

Research article

Interactive effects of biochar and ammonium fertilizer on wheat yield, soil acidity and their residual effect on soybean under no-tillage conditions

Qamar Sarfaraz^{1,3,8}, Rajesh Sharma^{2,*}, Gerson Laerson Drescher^{1,3}, Mohsin Zafar⁵, Muhammad Izhar Shafi^{2,6,7}, Geoffrey Christie Anderson⁴, Leandro Souza da Silva³ and Zakaria M. Solaiman^{2,*}

¹ Department of Crop, Soil and Environmental Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA

² UWA School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, WA 6009, Australia

³ Department of Soils, Federal University of Santa Maria (UFSM), Roraima Avenue No. 1000–Building 42, Santa Maria, 97105-900, Brazil

⁴ Department of Primary Industries and Regional Development, Soils West, 75 York Road, Northam, WA 6401, Australia

⁵ Department of Environmental Sciences, Mirpur University of Science and Technology Mirpur (MUST), Pakistan

⁶ Department of Soil and Environmental Science, Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Pakistan

⁷ Mowreq Specialized Agriculture Company, Jeddah 22425, Kingdom of Saudi Arabia

⁸ Department of Soil Science, Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan

*** Correspondence:** Email: rajesha.sharma@uwa.edu.au; zakaria.solaiman@uwa.edu.au.

Abstract: Reductions in soil organic matter (SOM) affect soil quality and fertility in tropical agricultural soils. Due to its recalcitrant nature, biochar persists longer in soils. A greenhouse experiment was conducted to assess the effect of biochar, locally produced from animal manures (poultry litter, swine, and cattle manures) and crop residues (rice, soybean, and corn straws) on soil pH, aluminum (Al) concentration, and yields of wheat, as well as its residual effects on soybean under

a no-tillage planting system. Undisturbed soil was collected at a 25 cm depth in polyvinyl tubes (PVC) from a long-term no-tillage site. The experiment included six biochar types and two rates of each biochar type, with and without N fertilizer, leading to 26 treatment combinations including 2 controls. Two control treatments were used, one without biochar and N (control -N-B) and the other without biochar but with N (control +N-B). The treatments were replicated three times and laid out in a complete randomized design (CRD). Biochar was applied at rates of 10 Mg ha^{-1} ($33.5 \text{ g column}^{-1}$) and 20 Mg ha^{-1} (67 g column^{-1}) and ammonium sulfate at 0 and 110 kg ha^{-1} ($1.6 \text{ g ammonium sulfate column}^{-1}$). The study showed that applying N along with biochar increased wheat and soybean growth and growth attributes. Additionally, applying biochar influenced the soil pH and exchangeable Al effectively in the topsoil. However, its impact decreased with increasing depth under the no-tillage planting system. These findings suggest that biochar, especially when applied with nitrogen fertilizer could improve plant performance and ameliorate soil acidity in no-tillage planting systems due to its recalcitrant nature.

Keywords: biochar; nitrogen; wheat; soybean; soil pH; no-tillage; residual effect

1. Introduction

Soil organic matter (SOM) plays an essential role in retaining nutrients and water in the soil. Low SOM is one of the primary contributors to several soil fertility constraints in tropical agricultural soils. The reduction in SOM and its effects on soil fertility are among the most significant environmental problems for agricultural production in tropical soils [1–3]. Unlike the conventional organic materials used for soil amendments, biochar is a recalcitrant material that can keep soils amended for a longer time [4]. Biochar enhances soil fertility by increasing nutrient adsorption capacity and crop yields [5,6]. Recently, numerous studies have focused on climate change, carbon (C) sequestration, soil amendments, and crop production using biochar prepared from a wide variety of feedstocks, as they are varied in their characteristics and functions [7,8].

Usually, biochars prepared at 400°C or higher temperatures are alkaline with a high pH [9]. When applied to soils, they increase soil pH and cation exchange capacity (CEC) while decreasing exchangeable aluminum (Al), depending upon the exchangeable base cations [10]. Biochar's high adsorptive capacity results in immobilization of ammonium nitrogen ($\text{NH}_4^+ \text{-N}$) or inhibition of nitrification and releases H^+ into the soil [11]. Moreover, the soil's physical and chemical properties and the agricultural management practices play a crucial role in the effectiveness of soil amendment using biochar to mitigate N_2O emissions and increase carbon sequestration [12].

In Southern Brazil, a no-tillage farming system has been adopted for many years on acidic soil [13]. Several studies have reported its effects on C sequestration, alterations in soil conditions, nitrogen (N) dynamics in the soil, and crop production [13]. These studies were conducted under incubation, greenhouse, or field conditions, with biochar incorporated into the topsoil. However, limited research has examined the application of biochar in the no-tillage system and its effects on soil properties, crop growth, and production.

Initially, given the biochar's properties and the soil conditions, it was hypothesized that different types of biochar would influence wheat growth depending on the CEC and N application. The second hypothesis was that biochar would enhance soybean growth due to the residual effects of earlier

biochar application. Thirdly, it was hypothesized that biochar would increase soil pH to a certain extent, avoiding the application of lime to increase the soil pH.

Bearing biochar's properties and relevant soil management practices in mind, a further study was proposed with the following objectives: (1) To evaluate the influence of different rates of biochar with and without N application on wheat cultivation under no-tillage soil conditions; (2) to evaluate the residual effect of biochar on soybean as the subsequent crop; and (3) to evaluate the impact of different biochar types on soil pH and exchangeable Al in different soil layers after harvesting the crops.

2. Material and methods

For preparing the biochar, all feedstocks were collected from the experimental areas of the Federal University of Santa Maria, Rio Grande do Sul (RS) ($29^{\circ}43'14.4''S$ and $53^{\circ}43'31.2''W$), except for corn straw, which was collected nearby from Paraíso do Sul, RS ($29^{\circ}35'10.3''S$ and $53^{\circ}07'26.3''W$).

2.1. Preparation and analysis of biochar

Stones were removed from animal manure and grasses from straw samples before pyrolysis of the feedstock. Six different biochars were produced from swine manure (SMB), poultry litter (PLB), cattle manure (CMB), rice (*Oryza sativa*) straw (RSB), soybean (*Glycine max*) straw (SSB), and corn (*Zea mays*) straw (CSB). Each feedstock was pyrolyzed at $450^{\circ}C$ for 1.0 h in a muffle furnace, with the temperature increased gradually at a rate of $10^{\circ}C$ per minute. The furnace was turned off and cooled to room temperature upon reaching the required temperature and time. All biochars were analyzed for pH (1:10 w/v of water, pH_{H2O}) and electrical conductivity (EC) (1:10 w/v of water) by the method used by Tedesco et al. [14] with alterations because of the large volume of biochar involved. Total C and total N were analyzed by the dry combustion method using a Thermo Scientific Flash EA 1112. Phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and micronutrients (Mn and Fe) were extracted using 0.1M HNO_3 [15]. Phosphorus was measured using the method of Murphy and Riley [16], and the K content was measured using a flame photometer. The cations Mn and Fe were measured with an atomic absorption spectrophotometer (AAS).

2.2. Soil collection and analysis

Polyvinyl tubes (PVC) (0.29 m height \times 0.20 m diameter) were used to collect undisturbed layers of Typic Hapludult (US Soil Taxonomy) at a depth of 0.25 m from experimental areas of the Department of Soil Science ($29^{\circ}43'14.2''S$ and $53^{\circ}42'15.0''W$) of the Federal University of Santa Maria. Separate soil samples were collected at 0.20 m for pre-sowing analysis.

2.3. Greenhouse experiment

Undisturbed soil samples were taken to the greenhouse to conduct wheat experiments by applying different types of biochar and ammonium fertilizer (ammonium sulfate). The experiment consisted of six main biochar treatments (six biochar types), two rates of each biochar type, and two N fertilizer rates (see Table 1 for the treatment combinations). Biochar was applied at 10 Mg ha^{-1} ($33.5\text{ g column}^{-1}$) and 20 Mg ha^{-1} (67 g column^{-1}), while ammonium sulfate was applied at rates of 0 and 110 kg ha^{-1}

(1.6 g ammonium sulfate column⁻¹). The treatments were replicated three times, and the experiment was arranged in a complete randomized design (CRD). Two control treatments were used, one without biochar and N (control -N-B) and the other without biochar but with N (control +N-B).

Due to the large volume of straw-derived biochar, it was mixed with the soil to a depth of 2.5–3.0 cm to enhance seed contact with the soil. Basal nutrients were applied to all treatments at 170 kg P₂O₅ ha⁻¹ (1.3 g triple superphosphate column⁻¹) and 120 kg K₂O ha⁻¹ (0.65 g potassium chloride column⁻¹). Eight wheat seeds (variety Sinuelo) were then sown into the PVC columns, thinned to four healthy seedlings after germination, and grown for 93 days in a glasshouse. The wheat shoots were then harvested, dried in an oven at 60°C, and stored for further analysis.

Table 1. Treatment combinations for the greenhouse experiment under a no-tillage planting system. (Swine manure biochar, SMB; poultry litter biochar, PLB; cattle manure biochar, CMB; rice straw biochar, RSB; soybean straw biochar, SSB; corn straw biochar, CSB)

Treatment	Combination	Treatment	Combination
T ₁	Soil + N ₀	T ₁₄	Soil + N ₁₁₀
T ₂	Soil + N ₀ + SMB ₁₀	T ₁₅	Soil + N ₁₁₀ + SMB ₁₀
T ₃	Soil + N ₀ + SMB ₂₀	T ₁₆	Soil + N ₁₁₀ + SMB ₂₀
T ₄	Soil + N ₀ + PLB ₁₀	T ₁₇	Soil + N ₁₁₀ + PLB ₁₀
T ₅	Soil + N ₀ + PLB ₂₀	T ₁₈	Soil + N ₁₁₀ + PLB ₂₀
T ₆	Soil + N ₀ + CMB ₁₀	T ₁₉	Soil + N ₁₁₀ + CMB ₁₀
T ₇	Soil + N ₀ + CMB ₂₀	T ₂₀	Soil + N ₁₁₀ + CMB ₂₀
T ₈	Soil + N ₀ + RSB ₁₀	T ₂₁	Soil + N ₁₁₀ + RSB ₁₀
T ₉	Soil + N ₀ + RSB ₂₀	T ₂₂	Soil + N ₁₁₀ + RSB ₂₀
T ₁₀	Soil + N ₀ + SSB ₁₀	T ₂₃	Soil + N ₁₁₀ + SSB ₁₀
T ₁₁	Soil + N ₀ + SSB ₂₀	T ₂₄	Soil + N ₁₁₀ + SSB ₂₀
T ₁₂	Soil + N ₀ + CSB ₁₀	T ₂₅	Soil + N ₁₁₀ + CSB ₁₀
T ₁₃	Soil + N ₀ + CSB ₂₀	T ₂₆	Soil + N ₁₁₀ + CSB ₂₀

After harvesting the wheat, soybean (variety 5958 RSF IPRO) was sown in the same PVC column with no additional biochar or N fertilizer application to estimate the residual effect of the biochar. Equivalents to 90 kg P₂O₅ ha⁻¹ (0.69 g triple superphosphate column⁻¹) and 120 kg K₂O ha⁻¹ (0.65 g potassium chloride column⁻¹) were applied to all treatments with no N application. Three out of six seedlings were grown for 66 days with the plant tops harvested, oven-dried, and measured for dry mass (DM) yield. The samples were then stored for further analysis. The dried samples were milled and analyzed for total carbon (TC), and samples were digested using HNO₃-HClO₄ to measure P, K, Ca, Mg, Mn, and Fe [15]. Exchangeable cations were determined by atomic absorption spectrophotometry (AAS) and P by colorimetry [16]. Total N was measured using the dry combustion method in an elemental analyzer (Thermo Scientific, Flash EA 1112, Milan, Italy). After the soybean harvest, stratified soil samples were collected at 0–5, 5–10, 10–15 and 15–25 cm layers to evaluate the influence of different biochars on soil pH and exchangeable Al across the whole 0–25 cm profile. Stratified soil samples were air-dried and prepared by passing the samples through a 2 mm sieve. Soil pH and exchangeable Al were measured.

2.4. Statistics

Analysis of variance (ANOVA) was performed using R3.5.1 statistical software with the assistance of R Studio to evaluate the main effects and interaction effects among different factors (biochar type \times nitrogen \times biochar rates) and to determine significant treatment effects. Tukey's test was performed to estimate the mean differences among the different biochars and their levels with and without N application. The figures used to differentiate the means between various factors were created using SigmaPlot 12.3.

3. Results

The soil collected for the whole experiment contained 1.2 of C%, 0.8 of N%, 4.8 mg P kg⁻¹, 28 mg K kg⁻¹, 15.5 cmol_c Ca dm⁻³, 9.3 cmol_c Mg dm⁻³ and 16.89 Al cmol_c dm⁻³ determined using the methods of Mehmood et al. [35] and Tedesco et al. [14]. Soil pH_(H2O) was measured to be 4.8.

Table 2. Chemical characteristics of the six different biochars, prepared and applied under a no-tillage planting system [40]. (Swine manure biochar, SMB; poultry litter biochar, PLB; cattle manure biochar, CMB; rice straw biochar, RSB; soybean straw biochar, SSB; corn straw biochar, CSB)

Nutrient	Animal manures						LSD
	SMB	PLB	CMB	RSB	SSB	CSB	
TC (%)	38.27 c	22.11 d	16.42 e	43.95 b	69.17 a	67.78 a	2.42
N (%)	3.00 a	1.82 b	0.95 c	0.87 c	2.13 b	0.79 c	0.33
P (%)	4.88 a	3.33 b	0.94 c	0.60 c	0.83 c	0.45 c	0.54
K (%)	3.67 c	5.60 b	2.66 d	5.97 a	0.69 f	2.23 e	0.27
Ca (%)	7.02 b	23.89 a	1.36 e	1.53 e	2.65 c	0.61 e	0.77
Mg (%)	5.84 a	2.79 b	0.07 c	0.05 c	0.13 c	0.04 c	0.2
Cu (mg kg ⁻¹)	20.7 b	7.7 d	31.2 a	17.6 c	20.5 b	18.4 c	1.9
Mn (mg kg ⁻¹)	462.6 b	262.7 c	476.6 b	1041.7 a	97.9 e	159.8 d	18.7
Zn (mg kg ⁻¹)	508.6 a	35.9 e	75.3 b	67.6 c	48.0 d	66.6 c	7.2
Fe (mg kg ⁻¹)	282.8 b	28.8 e	855.4 a	118.9 c	41.5 d	33.1 e	7.9

3.1. Wheat and soybean production

Plant height of wheat, spikelet length, and DM were greater for the treatment with N than for the non-N treatment (Tables 3 and 4). The data show that the application of N increased plant height, spikelet length, and DM in the wheat crop and the subsequent soybean crop, without any positive impact from the combination of N-B and N-R, except on DM in soybean. Biochar types increased plant height only at 10 Mg ha⁻¹ of poultry and corn biochar and 20 Mg ha⁻¹ of cattle, soybean, and corn biochar without N. Maximum heights of 98.4 and 97.9 cm were obtained when N was applied with poultry biochar at 10 Mg ha⁻¹ and corn biochar at 20 Mg ha⁻¹, respectively. Wheat DM yield did not differ among the biochar treatments, but all biochar types produced higher DM yields than the control, and this effect was observed only in the absence of N addition (Tables 3 and 4). Application of N fertilizer increased DM for swine, cattle, soybean, and corn biochar. Nonetheless, a significant

increase was observed in treatments without and with N, but no significant difference was observed among biochar rates. The control treatment showed an increase of more than 100% in DM with the application of N. Maximum wheat DM (15.2 Mg ha^{-1}) was observed with the addition of 20 Mg ha^{-1} of cattle manure biochar applied with N, while the minimum (4.5 Mg ha^{-1}) was observed in the control (no biochar, no N) treatment.

The biochar had no residual effect on soybean plant height at both the 10 and 20 Mg ha^{-1} rates. As with the other treatments, the control +N-B treatment also showed an increase in soybean plant height compared with the control -N-B. Biochar applied to wheat influenced soybean DM across treatments compared with the control -N-B treatment. Maximum soybean DM (17.3 and 17.9 Mg ha^{-1}) was observed with poultry litter biochar at 10 and 20 Mg ha^{-1} (no N), respectively, with no significant improvement at higher biochar rates. Treatments with N application showed a difference only between the control treatment and all other treatments that received biochar. In the comparison on N-added treatments with those with no N, there was a significant increment under all treatments except poultry biochar applied at 10 and 20 Mg ha^{-1} and cattle biochar applied at 20 Mg ha^{-1} .

3.2. Nutrient concentration in wheat and soybean tissues

Biochar type did not affect the N contents for wheat and soybean crops at 10 Mg ha^{-1} , while application at 20 Mg ha^{-1} significantly altered the N contents in the straws (Table 5). Conversely, a 100% increase in the control and a 50% increase under the other treatments were observed with higher biochar doses. Compared with the control (4.3 g kg^{-1}), the maximum N content was noted at 14.7 g kg^{-1} and 11.1 g kg^{-1} under the application of swine and poultry biochar at 10 Mg ha^{-1} , respectively. Using N with biochar increased the N content in wheat straw under the swine and poultry biochar treatments at 10 Mg ha^{-1} . Conversely, the application of 20 Mg ha^{-1} swine and poultry biochar decreased the wheat's N content.

Table 3. Wheat and soybean plant height (PH, cm), spikelet length (SL, cm), and dry matter (DM, Mg ha^{-1}) analysis of variance (ANOVA) summary of the main and interactive effects. (Control, C; nitrogen, N; biochar type, B; rate, R)

Crop	Nutrient	C	N	B	R	C × N	N × B	N × R	B × R	N × B × R
Wheat	PH	ns	***	ns	ns	*	ns	ns	—	ns
	SL	ns	***	ns	ns	ns	ns	—	ns	ns
	DM	*	***	ns	ns	ns	ns	ns	ns	ns
Soybean	PH	***	***	ns	ns	ns	ns	ns	ns	ns
	DM	***	***	***	*	ns	**	**	ns	ns

*** $P < 0.001$; ** $P < 0.01$; * $P < 0.5$; — $P < 0.1$; ns, nonsignificant.

Table 4. Wheat and soybean plant height (PH, cm), spikelet length (SL, cm), and dry matter (DM, Mg ha⁻¹) as affected by biochar type (swine manure biochar, SMB; poultry litter biochar, PLB; cattle manure biochar, CMB; rice straw biochar, RSB; soybean straw biochar, SSB; corn straw biochar, CSB) and rate (10 and 20 Mg ha⁻¹), and N application (0 and 110 kg ha⁻¹).

Crop	Measuremeant	N rate (kg ha ⁻¹)	Biochar rate (mg ha ⁻¹)	Control	SMB	PLB	CMB	RSB	SSB	CSB
Wheat	PH	0	10	65.0bB α	72.2aA α	76.3aB α	80.3aA α	82.0aA α	78.5aA α	71.7aB α
		110	20		80.8aA α	78.0aA α	72.3aB α	79.6aA α	74.7aB α	77.7aB α
		0	10	91.2aA α	81.7aA α	98.4aA α	88.7aA α	86.0aA α	95.0aA α	83.7aA α
		110	20		86.1aA α	84.7aA α	81.7aA α	87.8aA α	97.9aA α	89.0aA α
			LSD				16.04			
Wheat	SL	0	10	7.0aB α	6.8aB α	7.1aB α	7.3aA α	7.6aA α	6.7aB α	7.0aB α
		110	20		7.6aB α	8.4aA α	7.0aB α	8.3aA α	7.0aA α	7.3aB α
		0	10	9.0aA α	8.7aA α	9.2aA α	7.9aA α	8.7aA α	9.1aA α	8.6aA α
		110	20		9.3aA α	8.9aA α	8.4aA α	8.5aA α	8.1aA α	8.7aA α
			LSD				1.82			
Wheat	DM	0	10	4.5aB β	5.7aB α	5.9aB α	5.02aB α	7.6aB α	7.2aB α	6.5aA α
		110	20		5.9aB α	8.0aA α	7.4aB α	9.1aA α	7.0aB α	7.6aB α
		0	10	10.0aA α	11.7aA α	10.7aA α	12.5aA α	15.1aA α	11.6aA α	11.0aB α
		110	20		12.9aA α	11.7aA α	15.2aA α	11.7aA α	12.2aA α	12.8aA α
			LSD				5.55			
Soybean	PH	0	10	72.0aA α	77.7aA α	81.3aA α	80.7aA α	85.3aA α	81.7aA α	82.3aA α
		110	20		87.7aA α	84.3aA α	83.0aA α	79.3aA α	84.3aA α	86.3aA α
		0	10	78.0aA α	90.3aA α	89.0aA α	92.0aA α	91.3aA α	86.3aA α	86.7aA α
		110	20		92.7aA α	92.0aA α	94.0aA α	85.3aA α	87.3aA α	78.0aA α
			LSD				15.76			
Soybean	DM	0	10	7.9cB β	15.5aB α	17.3aA α	12.1bB α	12.0bB α	11.8bB α	9.9cB α
		110	20		17.4aB α	17.9aA α	15.7aA α	14.2bB α	13.8bB α	11.8cB α
		0	10	11.1bA β	18.1aA α	17.1aA α	16.9aA α	16.6aA α	16.4aA α	16.3aA α
		110	20		18.3aA α	17.4aA α	15.2aA α	16.6aA α	17.7aA α	15.2aA α
			LSD				3.79			

Lower case letters within rows show the differences among different biochars, uppercase letters within the columns indicate the effect of nitrogen application, α and β within rows indicate the effect of different rates of biochar. The least significant difference (LSD) test was performed to distinguish the differences among different treatments.

Table 5. Wheat and soybean straw nutrient (TC, TN, P, K, Ca, Mg, Mn, and Fe) content: ANOVA summary of main and interactive effects, control (C), nitrogen (N), biochar type (B), and biochar rate (R).

Nutrient	C	N	B	R	C × N	N × B	N × R	B × R	N × B × R
Wheat									
TC	***	***	***	-	**	*	ns	-	**
TN	**	**	**	ns	**	***	***	*	***
P	***	ns	***	*	ns	**	ns	*	ns
K	***	***	***	***	ns	**	ns	**	*
Ca	ns	*	ns	ns	ns	ns	ns	ns	ns
Mg	ns	***	***	ns	ns	ns	ns	ns	ns
Mn	***	**	-	ns	**	ns	ns	ns	ns
Fe	ns	***	**	ns	ns	ns	ns	ns	ns
Soybeans									
TC	ns	***	ns	ns	ns	***	ns	*	*
TN	ns	***	ns	ns	ns	***	ns	ns	ns
P	***	***	***	-	-	ns	ns	ns	ns
K	***	***	***	***	ns	ns	ns	ns	ns
Ca	*	***	**	ns	-	ns	ns	ns	ns
Mg	-	-	***	ns	ns	ns	ns	ns	ns
Mn	*	***	***	ns	**	*	ns	ns	ns
Fe	ns	ns	ns	ns	ns	ns	ns	ns	ns

*** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$; - $P < 0.1$; ns, nonsignificant.

In wheat straw, P content in the control (1.3 g kg^{-1}) was lower compared with biochar, demonstrating differences in P content among the different types at application rates of 10 Mg ha^{-1} . An increase in the biochar rate increased P content in plant tissues except for cattle biochar, where P content decreased with an increase in the rate (20 Mg ha^{-1}) for the no-N treatment. Adding N fertilizer and different biochar types did not increase P in plant tissues except for the swine biochar (33% increase) at the 20 Mg ha^{-1} rate. With other biochars, the P content in plant tissues decreased to some extent but remained close to the contents observed without N application.

In wheat straw, K content was influenced by the biochar type and was increased by the biochar rate and N application (Table 5 shows the interaction of $B \times R \times N$). The K contents in plant tissues increased by approximately 25 % with an increase in the biochar rate, except for soybean at 20 Mg ha^{-1} . In addition, N decreased the K content in wheat tissues with a biochar application rate of 10 Mg ha^{-1} , while at 20 Mg ha^{-1} , no significant change was observed.

Similar outcomes were observed when comparing Ca, Mg, and micronutrients (Mn and Fe), with no significant differences among biochar types or rates. Calcium and Mg contents increased with an increase in the rate of biochar, but no significant difference was noticed. No changes in micronutrient (Mn and Fe) concentrations were observed across biochar types, although higher concentrations were observed with the application of N.

Table 6. Wheat straw nutrient concentrations (N, P, K, Ca, and Mg in g kg⁻¹; Mn and Fe in mg kg⁻¹) as affected by biochar type (swine manure, SMB; poultry litter, PLB; cattle manure, CMB; rice straw, RSB; soybean straw, SSB; corn straw, CSB) and rate (10 and 20 Mg ha⁻¹) and N application (0 and 110 kg ha⁻¹).

Nutrient	N rate (kg ha ⁻¹)	Rate (mg ha ⁻¹)	Control	SMB	PLB	CMB	RSB	SSB	CSB
N	0	10	4.3b	4.5b	8.3a	8.2a	8.2a	8.2a	4.2b
		20		9.4a	9.6a	6.7c	7.7b	8.4a	9.9a
N	110	10	8.3a	14.7a	11.1b	8.4b	8.8b	7.4c	6.8c
		20		8.4a	7.6a	8.0a	6.9a	7.3a	6.6a
		LSD				0.33			
P	0	10	1.3c	2.8a	1.9a	2.8a	1.9a	2.1a	2.2a
		20		3.3a	2.5a	1.7b	2.9a	2.2a	2.4a
P	110	10	1.8a	3.1b	2.3a	1.8a	1.7a	1.9a	1.6a
		20		4.5a	2.9a	1.9a	1.9a	2.0A	1.7a
		LSD				1.23			
K	0	10	9.1b	16.3a	18.8a	13.4a	17.9a	11.2b	15.4a
		20		20.5a	21.8a	18.1a	21.4a	13.9a	19.5a
K	110	10	8.8b	13.2b	17.6b	10.9b	18.5a	7.5a	12.8b
		20		20.1a	24.0a	14.7a	19.2a	7.7a	19.4a
		LSD				4.00			
Ca	0	10	9.1a	8.9a	8.8aA α	9.9aA α	10.7aA α	10.9aA α	9.4bA α
		20		9.1aA α	10.9aA α	9.7aA α	10.8aA α	11.9aA α	14.6aA α
Ca	110	10	12.1aA α	10.1aA α	10.9aA α	12.0aA α	10.9aA α	13.2aA α	9.8aA α
		20		11.7aA α	12.3aA α	11.2aA α	12.0aA α	13.4aA α	10.1aB α
		LSD				4.77			
Mg	0	10	4.0aA α	3.9aB α	3.9aA α	3.7aA α	3.4aB α	3.9aB α	3.5aA α
		20		4.2aA α	4.4bA α	3.7bA α	3.2bA α	4.2bA α	3.5bA α
Mg	110	10	4.1aA α	5.4aA α	4.3bA α	4.3bA α	4.0bA α	4.6bA α	3.9bA α
		20		4.2aA α	4.4bA α	3.7bA α	3.2bA α	4.2bA α	3.5bA α
		LSD				0.78			
Mn	0	10	220.9aA α	170.2aA α	171.4aA α	232.1bA α	223.9aA α	141.6aA α	155.0aA α
		20		199.2aA α	208.8aA α	399.9aA α	126.9aA α	111.4aA α	116.7aA α
Mn	110	10	498.1aA α	197.4aA α	247.9aA α	275.5aB α	250.2aA α	261.4aA α	269.9aA α
		20		168.7aA α	272.4aA α	205.9aA α	216.9aA α	189.8aA α	201.3aA α
		LSD				205.72			
Fe	0	10	109.8aA α	100.2aA α	114.5aA α	107.3aA α	94.7aA α	117.9aA α	107.1aA α
		20		88.3aA α	111.0aA α	103.7aA α	119.4aA α	100.6aA α	100.0aA α
Fe	110	10	100.2aA α	114.5aA α	107.3aA α	94.7aA α	117.9aA α	107.1aA α	100.2aA α
		20		88.3aA α	111.0aA α	103.7aA α	119.4aA α	100.6aA α	100.0aA α
		LSD				31.51			

For the same nutrient group, lowercase letters within rows show the difference among different biochars, uppercase letters within columns indicate the effect of nitrogen application, and α and β within rows indicate the effect of different rates of biochars. The least significant difference (LSD) test was performed to distinguish the differences among different treatments.

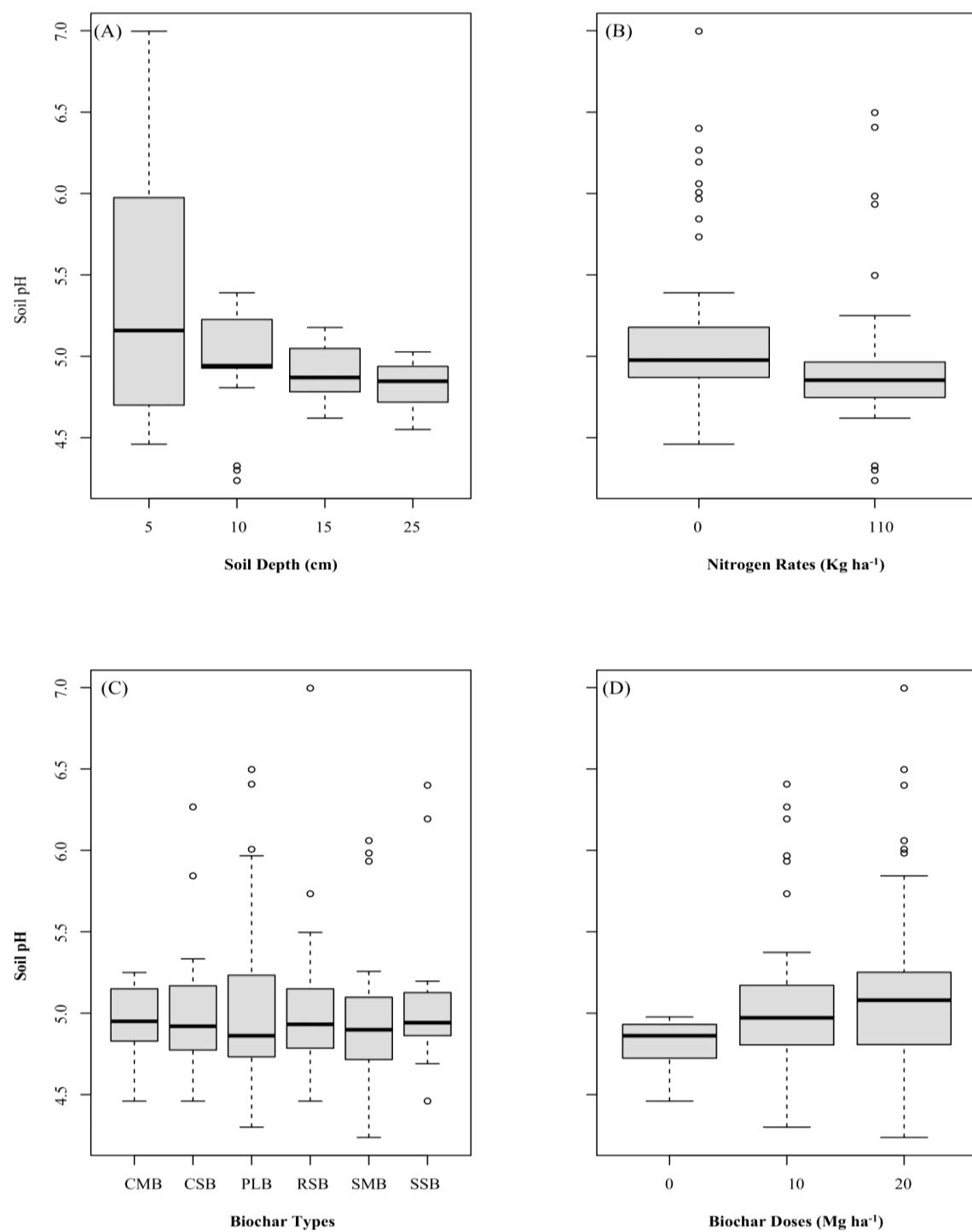
In soybean straw, N concentration was not affected by the biochar type or the N rate applied to wheat (Table 7). A slight increase in N content was observed with an increase in the biochar rate from 10 Mg ha⁻¹ to 20 Mg ha⁻¹. Treatments with N applied to the previous crop exhibited a 25–33% increase compared with those without N application, although there were no significant increases among biochars and rates of biochar. Compared with N, P was affected by the biochar type (2.1 and 2.0 g kg⁻¹), with the level under swine and poultry biochar at 10 Mg ha⁻¹ remaining unchanged at 20 Mg ha⁻¹. The application of N decreased the P content by up to 16% in soybean straw under treatments with 10 Mg ha⁻¹, while poultry and soybean biochar at 20 Mg ha⁻¹ showed no difference between treatments with N and without N. Biochar type and rate had no impact on the K content in soybean tissue. The addition of N to previous wheat crops had no effect with or without N application, whereas only a significant increase was observed at a biochar application rate of 20 Mg ha⁻¹, which increased K content by up to 22%.

Table 7. Soybean straw nutrient concentrations (N, P, K, Ca, and Mg in g kg⁻¹; Mn and Fe in mg kg⁻¹) as affected by biochar type (swine manure biochar, SMB; poultry litter biochar, PLB; cattle manure biochar, CMB; rice straw biochar, RSB; soybean straw biochar, SSB; corn straw biochar, CSB), biochar rate (10 and 20 Mg ha⁻¹), and N application (0 and 110 kg ha⁻¹).

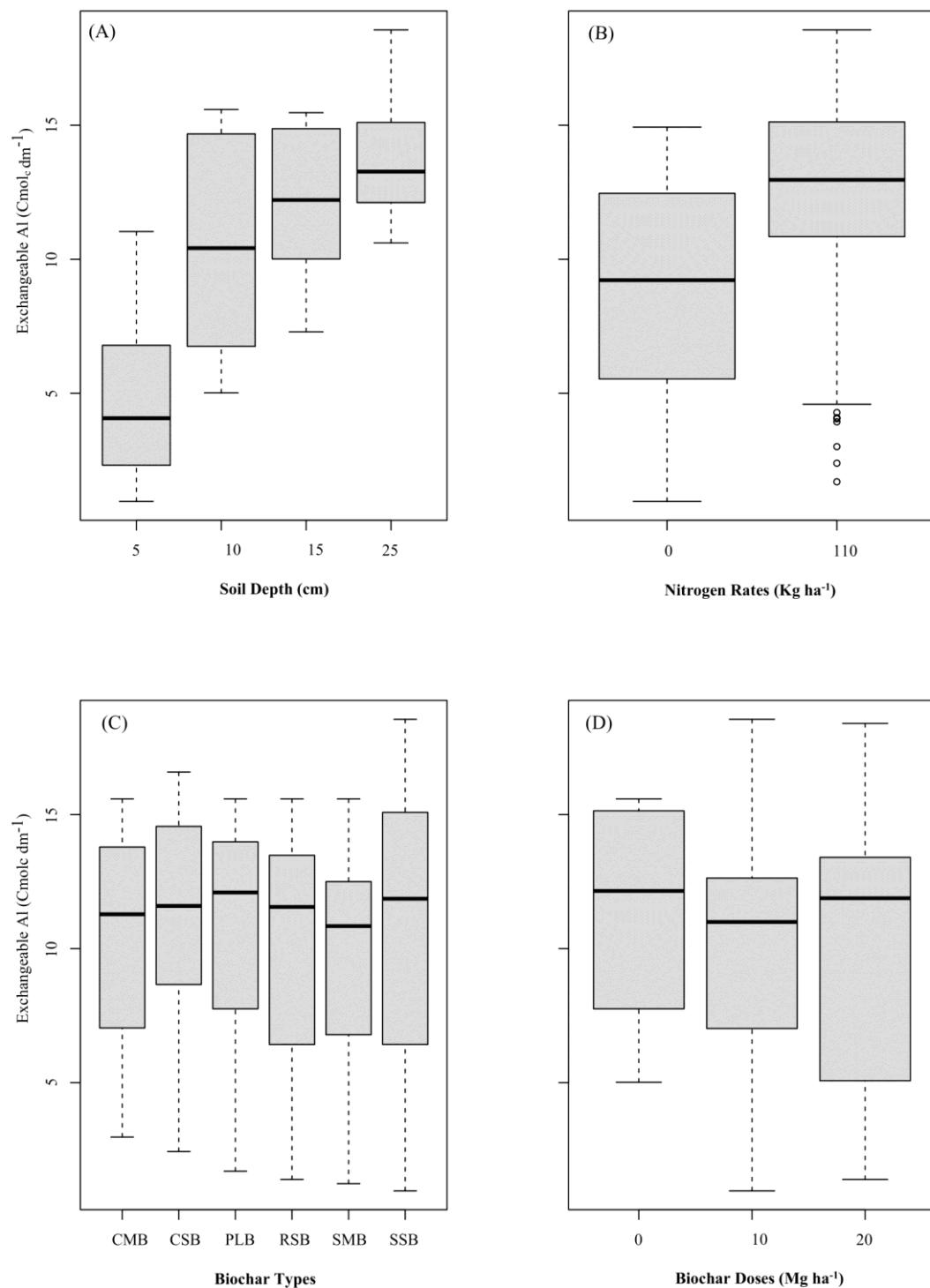
Nutrient	N rate (kg ha ⁻¹)	Rate (mg ha ⁻¹)	Control	SMB	PLB	CMB	RSB	SSB	CSB
N	0	10	19.0aB α	19.0aB α	26.0aA α	18.0aB α	20.0aB α	18.0aB α	19.0aB α
	0	20		21.0aA α	27.0aA α	20.0aB α	19.0aB α	21.0aB α	18.0aB α
N	110	10	28.0aA α	30.0aA α	23.0aA α	26.0aA α	28.0aA α	29.0aA α	30.0aA α
	110	20		26.0aA α	28.0aA α	27.0aA α	27.0aA α	29.0aA α	31.0aA α
LSD									
P	0	10	1.1cA β	2.1aA α	2.0aA α	1.8bA α	1.6bA α	1.6bA α	2.0aA α
	0	20		2.1aA α	2.0aA α	1.7aA α	1.8aA α	1.7aA α	1.9aA α
P	110	10	1.1bcA β	1.8aB α	1.4aB β	1.2bB α	1.3aB α	1.3aB α	1.2bB α
	110	20		1.8aB α	1.9aA α	1.5aB α	1.4aB α	1.5aA α	1.2bB α
LSD									
K	0	10	7.8bB β	12.6aA α	13.9aA α	10.9aB α	14.2aB α	13.1aA α	13.2aB α
	0	20		14.0aA α	17.4aA α	12.2aB α	16.3aA α	12.7aA α	14.4aB α
K	110	10	12.6aA α	14.8aA β	16.4aB β	15.5aA α	17.4aA α	13.4aA α	14.3aA α
	110	20		18.0aA α	19.5aA α	15.4aA α	18.1aA α	13.2aA α	18.7aA α
LSD									
Ca	0	10	14.9aA α	12.8aA α	15.9aA α	13.5aB α	12.1aB α	16.6aB α	14.7aA α
	0	20		11.0aB α	19.1aA α	14.1aA α	11.0aA α	14.7aB α	14.4aB α
Ca	110	10	27.7aA α	15.6aA α	19.0aA α	22.2aA α	19.6aA α	26.1aA α	16.7aA α
	110	20		17.8aA α	21.9aA α	17.4aA α	16.3aA α	22.6aA α	22.2aA α
LSD									
Mg	0	10	1.8aA α	1.8aA α	1.8aA α	1.6aA α	1.2aA α	1.8aA α	1.6aA α
	0	20		1.7aA α	1.8aA α	1.6aA α	1.0aA α	1.9aA α	1.4aA α

Continued on the next page

Nutrient	N rate (kg ha ⁻¹)	Rate (mg ha ⁻¹)	Control	SMB	PLB	CMB	RSB	SSB	CSB
Mg	110	10	1.8aA α	1.8aA α	1.7aA α	1.9aA α	1.4aA α	2.0aA α	1.6aA α
		20		2.2aA α	1.8aA α	1.7aA α	1.1aA α	2.0aA α	1.6aA α
	LSD					0.59			
Mn	0	10	126aB α	127aA α	222aA α	137aB α	128aA α	118aA α	130aB α
		20		121bA α	262aA α	154bA α	135bA α	87bA α	97bB α
	Mn	110	10	280aA α	169aA α	170aA α	225aA α	188aA α	175aA α
Fe	0	10	44.5aA α	45.5aA α	52.3aA α	50.5aA α	37.5aA α	63.9aA α	53.6aA α
		20		89.4aA α	67.0aA α	66.9aA α	54.5aA α	39.0aA α	54.4aA α
	Fe	110	10	57.2aA α	42.6aA α	49.6aA α	61.4aA α	53.4aA α	52.5aA α
Fe	20			52.3aA α	59.4aA α	66.4aA α	48.8aA α	43.8aA α	51.3aA α
		LSD				101.58			
						43.35			


For the same nutrient group, lowercase letters indicate differences among biochars, uppercase letters within columns indicate the effect of nitrogen application, and α and β within rows indicate the effect of different biochar rates. The least significant difference (LSD) test was performed to distinguish the differences among the different treatments.

Calcium, Mg, and micronutrients showed no influence of biochar type and application rate with N and without N. Maximum Ca (22.2 g kg⁻¹) and Mg (2.2 g kg⁻¹) were observed for cattle biochar at 10 Mg ha⁻¹ and swine biochar at 20 Mg ha⁻¹, respectively, both combined with N application. Micronutrients (Mn, Fe) had nonsignificant changes across different biochars, application rates, and with and without N. However, a slight increase was observed in treatments that included N fertilizer.


3.3. Soil pH and Al alteration

The results showed an increase in soil pH with the addition of biochar (Figure 1). The maximum change in soil pH was noticed at 0–5 cm depth. The effect on soil pH decreased with depth, as the 15–25 cm depth was the least affected by the addition of biochar and other amendments. No significant differences were noted in deeper soil layers, but the pH decreased with increased soil depth. The addition of N (as NH₄SO₄) decreased the soil pH, but pH slightly increased without N application. The effect of biochar addition on soil pH was noticed. Maximum pH values were noticed with poultry biochar followed by the sequence corn > rice > cattle > soybean > swine. The biochar application rate influenced soil pH (Figure 1D), with higher rates increasing soil pH. However, the increase in soil pH was not significantly different at the double biochar rate, but the increase was noticeable enough to indicate a change.

A significant gradient can be observed when different biochars were added to soil compared with undisturbed soil (no-tillage system). The minimum exchangeable Al was observed at 0–5 cm depth (Figure 2) and increased with depth. The amendment applications affected the exchangeable Al content at 0–5 cm and 5–10 cm depths, but no change was noticed at 15–25 cm depth. The addition of N fertilizer increased exchangeable Al content, showing nearly double the amount compared with soil samples with no N application.

Figure 1. Changes in soil pH with surface application of cattle manure biochar (CMB), corn straw biochar (CSB), poultry litter biochar (PLB), rice straw biochar (RSB), swine manure biochar (SMB), and soybean straw biochar (SSB). (A) Effect of soil depth on soil pH, (B) effect of nitrogen rates on soil pH, (C) effect of biochar types on soil pH, and (D) effect of biochar rates (doses) on soil pH.

Figure 2. Soil exchangeable Al with surface application of cattle manure biochar (CMB), corn straw biochar (CSB), poultry litter biochar (PLB), rice straw biochar (RSB), swine manure biochar (SMB), and soybean straw biochar (SSB). (A) Effect of soil depth on exchangeable Al, (B) effect of nitrogen rates on exchangeable Al, (C) effect of biochar types on exchangeable Al, and (D) effect of biochar rates (doses) on exchangeable Al.

Different biochar types showed variable effects on the soil's exchangeable Al content (Figure 2C). The sequence of effects was rice < swine < soybean < cattle < poultry < corn. Soybean biochar showed the largest variation in exchangeable Al contents in the soil, while the variation in exchangeable Al content was the least when swine biochar was applied to undisturbed soil. Biochar application rates also showed variable results compared with the control, with a decrease in exchangeable Al with the application of biochar. Figure 2 shows a decrease in exchangeable Al with increasing application rates. The maximum influence was observed at the 20 Mg ha^{-1} application rate compared with 10 Mg ha^{-1} .

4. Discussion

4.1. Wheat and soybean production

The results showed that biochar significantly affected agronomic parameters and wheat DM. However, no significant difference was observed between different application rates of biochar. A slight increase in plant height and DM yield could be related to the application of 20 Mg ha^{-1} and N, as well as a slight increase in wheat plant height and DM yield. Biochar alone did not have a promising effect on wheat DM, which may be attributed to the low N content and elevated C:N ratio of the biochar [9], which may prevent N supply to crop plants and crop yield. High ratios immobilize N, while low ratios release it. Biochar's high C:N ratio may restrict N initially, but it enhances the soil's structure, pH, and nutrient retention. Combined with N sources, biochar improves soil fertility and crop productivity. Therefore, adding NH_4^+ fertilizer ensured that the N concentration in biochar + soil mix was sufficient for wheat growth. The addition of N fertilizer increased the wheat DM under the no-tillage system. In the experiment, the lesser impact of biochar alone can be attributed to the lower N content in swine, cattle, and rice biochar, which contained 1.8, 3.0, and 2.1% N, respectively. It is possible that the N present in biochar was leached from the PVC columns. The addition of N in the presence of biochar favored N uptake by plants as well as retaining N in the soil–biochar mixtures for a longer time. The results align with the findings of Chan et al. [4], who reported that greenwaste biochar did not affect radish biomass yield even at 100 t ha^{-1} , while the addition of N fertilizer increased yield significantly. The improved radish yield was attributed to the soil's physical condition, especially the reduction in tensile strength and higher field capacity water, both of which favor root growth and the soil's increased ability to absorb N. Maduabuchi et al. [38] reported that the addition of N increased paddy rice yield regardless of the biochar type, supporting our findings that the application of N with biochar increased wheat biomass without any effect of biochar type. Likewise, in their findings from their field experiment, Maduabuchi et al. [39] reported an increase in rice yield of up to 9% for the application of N with biochars under a no-tillage planting system.

The same pattern was observed in the residual effect of biochar on soybean plant height and DM, where the addition of N in combination with biochar favored plant growth and DM. High DM can be associated with the positive changes in soil quality induced by biochar, which enhances nutrient use efficiency. However, biochar alone did not affect wheat DM, which may be attributed to its low N content and elevated C:N ratio, which may prevent N supply to crop plants and reduce crop yield. The results confirmed the findings of Solaiman et al. [17], who found that oil mallee biochar increased wheat yield when applied with mineral fertilizer. Furthermore, biochar increased cassava and chili yield when applied with N over four years [18].

Generally, increased growth and yield were observed when biochar was added or mixed with

different fertilizers. Abbasi and Anwar [24] reported that poultry litter biochar increased corn DM in combination with N fertilizer by up to 26% compared with the control. They applied compound poultry manure (CPM) and nitrophos (NP) along with biochar to investigate the impact of biochar on CPM and NP on cucumber growth and yield. The application of CPM and NP reduced the impact of nutrient deficiency on cucumber growth when biochar was applied [19]. On the other hand, Bista et al. [20] conducted an experiment using wood biochar (Douglas fir) and concluded that the application of biochar at 11.2 and 22.4 Mg ha⁻¹ increased wheat shoot biomass by 15–20% without the addition of fertilizers. Long-term benefits may include SOM retention for a longer period, elevated nutrient-holding capacity, and slow nutrient release due to the biochar's high CEC [21]. Rice straw biochar increases crop growth and yield by enhancing NO₃⁻ retention in the soil [22]. A similar effect has been reported by Prommer et al. [23], who noticed that the addition of biochar enhances the ammonia oxidizer populations and accelerates the net nitrification rates that may retain NO₃⁻. However, in this study, ammonium sulfate was used as an N source, and hence, due to the increase in the CEC of soil through the addition of biochar, the soil could retain NH₄⁺, and nitrification may occur when needed. Our results align with those of Steiner et al. [21], who reported that biochar increased soil CEC and sustained nutrient absorption for extended periods.

4.2. Nutrient concentration, soil pH, and Al concentration

Nutrient concentrations in wheat and soybean shoots demonstrate that the addition of biochar to soil enhanced nutrient concentrations in plant tissues, directly affecting wheat crops and exerting a residual effect on soybeans. The nutrient concentration in plant tissues observed in this study is similar to the findings of [4] and [24], which stated that the increased nutrient uptake with biochar use could be related to greater nutrient use efficiency. Organic waste biochar can enhance corn yield by up to 6.24 Mg ha⁻¹ [25]. Widowati and Ashah observed that a dual application of biochar and a lower KCl rate enhanced corn yield by up to 26% [25].

Incorporating animal manure and crop straw-derived biochar increased soil pH and decreased exchangeable Al. In this study, the crop straw-derived biochar presented a consistent increase in soil pH and a decrease in exchangeable Al compared with the animal waste-derived biochar, where the response was more varied. Overall, in the greenhouse experiment, the addition of N to different biochars greatly affected the agronomic parameters of wheat (direct effect) and soybean (residual effects). The nutrient concentration in plant tissue was affected by the addition of N fertilizer in combination with biochar compared with biochar application alone, which can be related to the presence of less N in the biochar applied to the soil, as well as plants absorbing nutrients such as P and K.

Biochar's pH ranges from 5.5 to 10.5, depending on the mineral fractions' content and composition, which vary with the feedstock and pyrolysis conditions [26]. Biochar can alter the NH₄⁺ and NO₃⁻ dynamics in soils by impacting adsorptive properties and pH [27]. The addition of biochar alone greatly influenced soil pH, along with NH₄⁺ fertilizer (Figure 1). The increase in pH in the soil surface layer can be related to the presence of biochar's negatively charged phenolic, carboxyl, and hydroxyl groups on the surface of biochar, which tends to bind H⁺ from the soil solution by reducing soil H⁺ and hence causing an increase in pH [28]. The higher pH increases CEC by reducing leaching of base cations in competition with H⁺ ions [29]. In this study, the biochar affected only the surface layer, while the layers underneath were not directly affected by the addition of biochar, even at 20 Mg ha⁻¹. Adding NH₄⁺ as fertilizer in soil decreases the soil pH, whereas an increase occurs with the application

of biochar to acidic soils [30]. It is well known that the addition of organic material to the soil significantly impacts the soil pH, which demonstrates that the addition of biochar can enhance the pH of acidic soil due to its high alkalinity [31]. Corn straw biochar's high CaCO_3 content and proton consumption ability increase soil pH and decrease the soil's exchangeable acidity [28]. This increase in soil pH helps exchangeable Al to participate as insoluble hydroxyl Al species [32]. Soil pH can be increased by adding biochar to soils by releasing the base cations into acid soils, which can participate in exchange reactions, replacing exchangeable Al and H from the soil surface and decreasing soil acidity [33,34].

Aluminum concentration in the soil is of more importance for soil acidity because of its higher charge and its ability to occupy more exchange sites and release a higher number of H^+ in the soil solution. Consequently, it decreases the soil pH and increases soil acidity [35]. Although in sandy-textured soil, there is no Al at toxic levels, due to the soil pH, it is more important to address it by increasing the soil pH. The reduction of exchangeable Al converted it to Al-OH, which precipitated in the presence of biochar. Reducing active Al^{3+} species in the soil is paramount for reducing soil acidity, and consequently enhancing soil fertility [10]. In one study, the authors reported that with the addition of biochar to corn crops, two factors acted for neutralization of Al; one was the alkaline effect of biochar, while the hydroxyl released from roots due to nitrate uptake acted in a complementary manner. In the present study, all biochar was mixed with soil at 2.5–3.0 cm depth to obtain consistent results. The biochar influenced the soil pH and exchangeable Al, moving downward, and had a minor influence. The addition of biochar increases the alkaline metals (Ca^{2+} , Mg^{2+} , and K^+) oxides in acidic soil, and hence, soluble Al^{3+} reduces with an increase in pH [36]. These results highlight the potential of biochar to enhance its role in agriculture by improving soil quality [37].

5. Conclusions

The findings indicate that applying all types of biochar, either alone or in combination with fertilizers, enhanced wheat growth parameters such as plant height, spikelet length, and DM yield. When nitrogen (N) was added with biochar, it improved the nutrient concentration in wheat straw and contributed to a balanced nutritional status. Biochar alone had no significant residual effect on soybean plant height and DM yield; however, when N had been applied to the preceding wheat crop, positive effects were observed. Nutrient concentrations in soybean's aerial parts followed a pattern similar to that of wheat biomass, with N addition exerting more potent effects than biochar alone. Overall, the study suggests that biochar enhances plant growth and crop yield when applied together with N fertilizer. Thus, biochar derived from animal manures and crop residues functions more effectively as a soil amendment than as a direct fertilizer. Due to its alkaline nature and high cation exchange capacity (CEC), biochar raises soil pH and effectively adsorbs Al in the topsoil, though these effects decline with increasing depth. Significantly, the influence of biochar varied with the feedstock type and application rate, reflecting the distinct characteristics of the parent material. This study underscores the promise of biochar as a tool for advancing sustainable farming practices and building a more resilient agriculture.

Author contributions

Qamar Sarfaraz: Conceptualization, data curation, formal analysis, methodology, writing—original draft; Rajesh Sharma: Writing—review and editing; Garson Laerson Drescher: Funding acquisition, project administration, writing—review and editing; Mohsin Zafar: Data curation, formal analysis, writing—review and editing; Muhammad Izhar Shafi: Formal analysis, validation, writing—original draft; Geoffrey Christie Anderson: Formal analysis, validation, writing—original draft; Leandro Souza da Silva: Conceptualization, data curation, formal analysis; Zakaria M. Solaiman: Resources, Visualization, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Use of Generative AI tools declaration

The authors declare they have not used artificial intelligence tools to create this article.

Acknowledgements

The authors gratefully thank the Brazilian Council for Scientific and Technological Development (CNPq) and the Word Academy of Science (TWAS) for providing financial support (grants and scholarships) for the research, and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for providing scholarships and the laboratory equipment for analysis (Financing Code 001).

Conflicts of Interest

The authors state that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Agegnehu G, Bird MI, Nelson PN, et al. (2015) The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol. *Soil Res* 53: 1–12. <https://doi.org/10.1071/SR14118>
2. Lal R (2009) Chapter: Soils and food sufficiency: A review. In: Lichtfouse E, Navarrete M, Debaeke P, et al. (Eds.), *Sustainable Agriculture*, 25–49. https://doi.org/10.1007/978-90-481-2666-8_4
3. Izhar Shafi M, Adnan M, Fahad S, et al. (2020) Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (*Triticum aestivum* L.) in calcareous soil. *Agronomy* 10: 1224. <https://doi.org/10.3390/agronomy10091224>
4. Chan K, Van Zwieten L, Meszaros I, et al. (2008) Using poultry litter biochars as soil amendments. *Soil Res* 46: 437–444. <https://doi.org/10.1071/SR08036>
5. Solaiman ZM, Shafi MI, Beamont E, et al. (2020) Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. *Agriculture* 10: 480. <https://doi.org/10.3390/agriculture10100480>

6. Solaiman ZM, Blackwell P, Shafi MI, et al. (2025) Co-application of biochar and phosphorus increases soil microbial biomass, mycorrhizal colonization, growth, and nutrition of subterranean clover. *AIMS Microbiol* 11: 59–73. <https://doi.org/10.3934/microbiol.2025004>
7. Solaiman ZM, Abbott LK, Murphy DV (2019) Biochar phosphorus concentration dictates mycorrhizal colonization, plant growth and soil phosphorus cycling. *Scientific Rep* 9: 5062. <https://doi.org/10.1038/s41598-019-41671-7>
8. Solaiman ZM, Murphy DV, Abbott LK (2012) Biochars influence seed germination and early growth of seedlings. *Plant Soil* 353: 273–287. <https://doi.org/10.1007/s11104-011-1031-4>
9. Sarfaraz Q, da Silva LS, Drescher GL, et al. (2020) Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. *Scientific Rep* 10: 955. <https://doi.org/10.1038/s41598-020-57987-8>
10. Masud M, Li JY, Xu YK (2014) Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic Ultisol. *Pedosphere* 24: 791–798. [https://doi.org/10.1016/S1002-0160\(14\)60066-7](https://doi.org/10.1016/S1002-0160(14)60066-7)
11. Nelissen V, Rütting T, Huygens D, et al. (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. *Soil Biol Biochem* 55: 20–27. <https://doi.org/10.1016/j.soilbio.2012.05.019>
12. Kammann CI, Linsel S, Gößling JW, et al. (2011) Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. *Plant Soil* 345: 195–210. <https://doi.org/10.1007/s11104-011-0771-5>
13. Bayer C, Gomes J, Zanatta JA, et al. (2015) Soil nitrous oxide emissions as affected by long-term tillage, cropping systems and nitrogen fertilization in Southern Brazil. *Soil Tillage Res* 146: 213–222. <https://doi.org/10.1016/j.still.2014.10.011>
14. Tedesco MJ, Gianello C, Bissani C, et al. (1995) Análise de solo, plantas e outros materiais. [Analysis of soil, plants and other materials.] 2nd ed., Departamento de Solos da Universidade Federal do Rio Grande do Sul, Porto Alegre, 174.
15. da Silva FC (2009) Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Informação Tecnológica; Rio de Janeiro: Embrapa Solos, 2 ed., rev. e ampl. 1–627.
16. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. *Analytica Chimica Acta* 27: 31–36. [https://doi.org/10.1016/S0003-2670\(00\)88444-5](https://doi.org/10.1016/S0003-2670(00)88444-5)
17. Solaiman ZM, Blackwell P, Abbott LK, et al. (2010) Direct and residual effect of biochar application on mycorrhizal root colonization, growth and nutrition of wheat. *Soil Res* 48: 546–554. <https://doi.org/10.1071/SR10002>
18. Wisnubroto EI, Utomo WH, Indrayatie ER (2017) Residual effect of biochar on growth and yield of red chili (*Capsicum annuum* L.). *J Advan Agricul Technol* 4: No.1. <https://doi.org/10.18178/joaat.4.1.28-31>
19. Solaiman ZM, Shafi MI, Beamont E, et al. (2020) Poultry litter biochar increases mycorrhizal colonization, soil fertility and cucumber yield in a fertigation system on sandy soil. *Agriculture* 10: 480. <https://doi.org/10.3390/agriculture10100480>
20. Bista P, Ghimire R, Machado S, et al. (2019) Biochar effects on soil properties and wheat biomass vary with fertility management. *Agronomy* 9: 623. <https://doi.org/10.3390/agronomy9100623>

21. Steiner C, Glaser B, Teixeira WG, et al. (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. *J Plant Nutr Soil Sci* 171: 893–899. <https://doi.org/10.1002/jpln.200625199>
22. Wang J, Pan X, Liu Y, et al. (2012) Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. *Plant Soil* 360: 287–298. <https://doi.org/10.1007/s11104-012-1250-3>
23. Prommer J, Wanek W, Hofhansl F, et al. (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. *PLoS One* 9: e86388. <https://doi.org/10.1371/journal.pone.0086388>
24. Abbasi MK, Anwar AA (2015) Ameliorating effects of biochar derived from poultry manure and white clover residues on soil nutrient status and plant growth promotion-greenhouse experiments. *PLoS One* 10: e0131592. <https://doi.org/10.1371/journal.pone.0131592>
25. Widowati W, Asnah A (2014) Biochar can enhance potassium fertilization efficiency and economic feasibility of maize cultivation. *J Agricult Sci* 6: No.2. <https://doi.org/10.5539/jas.v6n2p24>
26. Spokas KA, Novak JM, Venterea RT (2012) Biochar's role as an alternative N-fertilizer: ammonia capture. *Plant Soil* 350: 35–42. <https://doi.org/10.1007/s11104-011-0930-8>
27. Mandal S, Donner E, Vasileiadis S, et al. (2018) The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. *Sci Total Environ* 627: 942–950. <https://doi.org/10.1016/j.scitotenv.2018.01.312>
28. Chintala R, Mollinedo J, Schumacher TE, et al. (2014) Effect of biochar on chemical properties of acidic soil. *Arch Agron Soil Sci* 60: 393–404. <https://doi.org/10.1080/03650340.2013.789870>
29. Gul S, Whalen JK, Thomas BW, et al. (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. *Agric Ecosyst Environ* 206: 46–59. <https://doi.org/10.1016/j.agee.2015.03.015>
30. Li W, Feng X, Song W, et al. (2018) Transformation of phosphorus in speciation and bioavailability during converting poultry litter to biochar. *Front Sust Food Syst* 2: 20. <https://doi.org/10.3389/fsufs.2018.00020>
31. Luo X, Chen L, Zheng H, et al. (2016) Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. *Geoderma* 282: 120–128. <https://doi.org/10.1016/j.geoderma.2016.07.015>
32. Ritchie G (1994) Role of dissolution and precipitation of minerals in controlling soluble aluminum in acidic soils. *Advan Agron* 53: 47. [https://doi.org/10.1016/S0065-2113\(08\)60612-4](https://doi.org/10.1016/S0065-2113(08)60612-4)
33. Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. *Soil Use Manag* 27: 110–115. <https://doi.org/10.1111/j.1475-2743.2010.00317.x>
34. Iqbal A, Shafi MI, Rafique M, et al. (2023) Biofertilizers to improve soil health and crop yields. In: Fahad S, Danish S, Datta R, et al. (Eds.), *Sustainable Agriculture Reviews 61: Biochar to Improve Crop Production and Decrease Plant Stress under a Changing Climate*, Springer, 247–272. https://doi.org/10.1007/978-3-031-26983-7_11
35. Mehmood K, Li JY, Jiang J, et al. (2017) Effect of low energy-consuming biochars in combination with nitrate fertilizer on soil acidity amelioration and maize growth. *J Soils Sed* 17: 790–799. <https://doi.org/10.1007/s11368-015-1219-y>

36. Steiner C, Teixeira WG, Lehmann J, et al. (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. *Plant Soil* 291: 275–290.
37. Kabir E, Kim KH, Kwon EE (2023) Biochar as a tool for the improvement of soil and environment. *Front Environ Sci* 11: 1324533. <https://doi.org/10.3389/fenvs.2023.1324533>
38. Iboko MP, Dossou-Yovo ER, Obalum SE, et al. (2023) Paddy rice yield and greenhouse gas emissions: Any trade-off due to co-application of biochar and nitrogen fertilizer? A systematic review. *Heliyon* 9: e22132. <https://doi.org/10.1016/j.heliyon.2023.e22132>
39. Iboko MP, Dossou-Yovo ER, Obalum SE, et al. (2025) Biochar and nitrogen fertilizer application increased yield and economic benefits in no-till lowland rice production system. *Arch Agron Soil Sci* 71: 1–27. <https://doi.org/10.1080/03650340.2025.2515104>
40. Sarfaraz Q, Silva LSD, Drescher GL, et al. (2020) Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. *Sci Rep* 10: 955. <https://doi.org/10.1038/s41598-020-57987-8>

AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>)