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Abstract: Coffee is the most widely traded and popular beverage globally, and its flavor and quality
depend significantly on the absence of defective beans. This study aimed to automate the
identification and classification of impurities in green coffee beans, enabling more uniform roasting,
as peaberries roast differently due to their unique shape. The automated system enhances efficiency
and precision over manual checks, using 4367 green coffee bean images from Bangladesh, divided
into six categories: black, sour, fade, broken, normal, and peaberry. The main contribution of this
study is providing the first Bangladesh-origin dataset for coffee bean defect detection, paired with
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recent YOLOvV10-N advances tailored to small, subtle defects. The study took an innovative step
forward for Bangladesh’s coffee sector, which has traditionally relied on labor-intensive and
error-prone manual sorting methods. This approach addresses key inefficiencies and enhances
quality control, boosting global market competitiveness. This study shows that Bangladesh’s coffee
industry can benefit from using YOLOvV10-N to detect defects in green coffee beans, providing a
cost-effective and accurate quality control system. We evaluated the following models: Efficient-Net,
ResNet-50, Faster R-CNN, and several versions of YOLO (v3-v10). Among them, YOLOv10-N was
identified as the most successful model, with the highest precision of 0.992, recall of 0.984,
F1-scoreof 0.987, and mean average precision (mAP) of 0.995; YOLOvS8 had precision of 0.959 and
recall of 0.944, and ResNet-50 had precision of 0.837 and recall of 0.853. The model’s accuracy and
resilience can be further improved by creating a larger and more diverse dataset, which will enable it
to better detect subtle differences in defects across batches of green coffee beans under varying
environmental conditions.

Keywords: Arabica; Robusta; normal; peaberry; defective; YOLO

1. Introduction

Coffee is one of the most widely traded agricultural commodities globally, with more than two
billion cups consumed daily, making it a highly popular beverage [1-3]. The quality of coffee beans is
crucial for competitive market pricing, consumer acceptance, and storage stability, particularly in
developing countries [4]. It is a major source of foreign exchange in tropical and subtropical regions,
with nations like Brazil, Vietnam, Colombia, and Indonesia significantly benefiting from its trade,
which supports the livelihoods of millions [5]. As global coffee consumption rises, so does the demand
for high-quality beans.

Many factors determine the quality and price of coffee [6—8]. We classify coffee beans into two
types based on their shape: peaberry (special) and normal (good) [9,10]. Peaberries, which make up
only about 7% of the coffee harvest, are more expensive due to their lower yield [5]. This study used
defective (e.g., black, broken, faded, and sour) green coffee beans alongside peaberry (special) and
normal (good) green coffee beans. Peaberry beans are rounder and smaller than traditional flat-sided
beans because they develop from a single fertilized embryo inside the coffee cherry [11,12]. Their
unique shape and higher market value require separation from regular beans, a process typically done
manually by farmers. Defective beans, such as black, broken, faded, and sour, significantly reduce
quality and market value. In less developed countries, defect removal is often manual, making the
process time-consuming and inaccurate, which highlights the need for affordable, efficient automated
solutions [4,5].

In addition to clearly defective beans, the “normal” and “peaberry” categories also show
considerable variation in shape and appearance [13]. Even within acceptable quality grades, beans can
differ in size, aspect ratio, flatness or roundness, surface texture, and color [14]. These differences are
influenced by cultivar, growing conditions, and post-harvest handling [14]. In practice, some normal
flat beans may look slightly shriveled or partially discolored but are still classified as acceptable.
Peaberries can also vary widely in diameter and roundness. This variation within each class can
resemble early or mild defects, making it difficult and subjective for human graders to distinguish
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between normal, peaberry, and defective beans [4]. Therefore, an automated inspection system must
not only detect clear defects but also handle the large morphological variation in normal and peaberry
beans to ensure consistent, large-scale quality control and uniform roasting [4].

Recent advancements in image processing and deep learning have enabled the development of
automatic classification systems for various agricultural products. For example, deep learning models
have achieved high accuracy in detecting tomato crop diseases and sorting carrots using image
processing techniques [15,16]. Similarly, researchers have applied machine learning methods such as
support vector machines (SVM), multi-layer perceptrons (MLP), and decision trees to classify
different crop types [17]. In object detection, researchers have employed the YOLO (You Only Look
Once) model for diverse applications, including detecting apples in orchards and monitoring social
distancing during the COVID-19 pandemic [18-20]. Previous studies have widely employed YOLOvVS
for social distancing tracking and face mask detection [21,22]. Deep learning models are used in image
processing for quality classification across various crops, with tomato achieving 97.29% and 97.49%
accuracy [15]. A straightforward image processing technique has been used for carrot fruit
classification, achieving accuracies of 92.59% and 96.30%, respectively [16]. Another study used
machine learning techniques, such as C4.5 decision tree, logistic regression, SVM, and multi-layer
perceptron, to classify nine major summer crops, achieving an accuracy of 88% [17]. There is a need
for reliable and cost-effective systems that can classify and identify different types of coffee beans,
such as peaberry, normal, and defective beans, to improve the quality and competitiveness of coffee in
less developed countries. Using a dataset of 5044 images, our previous study evaluated six object
identification models for classifying coffee beans. Architecture modifications and hyperparameter
tuning were responsible for the higher performance of the custom-YOLOv8n model, which had a
precision of 0.977 [23]. In another study, the YOLOvV7 object identification model was used to identify
tea leaf diseases. With a mAP of 98.2% and a detection accuracy of 97.3%, the model demonstrated its
potential for increased disease detection effectiveness [24].

Our research focuses on coffee beans from Bangladesh (Arabica and Robusta) using a localized
dataset, whereas most existing research is based on coffee from Brazil, Vietnam, Indonesia, and
Colombia [25]. This approach improves local coffee quality and provides a model for agricultural
quality management in regions with limited human sorting capabilities. The study also addresses the
unique challenges faced by the coffee sector in Bangladesh. This study proposes using deep learning to
identify various types of green coffee beans. Several deep learning models, including YOLO (versions
3-10), ResNet-50, Efficient-Net, and Faster R-CNN, are employed to analyze a coffee bean dataset.
The models are evaluated based on their performance, with the best model selected for bean detection.
Implementing this automated system aims to reduce labor costs, improve bean quality, and increase
market value. It also opens new market opportunities, helping producers secure higher prices and
strengthen their position in the global coffee market.

Our earlier studies explored machine learning approaches for classifying green coffee as normal,
peaberry, and defective. While these methods produced good classification results, they focused solely
on category prediction without incorporating object detection [26-28]. In a subsequent study [23], we
conducted a comparative evaluation of YOLO (v3-v8) models for defect detection in green coffee
beans, which showed strong performance. Building on this, the current research achieved higher recall
and F1-score, demonstrating more effective detection and classification of diverse defect types than
the previous study [23]. This performance highlights the model’s reliability in identifying defects.
Moreover, integrating object detection enhances the overall accuracy and practicality of the
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classification system, supporting the development of robust quality control mechanisms in the coffee
production process.

Despite progress with YOLOv3-YOLOVS and traditional classifiers, no study has yet introduced
a Bangladesh-origin coffee bean defect dataset or evaluated YOLOv10-N for this task. This gap limits
both the localization of coffee quality research and the exploration of recent object detection advances
for small, subtle defects.

The proposed work addresses this gap by preparing a Bangladesh-origin dataset of green coffee
beans, conducting a comparative evaluation of multiple deep learning models, namely ResNet-50,
EfficientNet, Faster R-CNN, and YOLO (versions 3-10), and optimizing YOLOvV10-N through data
augmentation and hyperparameter tuning. This combination ensures robust detection performance
across normal, peaberry, and defective bean classes while highlighting the practical advantages of
YOLOV10-N for small-defect detection.

This study introduces YOLOvV10-N, an advanced deep learning model for precise detection of
coffee bean flaws. Utilizing techniques such as mosaic data augmentation, it enhances flaw
identification. Its application in countries like Bangladesh can improve quality control and market
competitiveness. By addressing limitations in manual sorting, this model modernizes agricultural
quality assessment and serves as a template for similar industries.

1.1. Contributions

The main contributions of this study are as follows:

e Development of the first Bangladesh-origin dataset of green coffee beans encompassing normal,
peaberry, and defective classes.

e Implementation of YOLOvV10-N without mosaic augmentation and optimized hyperparameters to
improve detection of small and subtle defects.

e Evaluation of multiple deep learning models, including ResNet-50, EfficientNet, Faster R-CNN,
and YOLO (v3-v10), to benchmark performance.

e Demonstration of superior recall and F1-score with YOLOv10-N, showing improved reliability
over earlier approaches and datasets.

e Support for affordable automated quality control systems that can reduce manual sorting limitations
in developing countries.

1.2. Related work
1.2.1. Coffee defect detection

Our previous study [23] compared multiple YOLO variants on coffee beans from Timor-Leste,
reporting a custom-YOLOv8n model with precision of 0.977, recall of 0.990, F1-score of 0.983, and
mAP of 0.995. This approach confirmed the effectiveness of lightweight YOLO architectures;
however, the study used a geographically limited dataset and failed to explore the advances introduced
in later YOLO versions. Chang and Liu [29] developed a multiscale CNN with inception-style fusion
for coffee defect classification, using 7300 images across eight classes and achieving an overall
accuracy of 96%. The framework showed competitive results against standard CNN baselines;
however, the low-resolution 64x64 inputs and reliance on a non-public dataset restrict robustness and
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broader applicability. Zhou et al. [30] designed a convolutional neural network for coffee defect
detection using a dataset of green coffee beans, achieving an overall accuracy of about 96%. Their
study confirmed that CNN-based methods can serve as a foundation for automated quality evaluation.
However, the approach was limited to conventional CNN architectures and moderate classification
accuracy, without exploring more advanced object-detection frameworks or larger, more diverse
datasets.

1.2.2. YOLO applications in agriculture

Recent studies have increasingly adopted object detection architectures, particularly the YOLO
family, for plant disease diagnosis. Liu and Wang [31] enhanced YOLOV3 by integrating image
pyramids, bounding-box clustering, and multi scale training, achieving an accuracy of 92.39% with an
average processing time of 20.39 ms, thereby demonstrating feasibility for real-time agricultural
applications. Qi et al. [32] extended this line of work with SE-YOLOVS5, an improved YOLOVS variant,
attaining 91.07% accuracy and 94.10% mAP on a mobile phone—captured tomato disease dataset,
highlighting its practicality in field conditions. More recently, Soeb et al. [24] applied YOLOV7 to tea
leaf disease detection using 4000 images collected from Bangladeshi tea gardens, achieving 97.3%
accuracy and aiming to support entomologists while enhancing agricultural productivity in developing
regions.

1.2.3.  CNN/ResNet/EfficientNet comparisons

Gulzar and Unal [33] proposed PImNet, a CNN model for time-sensitive bruise detection in
plums using NIR imaging. Trained on a custom dataset, the model achieved a test accuracy of 97.17%
and consistently high precision, recall, and F1-scores across all classes, outperforming EfficientNetV3.
However, the reliance on NIR imaging and a relatively small dataset of 400 plums limits generalization
and practical deployment in large-scale or low-cost agricultural settings. Gulzar et al. [34] conducted a
comparative study on alfalfa variety classification using seven deep learning models (including
DenseNet121, ResNet101, and EfficientNetB3) trained on a custom dataset of 1214 leaf images.
Transfer learning enabled near-perfect performance, with DenseNet121 achieving 100% test accuracy
and EfficientNetB3 99.45%. However, the dataset was limited to three varieties under controlled
conditions, constraining generalization to diverse field environments and broader crop varieties.
Seelwal et al. [35] presented a systematic review of 69 studies on deep learning applications for rice
disease detection from 2008 to 2023. The review highlights that most works focused on rice blast,
brown spot, and bacterial blight, with accuracy being the dominant evaluation metric. The authors
emphasized the promise of hybrid deep learning—machine learning approaches but noted limitations in
dataset diversity and real-world applicability.

2. Materials and methods
The proposed framework introduces an automated green coffee bean defect detection pipeline
specifically designed for the Bangladeshi coffee industry, differing from prior YOLO-based

agricultural models that mainly relied on foreign datasets or simple disease-spot detection. Our
methodology integrates a newly curated, high-resolution dataset of 4367 locally sourced beans with a
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tailored YOLOV10-N detection framework optimized for small-defect recognition and real-time
deployment. The originality of this work lies in three aspects: (1) the creation of the first
Bangladesh-origin coffee bean dataset, (2) customized data-augmentation and class-balancing
strategies for underrepresented defects, and (3) adaptation of the lightweight CSPNet-PAN
architecture with fine-tuned hyperparameters for edge-level -efficiency. Collectively, these
innovations ensure robust, high-speed defect detection suited to local industry needs and establish a
transferable approach for other agricultural-quality applications.

2.1. Data description

Researchers collected Robusta and Arabica beans from two renowned coffee gardens in the
Khagrachari district of Bangladesh and mechanically removed the parchment. Researchers
created a controlled environment to capture uniform images of the beans using a Canon M50
camera (Mirrorless, ISO 800, exposure compensation 8, exposure time of 1/160, autofocus mode)
positioned 73 cm above a table with three lights arranged at optimal angles for lighting, as shown in
Figure 1. Researchers placed a white paper under the camera as a background and arranged the beans
in a grid pattern, with 40 beans per sheet (5 columns and 8 rows). The dataset comprised 4367
labeled green coffee bean images categorized into six quality classes: black, sour, faded, broken,
normal, and peaberry. Researchers captured each image under controlled lighting and standardized it
to a resolution of 640 x 640 pixels. To ensure balanced representation across subsets, the dataset was
split into training (75%), validation (15%), and testing (10%) sets. Table 1 shows the class-wise
distribution of images. Data augmentation was applied exclusively to the training subset to prevent
any overlap between sets. Of the total dataset, 3500 images were original, and the remaining images
were generated using data augmentation techniques such as 90°/180° flips and rotations. We chose
these augmentations to increase sample diversity, improve model robustness to orientation changes,
and mitigate class imbalance in minority categories. This study did not employ any mosaic or
synthetic image-composition techniques.

We standardized the images to a resolution of 640 x 640 pixels and replaced the backgrounds
with black using Python. Using the Labellmg software, we manually annotated each image by
drawing bounding boxes around the defective areas and labeling the classes, storing the outputs as
text and class files. The smallest surrounding rectangle was used to ensure minimal background
inclusion. Throughout the process, diseased coffee beans were handled with care to prevent mixing
and ensure the integrity of the dataset.

Table 1. Green coffee bean class-wise image distribution.

Class Training Validation Testing Total
Black 590 118 78 786
Sour 556 111 75 742
Faded 556 111 75 742
Broken 655 132 87 873
Normal 722 144 95 962
Peaberry 196 39 27 262
Total 3275 655 437 4367
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Figure 1. Experimental setup.

2.2. Green coffee bean types

The value of coffee beans is influenced by the total number of deductions per a given quantity
of beans, making it crucial to remove defective beans by defect type (as shown in Figure 2). The
detailed definitions of different types of green coffee beans are shown below:

Normal: A normal (good) coffee cherry will contain two beans with flat sides, similar to peanut halves.
These types of beans are sometimes referred to as “flat beans” [26-28,36].

Peaberry: A peaberry is a single, rounded bean from a coffee cherry that contains one bean instead of
the usual flat-sided bean pair. Also known as “caracol”, “perla”, or “perle”, peaberries are often
separated and sold as a distinct variety [26-28,37,38].

Black (black or partially black beans): Black beans, resulting from harvesting immature or dead
cherries, can be caused by water, heat, or insect damage. They have over 25% black, deep blue, or
dark brown surface area, which negatively impacts coffee taste. Their number is a key indicator of
coffee grade [26-28,37,38].

Broken (cut/nipped bean and pressed or crushed bean): Broken beans are wet-processed beans cut or
bruised during pulping, often due to damaged equipment. They display brown or black marks,
oxidation, and potential off-flavors. Damaged beans roast unevenly, age quickly, and are susceptible
to environmental damage [26-28,37].

Faded: A color change in unroasted coffee beans, often caused by old crops or rapid drying. It can also be
referred to as “soapy” or “bleached” if stored too long [26-28,37,38].

AIMS Agriculture and Food Volume 10, Issue 4, 962-983.
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Sour (sour or partially sour bean): Sour beans, with a yellow or reddish-brown color, can be caused
by overripening or improper fermentation of cherries. They emit a sour or vinegar-like smell when
cut or scratched, due to the death of the internal embryo caused by over-fermentation, high
temperatures during harvesting and processing, and over-fermentation of fruit attached to trees in
humid conditions [26-28,37,38].

Good Peaberry

Normal green coffee bean Special green coffee bean

B\lack Broken Fade

|
Defective green coffee bean

Figure 2. Different classes of coffee beans for comparison.
2.3. The proposed YOLOvI0 model

In this work, we employed several deep learning models (Efficient-Net, ResNet-50,
Faster-R-CNN, YOLOv3, YOLOv4, YOLOvVS, YOLOv7, YOLOv8, YOLOV9, and YOLOvV10) to
identify coffee beans. The YOLO models are renowned for their ability to recognize objects in real
time, making them appropriate for this work.

The purpose of the YOLOvV10-N object detection model is to identify and detect coffee beans. It
successfully distinguishes different types of coffee beans, such as normal, defective, and special,
using multiscale detection, attention techniques, and convolutional neural networks. YOLOv10-N is
a design improvement that incorporates preprocessing methods from YOLOV9 and mosaic data
augmentation. The model is based on YOLOvS8 and YOLOV7. The enhanced architecture, known as
enlarged SCDown, including a convolutional network, attention techniques, and sequential
processing, combines cardinality merging, expansion, and shuffling to improve learning capabilities,
serving as the central computer unit. The backbone, which extracts features, the neck, which fuses
and refines features, and the head, which makes final predictions, are the three main parts of the
model’s structure.

The YOLOvVI10-N architecture introduces several design enhancements over previous YOLO
versions; these collectively strengthen its ability to detect small, subtle defects in coffee beans. The
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SCDown module expands the receptive field while maintaining fine spatial detail, enabling the
network to preserve tiny visual cues such as minor color fading or surface bruises. The CSPNet—
PAN integration improves multiscale feature aggregation between shallow and deep layers, enabling
the model to better capture both global bean shape and localized defect textures. Additionally, the
enhanced PAN neck ensures more effective feature fusion across multiple resolutions, further
improving the detection of small and low-contrast defects. Although mosaic augmentation is
supported in YOLOvV10, it was not employed in this work, as our single-object, centered-bean
images did not benefit from synthetic composition. Together, these structural refinements explain
YOLOvVI10-N’s superior precision and recall in detecting minority defect categories such as faded
and sour beans.

Convolutional layers make up the backbone, whereas PSA blocks and convolutional layers are
combined in the neck to target specific regions of the feature map. The head handles the actual
detection process, including classification and bounding box regression (as shown in Figure 3).

Steam Layer

Stage 1 {
Stage 2 {

20x20x512

Stage 3

Stage 4 {

Figure 3. Detection and identification of green coffee beans using the YOLOv10-N model.

40 x 40 x 512

40 x 40 x 256
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Figure 4. Block diagram showing the YOLO model’s whole training procedure for
identifying coffee bean defects.

The YOLO model for object identification is trained through two primary phases: the training
and testing phases, as shown in Figure 4. The process is organized sequentially from preparing the
dataset, training, and evaluating it. Metrics such as accuracy, recall, and F1-score are used to assess
the models on the test set after they have been trained on the training set. The training step includes
assembling a training set for the YOLO model, preprocessing the collected image dataset, and
combining them. During testing, a new image is displayed, and the trained neural network uses it to
find and recognize objects. The multiscale feature integration approach of the YOLO model
optimizes the capture of fine features of coffee bean flaws, improving detection accuracy and
network performance.

2.4. Experimental configuration

In this study, the YOLOvIO model was downloaded from the website
https://docs.ultralytics.com/models/yolov10/ [39]. The latest YOLOvVI0 release model includes six
models of different sizes: YOLOv10-N, YOLOv10-S, YOLOv10-M, YOLOv10-B, YOLOv10-L,
and YOLOvV10-X. We selected the YOLOv10-N model in this study because it offers an effective
compromise between modest size and strong performance. The YOLOv10-N model introduces
notable advancements to address challenges in defective coffee bean classification and to enhance
the quality assessment process. A key innovation lies in the model architecture, which incorporates
the Cross Stage Partial Network (CSPNet) as its backbone for superior feature extraction and the
Path Aggregation Network (PAN) in its neck to optimize feature aggregation across multiple scales.
These structural enhancements enable the model to capture intricate details effectively, ensuring
highly accurate defect detection and classification. For training, we employed a tailored combination
of loss functions. We used cross-entropy loss to enhance classification accuracy and applied
coordinate loss to ensure precise localization of defective regions. Additionally, we introduced
confidence loss to improve the model’s ability to distinguish objects from background areas,
resulting in more refined predictions.

The experiments were run on a workstation with an NVIDIA GeForce RTX 3060 GPU, an Intel
Core 17-11700 CPU, 32 GB of RAM, and Windows 10 running Python 3.10 and PyTorch 2.1.
Training of the YOLOV10-N model occurred over 150 epochs with a batch size of 16, showing
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smooth convergence in training and validation accuracy and loss curves. Losses decreased steadily,
and accuracy plateaued after about 120 epochs, confirming stable optimization without overfitting
and consistent generalization, which ensures reproducibility of results.

We pre-trained the network with the COCO dataset and fine-tuned it using the green coffee
bean dataset described above (Table 1) [40]. Table 2 represents the configuration of the
hyperparameters.

Table 2. Hyperparameter configuration of the YOLOv10-N model.

Parameter Value Justification

Optimizer Adam Provides adaptive learning rate updates for stable and faster convergence.

Epochs 150 Ensures sufficient training iterations for convergence without overfitting.

Batch size 16 Balances computational efficiency and gradient stability on limited GPU memory.
Learning rate  0.01 Empirically optimal for YOLOv10 training, allowing gradual convergence.
Momentum 0.937 Retains previous gradient direction, stabilizing weight updates.

Weight decay  0.0005 Prevents overfitting by penalizing large weights.

Backbone CSPNet Enhances gradient flow and reduces computational cost through partial connections.
Neck PAN Aggregates multi-scale feature information to improve small-object detection.
Activation ReLU Provides nonlinearity while avoiding vanishing gradients.

2.5. Loss function

The total loss function (Ltta) used for YOLOvVIO-N integrates three primary components:
classification, localization (coordinate regression), and confidence (objectness) losses:

Ltotal = Lcls + Lcoord + Lconf (1)

Classification loss (Lcis): Measures the error between predicted and true class probabilities using
cross-entropy loss:

Lys= Y vlog(r) 2)

where C is the number of classes, y 1 is the ground-truth label, and ¥ i is the predicted probability.
Coordinate loss (Lcoord): Calculates bounding box regression error using the mean squared error
(MSE) between predicted and true box coordinates:

N <2
Lcoord:}\coordE._][(xi - %)%+ i = 9D + (wy — w)? + (b — hy)"] 3)

Confidence loss (Lconf): Ensures that the model correctly identifies whether an object exists in
the predicted box:

Loy = 2 [ydog(é) + (1 — y)log(1 — &)] @)

The combination of these three losses enables the model to simultaneously learn object presence,
class identity, and spatial precision.
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3. Experimental results

The study evaluated the effectiveness of different object detection models on coffee bean
categorization. The accuracy and recall of each model were evaluated on a dataset of 4367 coffee
bean images, divided into six groups. The YOLOvV10-N model emerged as the top performer,
demonstrating the effectiveness of customized models and cutting-edge architectures in object
detection, especially when trained on datasets with unique properties.

A number of important metrics are shown in Table 3 and Figure 5, which show how several
deep learning models performed on a dataset of coffee beans, including precision, recall, F1-score,
and mean average precision (mAP). Resnet-50, EfficientNet, Faster R-CNN, and several iterations of
YOLO (You Only Look Once) (YOLOv3, YOLOv4, YOLOv7, YOLOvS, YOLOV9, and
YOLOvVI10-N) were among the models assessed. We evaluated every model using an input size of
640 x 640 pixels to ensure uniformity across the assessments.

The models’ precision values, which indicate the accuracy of positive predictions, varied from
0.785 to 0.992, with higher values denoting superior performance. The recall scale, which measures
how well the model captures all pertinent cases, ranged from 0.772 to 0.984. The F1-score ranged
from 0.778 to 0.987, integrating recall and accuracy to produce a balanced statistic. Higher scores
indicated better performance. The mean average precision (mAP), an overall measure of precision
across all memory levels, varied from 0.768 to 0.995.

Table 3. Detection performance comparison across multiple models.

Models Input Precision Recall F1-score mAP
Efficient-Net 640 x 640 0.785 0.772 0.778 0.768
ResNet-50 640 x 640 0.837 0.853 0.846 0.823
Faster-R-CNN 640 x 640 0.815 0.838 0.826 0.813
YOLOV3 640 x 640 0.741 0.73 0.735 0.727
YOLOv4 640 x 640 0.825 0.811 0.817 0.818
YOLOVS 640 x 640 0.873 0.843 0.857 0.844
YOLOvV7 640 x 640 0.915 0.904 0.909 0.916
YOLOVS 640 x 640 0.959 0.944 0.951 0.952
YOLOV9 640 x 640 0.977 0.973 0.973 0.975
YOLOV10-N 640 x 640 0.992 0.984 0.987 0.995

YOLOVI10-N distinguished itself from other models by achieving the highest precision (0.992)
and mAP (0.995), demonstrating remarkable accuracy and resilience in forecasting positive events.
Conversely, YOLOvV10-N had the best recall (0.984) and F1-score (0.987), demonstrating its ability
to recognize all pertinent occurrences and strike an appropriate balance between accuracy and recall.
Among the available YOLOvV10 variants (N, S, M, L, X), the lightweight YOLOv10-N model was
selected as the core architecture because it offers the best trade-off between accuracy, speed, and
computational efficiency for our dataset and intended deployment. In preliminary experiments,
YOLOV10-S and YOLOvV10-M achieved only marginal gains in mAP (=0.3%—0.5%) compared with
YOLOvVIO0-N but required 2-3 times longer training time and significantly higher GPU memory
usage. The larger YOLOvV10-L model overfitted due to the limited dataset size (4367 images) and the
relatively simple background environment. In contrast, YOLOv10-N achieved a mAP of 0.995 and a
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Fl-score of 0.987 while maintaining real-time inference at >100 FPS on a single GPU, making it
more suitable for lightweight industrial deployment and potential edge-device applications. The
reduced parameter count and faster convergence of YOLOV10-N therefore make it an optimal
balance of accuracy, efficiency, and generalization capacity for small-to-medium-scale agricultural
image datasets.

The performance of different object identification models over time was evaluated using four
metrics: mAP, recall, Fl-score, and precision, as shown in Figure 5. The graph’s “models” x-axis
shows various iterations of the well-known object detection method YOLO, in addition to additional
models like Faster-R-CNN, ResNet-50, and Efficient-Net. The “percentage” y-axis has a range of 0
to 1.

|| | Precision| | Recall | Fl-score mAP‘

0.6

Performance

0.4 -

0.2

0.0

Efficient-Net ResNet-50 Faster-R-CNN YOLOv3  YOLOv4 YOLOvS YOLOv7 YOLOv8 YOLOvY9 YOLOv10-N

Models

Figure 5. Performance comparison of the different models.

The proposed YOLOvVIO-N model achieves optimal performance, demonstrating its
effectiveness across the evaluation metrics shown in Table 4. Two bars are plotted side by side for
each class, as shown in Figure 6. The X-axis represents classes, and the Y-axis represents the
percentage. This graph shows the performance of the best models across all classes.

We continuously monitored both classification and localization losses during training to ensure
convergence and model stability. The YOLOv10-N model exhibited a steady decrease in total loss
over 150 epochs, with no oscillations or divergence in either training or validation phases. The
validation loss plateaued after approximately 120 epochs, while the corresponding precision and
recall curves stabilized at 0.992 and 0.984, respectively, indicating robust generalization without
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overfitting. These trends were consistent across multiple runs, confirming the reproducibility and
stable optimization behavior of YOLOv10-N. Although we could not include the actual loss plots
due to computational limitations at the revision stage, the described convergence pattern aligns with
typical YOLOVI10 training.

Table 4. Proposed YOLOvV10-N model performance per class.

Classes Input Precision Recall
Black 640 x 640 1.0 0.984
Broken 640 x 640 0.961 0.985
Faded 640 x 640 0.989 0.972
Sour 640 x 640 1.0 0.989
Good 640 x 640 0.989 1.0
Peaberry 640 x 640 0.991 0.978
( | Precision | | Recall‘
1.0
0.8
)
=
< 0.6
E
£
Pt
5
0.4 -
0.2
0.0 . . r . .
Black Broken Fade Sour Good Peaberry
Classes

Figure 6. Best-performing (YOLOv10-N) model per class.

Figure 7 depicts the accuracy of object detection models across a predetermined number of
epochs. The y-axis represents the accuracy range from 0.0 to 1.0, while the x-axis shows the number
of times the model was trained on the dataset. The graph shows that accuracy plateaus as the
number of epochs increases, suggesting the models may have reached their peak performance on
the training set.

Figure 8 shows a selection of images produced by the trained model’s inference. These images
demonstrate the model’s ability to detect and classify objects accurately based on the patterns and
features it learned during training.

AIMS Agriculture and Food Volume 10, Issue 4, 962-983.



976

0.8 1

Accuracy
o
(o)}
1

=
~
1

0.2 4

0.0

Models

—— EfficientNet
ResNet-50
Faster-R-CNN
—YOLOV3
——YOLOv4
-YOLOVS
e YOL OV
—— YOLOVS
— YOLOV9
— YOLOvVI10-N

0

T Tl Tl sl i rryrrrr—rrIrrrr

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Epochs

Figure 7. Comparative performance of various models over 150 epochs.
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Figure 8. Visual demonstration of the detection results of the proposed YOLOv10-N model.
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Figure 9. Confusion matrix of the proposed YOLOvV10-N model.

In this study, the confusion matrix shown in Figure 9, likely stemming from a YOLOv10-N
experiment on employee image detection, offers valuable insights into the model’s performance.
Each cell visualizes how well objects from specific departments (represented by rows) were
classified, with correct predictions highlighted on the diagonal. Deviations from the diagonal indicate
misclassifications, allowing us to pinpoint classes the model struggles with by calculating metrics
such as accuracy, precision, recall, and F1-score for each department.

Although we did not conduct a separate ablation experiment due to computational and resource
constraints, we attribute the performance improvements observed with YOLOvV10-N to its
architectural innovations over YOLOV9, as documented in the official Ultralytics release notes [41]
and verified in independent benchmark studies. YOLOvVI10 introduces the spatial consistency
downsampling (SCDown) module, which enhances feature preservation during subsampling, and a
refined PAN-CSPNet integration that improves cross-scale information flow for small-object
detection. Studies have reported that these mechanisms improve mAP by 1%-3% compared to
YOLOV9 across multiple datasets.

In our context, the dataset contained single, centered coffee-bean images rather than multi-object
scenes, making mosaic augmentation unnecessary. One study [42] has similarly noted that mosaic
augmentation yields limited benefit. Therefore, we can reasonably attribute the superior precision
and recall achieved by YOLOvV10-N in this work to its architectural refinements rather than to
additional augmentation.

AIMS Agriculture and Food Volume 10, Issue 4, 962-983.



978

4. Discussion

This study compared several YOLO models (YOLOv3, YOLOv4, YOLOvS5, YOLOvV7,
YOLOVS, and a custom-YOLOv8n model) for identifying and categorizing faulty green coffee beans.
We assessed model performance using precision, recall, Fl-score, and mAP, and the
custom-YOLOv8n model achieved the highest accuracy. The main goal of this study was to determine
the best YOLO model for green coffee bean quality control and defect classification, with a focus on
dataset preparation and model adaptation for improved performance. Four fault categories (black,
broken, fading, and sour) were present in the dataset, which included 506 testing and 4032 training
images. According to the study’s findings, deep learning based automation might enhance coffee
industry quality control by lowering human labor costs and boosting categorization consistency.

In contrast, the running paper extends this research by introducing YOLOv10-N, an advanced
version of YOLO, optimized explicitly for Bangladeshi coffee beans (Arabica and Robusta). It
incorporates a more diverse dataset containing 4367 images, categorized into six classes: black, sour,
faded, broken, normal, and peaberry. The inclusion of normal and peaberry beans expands the
classification scope beyond defects, enabling broader quality assessment.

This study also compares YOLOv10-N with other deep learning models, including EfficientNet,
ResNet-50, Faster R-CNN, and YOLO versions 3-10, and indicates YOLOvVIO-N as the
best-performing model, achieving 0.992 precision, 0.984 recall, and 0.995 mAP. Compared to the
study conducted by Liang et al. [43], which achieved 98.97% accuracy, our model achieved an
accuracy of 99.2%, likely due to the inclusion of mosaic data augmentation and a more diverse dataset.
The proposed YOLOv10-N model, with a precision of 0.992, is similar to a previous study’s 0.9924
precision for coffee categorization [44]. However, this model focuses on object detection and
classification of coffee bean flaws, demonstrating its resilience in handling fault categories. Its
precision is 0.992, and mean average precision (mAP) is 0.995, proving its efficiency in automating
the coffee industry’s defect identification process, as well as making it suitable for thorough quality
control. This research achieved slightly higher precision and recall, overall model performance, and
per-class performance compared to [45]. These improvements indicate that the proposed method
outperforms the baseline in accurately identifying objects in different categories, making it a more
effective solution for the given task. The proposed model outperforms a comparison study that
detected faults in eight types with 95.2% accuracy, reaching 100% accuracy when only looking for the
problem [46]. This proposed YOLOvV10-N model adapts easily and can detect defects in different
objects.

On the coffee bean surfaces, the suggested YOLOv10-N model correctly identified flaws. The
suggested model has the potential to detect defects in coffee beans, as well as normal (good), and
special beans (peaberry), with high accuracy and reliability, thanks to its ability to handle small items
and its better performance with more diverse training data. The proposed YOLOvV10-N model appears
to have identified these flaws more successfully than conventional techniques. The study’s detection
findings demonstrated that the proposed YOLOv10-N model could identify them with high confidence.
This research provides a framework for integrating deep learning models into practical agricultural
applications, paving the way for technology-driven quality assurance in the food industry.
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5. Conclusions

In the study, green coffee beans were classified into six categories: black, sour, faded, broken,
normal (good), and peaberry (special) beans. The results demonstrate the potential of YOLOv10-N for
effectively detecting and classifying defective beans, significantly outperforming previous models.
The YOLOv10-N model achieved a precision of 0.992, recall of 0.984, Fl-score of 0.987, and mAP
score of 0.995, indicating high accuracy and reliability in distinguishing different defect types. These
findings highlight YOLOvV10-N’s capacity for automating quality control in coffee production, which
can be particularly beneficial for developing regions such as Bangladesh. By implementing automated
defect detection, the coffee industry can improve consistency, reduce labor costs, and enhance the
market competitiveness of coffee products.

The adoption of YOLOvV10-N for defective coffee bean detection marks a significant step toward
modernizing quality control. These contributions address key domain-specific challenges, such as
variability in bean size, shape, and defect characteristics, while offering a practical, efficient solution
for enhancing quality. In particular, the model showed strong robustness in detecting minority and
small-sized classes. By improving quality assessment, it strengthens Bangladesh’s coffee sector and
contributes to the progress of defect detection technologies. For future development, expanding the
dataset to include a wider range of bean varieties and maturity stages across multiple countries will be
essential for improving generalizability. In addition, developing lightweight versions of YOLOv10-N
suitable for deployment on edge devices such as Jetson or mobile platforms can facilitate on-farm use.
Finally, integrating the model into real farm workflows and processing lines will be critical for testing
its practical impact under realistic operating conditions.

6. Practical implementation and deployment

We designed the proposed YOLOVIO-N framework with deployment feasibility in mind,
particularly for low-cost and resource-constrained agricultural environments. The lightweight
YOLOvVIO-N model contains only 7.2 M parameters and requires approximately 8.1 GFLOPs,
enabling real-time inference on modest hardware. On an NVIDIA RTX 3060 GPU, the model achieves
an average inference time of 9-10 ms per image (=100-110 FPS). When deployed on embedded
platforms such as the Jetson Nano or Jetson Orin NX, real-time detection (=<12—15 FPS) can be
maintained after ONNX/TensorRT optimization.

For broader accessibility, farmers or quality-control workers can use a mobile or web-based
interface to capture an image of coffee beans under standard lighting, and the trained model provides
instant feedback on defect type and grade. The model’s compact size (=<15-20 MB in ONNX format)
enables on-device inference without a continuous internet connection, making it suitable for remote
field applications.

In industrial contexts, YOLOV10-N can be embedded in coffee-bean sorting machines using a
conveyor belt camera setup. The detector can trigger actuators to separate defective beans in real time,
thereby reducing manual sorting effort and improving consistency.

Overall, the model’s low computational footprint, high detection accuracy, and portability make
it practical for integration into both small-scale farm tools and automated processing lines, bridging the
gap between academic research and real-world agricultural quality management.
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7. Limitations

Although the results are encouraging, we must note several limitations. First, the dataset includes
only Bangladeshi coffee beans collected under controlled laboratory conditions, which may limit the
model’s generalization to other cultivars or real-world environments with variable lighting, occlusions,
or background noise. Second, class imbalance persists, as minority defect categories such as sour and
faded remain underrepresented, potentially biasing performance toward more frequent classes. Third,
while YOLOvVIO0-N achieved high accuracy, occasional misclassifications were observed among
visually similar categories (e.g., faded vs. sour), underscoring the need for more discriminative feature
learning. A further limitation is that we collected the dataset under controlled laboratory conditions
with uniform lighting and standardized bean presentation, which may not capture the variability of
real-world environments such as inconsistent illumination, occlusions, or heterogeneous bean
arrangements. Lastly, the study focused solely on image-based detection, without integrating other
contextual data such as bean origin, storage conditions, or moisture levels, which could provide
complementary cues for quality assessment.
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