 

Recent studies have increasingly adopted object detection architectures, particularly the YOLO 

family, for plant disease diagnosis. Liu and Wang [31] enhanced YOLOv3 by integrating image 

pyramids, bounding-box clustering, and multi scale training, achieving an accuracy of 92.39% with an 

average processing time of 20.39 ms, thereby demonstrating feasibility for real-time agricultural 

applications. Qi et al. [32] extended this line of work with SE-YOLOv5, an improved YOLOv5 variant, 

attaining 91.07% accuracy and 94.10% mAP on a mobile phone–captured tomato disease dataset, 

highlighting its practicality in field conditions. More recently, Soeb et al. [24] applied YOLOv7 to tea 

leaf disease detection using 4000 images collected from Bangladeshi tea gardens, achieving 97.3% 

accuracy and aiming to support entomologists while enhancing agricultural productivity in developing 

regions. 

1.2.3. CNN/ResNet/EfficientNet comparisons 

Gulzar and Ünal [33] proposed PlmNet, a CNN model for time-sensitive bruise detection in 

plums using NIR imaging. Trained on a custom dataset, the model achieved a test accuracy of 97.17% 

and consistently high precision, recall, and F1-scores across all classes, outperforming EfficientNetV3. 

However, the reliance on NIR imaging and a relatively small dataset of 400 plums limits generalization 

and practical deployment in large-scale or low-cost agricultural settings. Gulzar et al. [34] conducted a 

comparative study on alfalfa variety classification using seven deep learning models (including 

DenseNet121, ResNet101, and EfficientNetB3) trained on a custom dataset of 1214 leaf images. 

Transfer learning enabled near-perfect performance, with DenseNet121 achieving 100% test accuracy 

and EfficientNetB3 99.45%. However, the dataset was limited to three varieties under controlled 

conditions, constraining generalization to diverse field environments and broader crop varieties. 

Seelwal et al. [35] presented a systematic review of 69 studies on deep learning applications for rice 

disease detection from 2008 to 2023. The review highlights that most works focused on rice blast, 

brown spot, and bacterial blight, with accuracy being the dominant evaluation metric. The authors 

emphasized the promise of hybrid deep learning–machine learning approaches but noted limitations in 

dataset diversity and real-world applicability. 

2. Materials and methods 

The proposed framework introduces an automated green coffee bean defect detection pipeline 

specifically designed for the Bangladeshi coffee industry, differing from prior YOLO-based 

agricultural models that mainly relied on foreign datasets or simple disease-spot detection. Our 

methodology integrates a newly curated, high-resolution dataset of 4367 locally sourced beans with a 
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tailored YOLOv10-N detection framework optimized for small-defect recognition and real-time 

deployment. The originality of this work lies in three aspects: (1) the creation of the first 

Bangladesh-origin coffee bean dataset, (2) customized data-augmentation and class-balancing 

strategies for underrepresented defects, and (3) adaptation of the lightweight CSPNet–PAN 

architecture with fine-tuned hyperparameters for edge-level efficiency. Collectively, these 

innovations ensure robust, high-speed defect detection suited to local industry needs and establish a 

transferable approach for other agricultural-quality applications. 

2.1. Data description 

Researchers collected Robusta and Arabica beans from two renowned coffee gardens in the 

Khagrachari district of Bangladesh and mechanically removed the parchment. Researchers 

created a controlled environment to capture uniform images of the beans using a Canon M50 

camera (Mirrorless, ISO 800, exposure compensation 8, exposure time of 1/160, autofocus mode) 

positioned 73 cm above a table with three lights arranged at optimal angles for lighting, as shown in 

Figure 1. Researchers placed a white paper under the camera as a background and arranged the beans 

in a grid pattern, with 40 beans per sheet (5 columns and 8 rows). The dataset comprised 4367 

labeled green coffee bean images categorized into six quality classes: black, sour, faded, broken, 

normal, and peaberry. Researchers captured each image under controlled lighting and standardized it 

to a resolution of 640 × 640 pixels. To ensure balanced representation across subsets, the dataset was 

split into training (75%), validation (15%), and testing (10%) sets. Table 1 shows the class-wise 

distribution of images. Data augmentation was applied exclusively to the training subset to prevent 

any overlap between sets. Of the total dataset, 3500 images were original, and the remaining images 

were generated using data augmentation techniques such as 90°/180° flips and rotations. We chose 

these augmentations to increase sample diversity, improve model robustness to orientation changes, 

and mitigate class imbalance in minority categories. This study did not employ any mosaic or 

synthetic image-composition techniques.  

We standardized the images to a resolution of 640 × 640 pixels and replaced the backgrounds 

with black using Python. Using the LabelImg software, we manually annotated each image by 

drawing bounding boxes around the defective areas and labeling the classes, storing the outputs as 

text and class files. The smallest surrounding rectangle was used to ensure minimal background 

inclusion. Throughout the process, diseased coffee beans were handled with care to prevent mixing 

and ensure the integrity of the dataset.  

Table 1. Green coffee bean class-wise image distribution. 

Class Training Validation Testing Total 

Black 590 118 78 786 

Sour 556 111 75 742 

Faded 556 111 75 742 

Broken 655 132 87 873 

Normal 722 144 95 962 

Peaberry 196 39 27 262 

Total 3275 655 437 4367 



968 

AIMS Agriculture and Food  Volume 10, Issue 4, 962–983. 

 

Figure 1. Experimental setup. 

2.2. Green coffee bean types 

The value of coffee beans is influenced by the total number of deductions per a given quantity 

of beans, making it crucial to remove defective beans by defect type (as shown in Figure 2). The 

detailed definitions of different types of green coffee beans are shown below: 

Normal: A normal (good) coffee cherry will contain two beans with flat sides, similar to peanut halves. 

These types of beans are sometimes referred to as “flat beans” [26–28,36]. 

Peaberry: A peaberry is a single, rounded bean from a coffee cherry that contains one bean instead of 

the usual flat-sided bean pair. Also known as “caracol”, “perla”, or “perle”, peaberries are often 

separated and sold as a distinct variety [26–28,37,38].  

Black (black or partially black beans): Black beans, resulting from harvesting immature or dead 

cherries, can be caused by water, heat, or insect damage. They have over 25% black, deep blue, or 

dark brown surface area, which negatively impacts coffee taste. Their number is a key indicator of 

coffee grade [26–28,37,38]. 

Broken (cut/nipped bean and pressed or crushed bean): Broken beans are wet-processed beans cut or 

bruised during pulping, often due to damaged equipment. They display brown or black marks, 

oxidation, and potential off-flavors. Damaged beans roast unevenly, age quickly, and are susceptible 

to environmental damage [26–28,37]. 

Faded: A color change in unroasted coffee beans, often caused by old crops or rapid drying. It can also be 

referred to as “soapy” or “bleached” if stored too long [26–28,37,38].  
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Sour (sour or partially sour bean): Sour beans, with a yellow or reddish-brown color, can be caused 

by overripening or improper fermentation of cherries. They emit a sour or vinegar-like smell when 

cut or scratched, due to the death of the internal embryo caused by over-fermentation, high 

temperatures during harvesting and processing, and over-fermentation of fruit attached to trees in 

humid conditions [26–28,37,38]. 

 

Figure 2. Different classes of coffee beans for comparison. 

2.3. The proposed YOLOv10 model 

In this work, we employed several deep learning models (Efficient-Net, ResNet-50, 

Faster-R-CNN, YOLOv3, YOLOv4, YOLOv5, YOLOv7, YOLOv8, YOLOv9, and YOLOv10) to 

identify coffee beans. The YOLO models are renowned for their ability to recognize objects in real 

time, making them appropriate for this work.  

The purpose of the YOLOv10-N object detection model is to identify and detect coffee beans. It 

successfully distinguishes different types of coffee beans, such as normal, defective, and special, 

using multiscale detection, attention techniques, and convolutional neural networks. YOLOv10-N is 

a design improvement that incorporates preprocessing methods from YOLOv9 and mosaic data 

augmentation. The model is based on YOLOv8 and YOLOv7. The enhanced architecture, known as 

enlarged SCDown, including a convolutional network, attention techniques, and sequential 

processing, combines cardinality merging, expansion, and shuffling to improve learning capabilities, 

serving as the central computer unit. The backbone, which extracts features, the neck, which fuses 

and refines features, and the head, which makes final predictions, are the three main parts of the 

model’s structure.  

The YOLOv10-N architecture introduces several design enhancements over previous YOLO 

versions; these collectively strengthen its ability to detect small, subtle defects in coffee beans. The 
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SCDown module expands the receptive field while maintaining fine spatial detail, enabling the 

network to preserve tiny visual cues such as minor color fading or surface bruises. The CSPNet–

PAN integration improves multiscale feature aggregation between shallow and deep layers, enabling 

the model to better capture both global bean shape and localized defect textures. Additionally, the 

enhanced PAN neck ensures more effective feature fusion across multiple resolutions, further 

improving the detection of small and low-contrast defects. Although mosaic augmentation is 

supported in YOLOv10, it was not employed in this work, as our single-object, centered-bean 

images did not benefit from synthetic composition. Together, these structural refinements explain 

YOLOv10-N’s superior precision and recall in detecting minority defect categories such as faded 

and sour beans. 

Convolutional layers make up the backbone, whereas PSA blocks and convolutional layers are 

combined in the neck to target specific regions of the feature map. The head handles the actual 

detection process, including classification and bounding box regression (as shown in Figure 3). 

 

Figure 3. Detection and identification of green coffee beans using the YOLOv10-N model. 
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Figure 4. Block diagram showing the YOLO model’s whole training procedure for 

identifying coffee bean defects.  

The YOLO model for object identification is trained through two primary phases: the training 

and testing phases, as shown in Figure 4. The process is organized sequentially from preparing the 

dataset, training, and evaluating it. Metrics such as accuracy, recall, and F1-score are used to assess 

the models on the test set after they have been trained on the training set. The training step includes 

assembling a training set for the YOLO model, preprocessing the collected image dataset, and 

combining them. During testing, a new image is displayed, and the trained neural network uses it to 

find and recognize objects. The multiscale feature integration approach of the YOLO model 

optimizes the capture of fine features of coffee bean flaws, improving detection accuracy and 

network performance. 

2.4. Experimental configuration 

In this study, the YOLOv10 model was downloaded from the website 

https://docs.ultralytics.com/models/yolov10/ [39]. The latest YOLOv10 release model includes six 

models of different sizes: YOLOv10-N, YOLOv10-S, YOLOv10-M, YOLOv10-B, YOLOv10-L, 

and YOLOv10-X. We selected the YOLOv10-N model in this study because it offers an effective 

compromise between modest size and strong performance. The YOLOv10-N model introduces 

notable advancements to address challenges in defective coffee bean classification and to enhance 

the quality assessment process. A key innovation lies in the model architecture, which incorporates 

the Cross Stage Partial Network (CSPNet) as its backbone for superior feature extraction and the 

Path Aggregation Network (PAN) in its neck to optimize feature aggregation across multiple scales. 

These structural enhancements enable the model to capture intricate details effectively, ensuring 

highly accurate defect detection and classification. For training, we employed a tailored combination 

of loss functions. We used cross-entropy loss to enhance classification accuracy and applied 

coordinate loss to ensure precise localization of defective regions. Additionally, we introduced 

confidence loss to improve the model’s ability to distinguish objects from background areas, 

resulting in more refined predictions. 

The experiments were run on a workstation with an NVIDIA GeForce RTX 3060 GPU, an Intel 

Core i7-11700 CPU, 32 GB of RAM, and Windows 10 running Python 3.10 and PyTorch 2.1. 

Training of the YOLOv10-N model occurred over 150 epochs with a batch size of 16, showing 
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smooth convergence in training and validation accuracy and loss curves. Losses decreased steadily, 

and accuracy plateaued after about 120 epochs, confirming stable optimization without overfitting 

and consistent generalization, which ensures reproducibility of results. 

We pre-trained the network with the COCO dataset and fine-tuned it using the green coffee 

bean dataset described above (Table 1) [40]. Table 2 represents the configuration of the 

hyperparameters. 

Table 2. Hyperparameter configuration of the YOLOv10-N model. 

Parameter Value Justification 

Optimizer Adam Provides adaptive learning rate updates for stable and faster convergence. 

Epochs 150 Ensures sufficient training iterations for convergence without overfitting. 

Batch size 16 Balances computational efficiency and gradient stability on limited GPU memory. 

Learning rate 0.01 Empirically optimal for YOLOv10 training, allowing gradual convergence. 

Momentum 0.937 Retains previous gradient direction, stabilizing weight updates. 

Weight decay 0.0005 Prevents overfitting by penalizing large weights. 

Backbone CSPNet Enhances gradient flow and reduces computational cost through partial connections. 

Neck PAN Aggregates multi-scale feature information to improve small-object detection. 

Activation ReLU Provides nonlinearity while avoiding vanishing gradients. 

2.5. Loss function 

The total loss function (Ltotal) used for YOLOv10-N integrates three primary components: 

classification, localization (coordinate regression), and confidence (objectness) losses: 

Ltotal = Lcls + Lcoord + Lconf          (1) 

Classification loss (Lcls): Measures the error between predicted and true class probabilities using 

cross-entropy loss: 

Lcls = ∑ yi log(yi)
C

i=0
          (2) 

where C is the number of classes, y_i is the ground-truth label, and ŷ_i is the predicted probability. 

Coordinate loss (Lcoord): Calculates bounding box regression error using the mean squared error 

(MSE) between predicted and true box coordinates: 

Lcoord = λ𝑐𝑜𝑜𝑟𝑑 ∑ [(𝑥𝑖  −  𝑥̂𝑖)2  +  (𝑦𝑖  −  𝑦̂𝑖)2  +  (𝑤𝑖  −  𝑤̂𝑖)2  +  (ℎ𝑖  −  ℎ̂𝑖)
2

]
N

i=1

   (3) 

Confidence loss (Lconf): Ensures that the model correctly identifies whether an object exists in 

the predicted box: 

Lconf = ∑ [𝑦𝑖log(𝑐̂𝑖)  + (1 −  𝑦𝑖) log(1 −  𝑐̂𝑖)]
N

i=1
      (4) 

The combination of these three losses enables the model to simultaneously learn object presence, 

class identity, and spatial precision. 
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3. Experimental results 

The study evaluated the effectiveness of different object detection models on coffee bean 

categorization. The accuracy and recall of each model were evaluated on a dataset of 4367 coffee 

bean images, divided into six groups. The YOLOv10-N model emerged as the top performer, 

demonstrating the effectiveness of customized models and cutting-edge architectures in object 

detection, especially when trained on datasets with unique properties.  

A number of important metrics are shown in Table 3 and Figure 5, which show how several 

deep learning models performed on a dataset of coffee beans, including precision, recall, F1-score, 

and mean average precision (mAP). Resnet-50, EfficientNet, Faster R-CNN, and several iterations of 

YOLO (You Only Look Once) (YOLOv3, YOLOv4, YOLOv7, YOLOv8, YOLOv9, and 

YOLOv10-N) were among the models assessed. We evaluated every model using an input size of 

640 × 640 pixels to ensure uniformity across the assessments. 

The models’ precision values, which indicate the accuracy of positive predictions, varied from 

0.785 to 0.992, with higher values denoting superior performance. The recall scale, which measures 

how well the model captures all pertinent cases, ranged from 0.772 to 0.984. The F1-score ranged 

from 0.778 to 0.987, integrating recall and accuracy to produce a balanced statistic. Higher scores 

indicated better performance. The mean average precision (mAP), an overall measure of precision 

across all memory levels, varied from 0.768 to 0.995. 

Table 3. Detection performance comparison across multiple models. 

Models Input Precision Recall F1-score mAP 

Efficient-Net 640 × 640 0.785 0.772 0.778 0.768 

ResNet-50 640 × 640 0.837 0.853 0.846 0.823 

Faster-R-CNN 640 × 640 0.815 0.838 0.826 0.813 

YOLOv3 640 × 640 0.741 0.73 0.735 0.727 

YOLOv4 640 × 640 0.825 0.811 0.817 0.818 

YOLOv5 640 × 640 0.873 0.843 0.857 0.844 

YOLOv7 640 × 640 0.915 0.904 0.909 0.916 

YOLOv8 640 × 640 0.959 0.944 0.951 0.952 

YOLOv9 640 × 640 0.977 0.973 0.973 0.975 

YOLOv10-N 640 × 640 0.992 0.984 0.987 0.995 

YOLOv10-N distinguished itself from other models by achieving the highest precision (0.992) 

and mAP (0.995), demonstrating remarkable accuracy and resilience in forecasting positive events. 

Conversely, YOLOv10-N had the best recall (0.984) and F1-score (0.987), demonstrating its ability 

to recognize all pertinent occurrences and strike an appropriate balance between accuracy and recall. 

Among the available YOLOv10 variants (N, S, M, L, X), the lightweight YOLOv10-N model was 

selected as the core architecture because it offers the best trade-off between accuracy, speed, and 

computational efficiency for our dataset and intended deployment. In preliminary experiments, 

YOLOv10-S and YOLOv10-M achieved only marginal gains in mAP (≈0.3%–0.5%) compared with 

YOLOv10-N but required 2-3 times longer training time and significantly higher GPU memory 

usage. The larger YOLOv10-L model overfitted due to the limited dataset size (4367 images) and the 

relatively simple background environment. In contrast, YOLOv10-N achieved a mAP of 0.995 and a 
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F1-score of 0.987 while maintaining real-time inference at >100 FPS on a single GPU, making it 

more suitable for lightweight industrial deployment and potential edge-device applications. The 

reduced parameter count and faster convergence of YOLOv10-N therefore make it an optimal 

balance of accuracy, efficiency, and generalization capacity for small-to-medium-scale agricultural 

image datasets. 

The performance of different object identification models over time was evaluated using four 

metrics: mAP, recall, F1-score, and precision, as shown in Figure 5. The graph’s “models” x-axis 

shows various iterations of the well-known object detection method YOLO, in addition to additional 

models like Faster-R-CNN, ResNet-50, and Efficient-Net. The “percentage” y-axis has a range of 0 

to 1. 

 

Figure 5. Performance comparison of the different models.  

The proposed YOLOv10-N model achieves optimal performance, demonstrating its 

effectiveness across the evaluation metrics shown in Table 4. Two bars are plotted side by side for 

each class, as shown in Figure 6. The X-axis represents classes, and the Y-axis represents the 

percentage. This graph shows the performance of the best models across all classes. 

We continuously monitored both classification and localization losses during training to ensure 

convergence and model stability. The YOLOv10-N model exhibited a steady decrease in total loss 

over 150 epochs, with no oscillations or divergence in either training or validation phases. The 

validation loss plateaued after approximately 120 epochs, while the corresponding precision and 

recall curves stabilized at 0.992 and 0.984, respectively, indicating robust generalization without 
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overfitting. These trends were consistent across multiple runs, confirming the reproducibility and 

stable optimization behavior of YOLOv10-N. Although we could not include the actual loss plots 

due to computational limitations at the revision stage, the described convergence pattern aligns with 

typical YOLOv10 training.  

Table 4. Proposed YOLOv10-N model performance per class. 

Classes Input Precision Recall 

Black  640 × 640 1.0 0.984 

Broken 640 × 640 0.961 0.985 

Faded 640 × 640 0.989 0.972 

Sour 640 × 640 1.0 0.989 

Good 640 × 640 0.989 1.0 

Peaberry 640 × 640 0.991 0.978 

 

Figure 6. Best-performing (YOLOv10-N) model per class. 

Figure 7 depicts the accuracy of object detection models across a predetermined number of 

epochs. The y-axis represents the accuracy range from 0.0 to 1.0, while the x-axis shows the number 

of times the model was trained on the dataset. The graph shows that accuracy plateaus as the 

number of epochs increases, suggesting the models may have reached their peak performance on 

the training set. 

Figure 8 shows a selection of images produced by the trained model’s inference. These images 

demonstrate the model’s ability to detect and classify objects accurately based on the patterns and 

features it learned during training. 
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Figure 7. Comparative performance of various models over 150 epochs. 

 

Figure 8. Visual demonstration of the detection results of the proposed YOLOv10-N model. 
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Figure 9. Confusion matrix of the proposed YOLOv10-N model. 

In this study, the confusion matrix shown in Figure 9, likely stemming from a YOLOv10-N 

experiment on employee image detection, offers valuable insights into the model’s performance. 

Each cell visualizes how well objects from specific departments (represented by rows) were 

classified, with correct predictions highlighted on the diagonal. Deviations from the diagonal indicate 

misclassifications, allowing us to pinpoint classes the model struggles with by calculating metrics 

such as accuracy, precision, recall, and F1-score for each department. 

Although we did not conduct a separate ablation experiment due to computational and resource 

constraints, we attribute the performance improvements observed with YOLOv10-N to its 

architectural innovations over YOLOv9, as documented in the official Ultralytics release notes [41] 

and verified in independent benchmark studies. YOLOv10 introduces the spatial consistency 

downsampling (SCDown) module, which enhances feature preservation during subsampling, and a 

refined PAN-CSPNet integration that improves cross-scale information flow for small-object 

detection. Studies have reported that these mechanisms improve mAP by 1%-3% compared to 

YOLOv9 across multiple datasets. 

In our context, the dataset contained single, centered coffee-bean images rather than multi-object 

scenes, making mosaic augmentation unnecessary. One study [42] has similarly noted that mosaic 

augmentation yields limited benefit. Therefore, we can reasonably attribute the superior precision 

and recall achieved by YOLOv10-N in this work to its architectural refinements rather than to 

additional augmentation. 
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4. Discussion  

This study compared several YOLO models (YOLOv3, YOLOv4, YOLOv5, YOLOv7, 

YOLOv8, and a custom-YOLOv8n model) for identifying and categorizing faulty green coffee beans. 

We assessed model performance using precision, recall, F1-score, and mAP, and the 

custom-YOLOv8n model achieved the highest accuracy. The main goal of this study was to determine 

the best YOLO model for green coffee bean quality control and defect classification, with a focus on 

dataset preparation and model adaptation for improved performance. Four fault categories (black, 

broken, fading, and sour) were present in the dataset, which included 506 testing and 4032 training 

images. According to the study’s findings, deep learning based automation might enhance coffee 

industry quality control by lowering human labor costs and boosting categorization consistency. 

In contrast, the running paper extends this research by introducing YOLOv10-N, an advanced 

version of YOLO, optimized explicitly for Bangladeshi coffee beans (Arabica and Robusta). It 

incorporates a more diverse dataset containing 4367 images, categorized into six classes: black, sour, 

faded, broken, normal, and peaberry. The inclusion of normal and peaberry beans expands the 

classification scope beyond defects, enabling broader quality assessment.  

This study also compares YOLOv10-N with other deep learning models, including EfficientNet, 

ResNet-50, Faster R-CNN, and YOLO versions 3-10, and indicates YOLOv10-N as the 

best-performing model, achieving 0.992 precision, 0.984 recall, and 0.995 mAP. Compared to the 

study conducted by Liang et al. [43], which achieved 98.97% accuracy, our model achieved an 

accuracy of 99.2%, likely due to the inclusion of mosaic data augmentation and a more diverse dataset. 

The proposed YOLOv10-N model, with a precision of 0.992, is similar to a previous study’s 0.9924 

precision for coffee categorization [44]. However, this model focuses on object detection and 

classification of coffee bean flaws, demonstrating its resilience in handling fault categories. Its 

precision is 0.992, and mean average precision (mAP) is 0.995, proving its efficiency in automating 

the coffee industry’s defect identification process, as well as making it suitable for thorough quality 

control. This research achieved slightly higher precision and recall, overall model performance, and 

per-class performance compared to [45]. These improvements indicate that the proposed method 

outperforms the baseline in accurately identifying objects in different categories, making it a more 

effective solution for the given task. The proposed model outperforms a comparison study that 

detected faults in eight types with 95.2% accuracy, reaching 100% accuracy when only looking for the 

problem [46]. This proposed YOLOv10-N model adapts easily and can detect defects in different 

objects.  

On the coffee bean surfaces, the suggested YOLOv10-N model correctly identified flaws. The 

suggested model has the potential to detect defects in coffee beans, as well as normal (good), and 

special beans (peaberry), with high accuracy and reliability, thanks to its ability to handle small items 

and its better performance with more diverse training data. The proposed YOLOv10-N model appears 

to have identified these flaws more successfully than conventional techniques. The study’s detection 

findings demonstrated that the proposed YOLOv10-N model could identify them with high confidence. 

This research provides a framework for integrating deep learning models into practical agricultural 

applications, paving the way for technology-driven quality assurance in the food industry.  
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5. Conclusions 

In the study, green coffee beans were classified into six categories: black, sour, faded, broken, 

normal (good), and peaberry (special) beans. The results demonstrate the potential of YOLOv10-N for 

effectively detecting and classifying defective beans, significantly outperforming previous models. 

The YOLOv10-N model achieved a precision of 0.992, recall of 0.984, F1-score of 0.987, and mAP 

score of 0.995, indicating high accuracy and reliability in distinguishing different defect types. These 

findings highlight YOLOv10-N’s capacity for automating quality control in coffee production, which 

can be particularly beneficial for developing regions such as Bangladesh. By implementing automated 

defect detection, the coffee industry can improve consistency, reduce labor costs, and enhance the 

market competitiveness of coffee products. 

The adoption of YOLOv10-N for defective coffee bean detection marks a significant step toward 

modernizing quality control. These contributions address key domain-specific challenges, such as 

variability in bean size, shape, and defect characteristics, while offering a practical, efficient solution 

for enhancing quality. In particular, the model showed strong robustness in detecting minority and 

small-sized classes. By improving quality assessment, it strengthens Bangladesh’s coffee sector and 

contributes to the progress of defect detection technologies. For future development, expanding the 

dataset to include a wider range of bean varieties and maturity stages across multiple countries will be 

essential for improving generalizability. In addition, developing lightweight versions of YOLOv10-N 

suitable for deployment on edge devices such as Jetson or mobile platforms can facilitate on-farm use. 

Finally, integrating the model into real farm workflows and processing lines will be critical for testing 

its practical impact under realistic operating conditions. 

6. Practical implementation and deployment 

We designed the proposed YOLOv10-N framework with deployment feasibility in mind, 

particularly for low-cost and resource-constrained agricultural environments. The lightweight 

YOLOv10-N model contains only 7.2 M parameters and requires approximately 8.1 GFLOPs, 

enabling real-time inference on modest hardware. On an NVIDIA RTX 3060 GPU, the model achieves 

an average inference time of 9–10 ms per image (≈100–110 FPS). When deployed on embedded 

platforms such as the Jetson Nano or Jetson Orin NX, real-time detection (≈12–15 FPS) can be 

maintained after ONNX/TensorRT optimization. 

For broader accessibility, farmers or quality-control workers can use a mobile or web-based 

interface to capture an image of coffee beans under standard lighting, and the trained model provides 

instant feedback on defect type and grade. The model’s compact size (≈15–20 MB in ONNX format) 

enables on-device inference without a continuous internet connection, making it suitable for remote 

field applications. 

In industrial contexts, YOLOv10-N can be embedded in coffee-bean sorting machines using a 

conveyor belt camera setup. The detector can trigger actuators to separate defective beans in real time, 

thereby reducing manual sorting effort and improving consistency. 

Overall, the model’s low computational footprint, high detection accuracy, and portability make 

it practical for integration into both small-scale farm tools and automated processing lines, bridging the 

gap between academic research and real-world agricultural quality management. 
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7. Limitations 

Although the results are encouraging, we must note several limitations. First, the dataset includes 

only Bangladeshi coffee beans collected under controlled laboratory conditions, which may limit the 

model’s generalization to other cultivars or real-world environments with variable lighting, occlusions, 

or background noise. Second, class imbalance persists, as minority defect categories such as sour and 

faded remain underrepresented, potentially biasing performance toward more frequent classes. Third, 

while YOLOv10-N achieved high accuracy, occasional misclassifications were observed among 

visually similar categories (e.g., faded vs. sour), underscoring the need for more discriminative feature 

learning. A further limitation is that we collected the dataset under controlled laboratory conditions 

with uniform lighting and standardized bean presentation, which may not capture the variability of 

real-world environments such as inconsistent illumination, occlusions, or heterogeneous bean 

arrangements. Lastly, the study focused solely on image-based detection, without integrating other 

contextual data such as bean origin, storage conditions, or moisture levels, which could provide 

complementary cues for quality assessment. 
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