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Abstract: The diverse community of endophyte and rhizobacteria is a critical resource in enhancing 

plant growth and resistance against abiotic and biotic stress. These microbes include various 

bacterial communities dominated by Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. 

They inhabit and proliferate in plant tissues forming beneficial associations compared to other 

microbes residing in the exospheric region. Despite the demonstration of the presence of bacterial 

endophytes in crops, their role in supporting nutrient bioavailability and acquisition in degraded soils 

is largely unexplored. In addition, the practical application of these microbial communities in the 

field has not been demonstrated. A comprehensive understanding of plant-endophyte interactions 

will help restore degraded soils and plant nutrient acquisition in resource-limiting field environments. 

Anthropogenic farming practices such as the use of chemical fertilizers to restore degraded soils 

have proved to be detrimental to soil structure, function and soil biodiversity. Recent studies in soil 

and root structure suggest that the rhizosphere and endophytic bacterial communities could 

potentially be used to enhance crop production. Other studies have shown that endophytic microbes 

play a key role in modulation of metabolism in plants, stimulation of plant growth, and aid in plant 

adaptation to environmental stress using phytohormone signaling. The use of rhizosphere and 

endophytic bacteria can significantly reduce the amount of agrochemicals that contribute to 

environmental pollution. In the context of the changing climatic conditions, some beneficial 

rhizospheric and endophytic bacterial communities enhance adaptation and resilience, thereby 

promoting sustainable farming systems. The current review addresses the concepts, challenges, and 
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roles of the bacterial endophytes and rhizobacteria as components of the plant microbiota, and their 

prospective use in reclamation of degraded soil environments. 

Keywords: plant growth-promoting rhizobacteria; bacterial endophytes; soil fertility; rhizobacteria; 

sustainable agriculture 

 

1. Introduction 

Over the years, crop production in smallholder farming systems has steadily declined due to the 

diminishing soil fertility, change in climatic conditions, unavailability of additional arable land, and 

overdependence on rainwater for farming [1]. Agricultural land degradation caused by anthropogenic 

activities such as excessive use of inorganic fertilizers and pesticides, continuous cultivation of 

exhaustive crops such as cereals, and the emergence of destructive phytopathogens have contributed 

to the decline in crop productivity. According to Kopittke et al. [2], the leading cause of soil 

degradation is the loss of soil fertility which becomes a risk factor to crop production. Moreover, 

Singh et al. [3] indicated that the advances in sustainable crop production have been challenged 

mainly by soil degradation, depletion of soil organic matter, demographic development, and climate 

change. Since the green revolution period, crop production has been characterized by the use of 

chemical fertilizers, heavy farm machineries, intensive tillage, high-yielding crop varieties, and use 

of pesticides that are recalcitrant to biodegradation. However, these practices have ruined soil 

ecology and disrupted the key plant-microbe interactions beneficial in soil fertility restoration [4]. 

The use of beneficial biological agents and their derivatives in sustainable agriculture is gaining 

popularity with the recent advances in molecular technology. This is because they are eco-friendly, 

versatile, and can enhance crop productivity in a wide range of environments despite the changing 

climatic conditions [5]. 

The microbial component in the plant endosphere and rhizosphere form beneficial associations 

with plants that can improve crop productivity [6]. They promote plant resilience to various abiotic 

and biotic factors that limit growth and production [7]. These microbes can live either internally or 

externally on the host plant tissues. For instance, rhizospheric bacteria inhabit plant roots within the 

soil, and epiphytic bacteria inhabit plant leaf surfaces. Meanwhile, bacterial endophytes are found 

inside the host plants [5]. These bacterial types create complex relationships with the host plants 

where they act as plant growth promoters (Figure 1). The role of plant-associated bacteria in 

enhancing crop production and soil fertility has been widely studied [8]. Outstandingly, there is 

scanty data in the literature concerning field-based research investigating the role of bacterial 

endophytes in the restoration of degraded soils and crop production. On degraded soils, it has not 

been possible to replicate on the actual field conditions the successes of plant-endophytic interactions 

seen in laboratory experiments. 

Rhizobacteria refer to plant growth-promoting bacteria that exist in the rhizosphere. The 

rhizosphere consists of the narrow zone of soil influenced by plant root system where maximum 

microbial activities occurs [9]. The rhizosphere zone is an ecological niche that provides a rich 

source of nutrients and energy for plant growth. The rhizobacteria are abundant plant partners in the 

rhizosphere, but they differ in their roles in plant growth promotion. Various interactions occur 

between plants and rhizobacteria in the rhizosphere. These interactions are equally important, and 
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involve of signals between the rhizobacteria and the plant roots that regulate their biochemical 

activities [10]. The rhizobacteria are crucial in the rhizosphere for nutrients cycling, carbon 

sequestration, and ecosystem functioning that promote plant growth, yield and nutrition. Various 

bacteria genera have been utilized as plant growth-promoting rhizobacteria (PGPR) and include 

Burkholderia, Pseudomonas, Arthrobacter, Bacillus, Serratia, Micrococcus, Chromobacterium, 

Erwinia, Azospirillum, Caulobacter, Agrobacterium, and Azotobacter [9]. The rhizobacteria produce 

plant growth modulating phytohormones such as ethylene, gibberellins, and auxins. Other important 

metabolites include production of siderophores, enzymes, organic acids, antibiotics, biosurfactants, 

nitric oxide, and osmolytes. The metabolites are responsible for improved nutrients uptake, tolerance 

to abiotic stress, nitrogen fixation, suppression of pathogenic organisms [11]. 

 

Figure 1. A complex interaction of legume microbiota depicting colonization, diversity, 

functionality and abundance in both below- and above- ground plant organs. SOM: soil 

organic matter; N: nitrogen. 

Bacterial endophytes are also referred to as plant growth-promoting rhizobacteria (PGPR) and are 

believed to be part of the group of bacteria that occupy the rhizosphere [12]. Some studies have defined 

bacterial endophytes as bacteria that do not harm the plant but can be isolated inside surface-sterilized 

plant materials [13]. These bacteria have adaptive abilities to invade and colonize their host [13]. 

Endophytic bacteria enhance growth by establishing synergistic interactions with the host plant or 

antagonistic interactions with soil pathogens [14]. These inter-microbe and plant-microbe 

interactions play a crucial role in the restoration of degraded land into an agriculturally productive 

landscape through various complex biochemical mechanisms. Moreover, bacterial endophytes can 

potentially exert greater beneficial effects on the host plants compared to other plant-associated 

bacteria. It has been reported that bacterial endophytes have undergone a longer evolutionary 

selection over many generations and are well adapted to the host plant [15]. In addition, they are 

inherited and can be transferred through seeds, making them more compatible and effective in 
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inducing plant growth promotion [7]. This inheritability factor is important in selecting adaptive and 

effective endophytes associated with a specific plant of agricultural importance, especially in plant 

breeding and tackling climate change-related challenges. Their capacity to tolerate and induce 

resilience against biotic and abiotic stresses in plants can be exploited to solve edaphic and pathogen-

related challenges facing the crop production sector. According to Pandey et al. [16], various benefits 

associated with endophytes can be more conspicuous when the plants are subjected to adverse 

environmental stress. Habitat-imposed stress triggers plant-microbial signaling, which forms a 

complex communication pathway that promotes ecological interactions between individual 

organisms leading to better adaptation of the host plant to the disturbed environment. Endophytic 

bacteria enable their host to outcompete other plants such as weeds by enhancing the production of 

allelopathic biomolecules with antagonistic effects against competitors [17]. Notably, host plants are 

also able to “choose” their microbial partners that enable them to gain maximum benefits from the 

interactions [18]. 

Bacterial endophytes affect host plant development positively without any noticeable harm 

while suppressing any pathogen that may invade the plant [19]. In return, the endophytic microbes 

benefit and use the plant endosphere as a unique and safe haven that is unperturbed by the harsh 

climatic conditions that could harm and affect their functionality [20]. Besides, most endophytic 

bacteria exhibit a biphasic life cycle where they alternate between the soil and plant environment, 

thus surviving between seasons [21]. Other bacteria establish symbiotic structures such as nodules 

from legumes that harbour diverse bacterial strains. Interestingly, only the rhizobia responsible for 

nitrogen fixation are well known, while other bacterial endophytes are poorly studied [22]. Some 

studies on root nodule microbiome have shown more complex nodule microbial occupants than 

expected [23–25]. 

2. Diversity of bacterial endophytes and rhizobacteria 

Soil rhizosphere harbors an active, diverse, and complex bacterial community associated with 

plants. Even though bacterial endophytes have been isolated in most of the plants studied, their 

adaptive traits in plant tissues are poorly known [29]. To study the diversity of bacterial endophytes, 

molecular and cultivation-based approaches have been used. It has been reported that bacterial 

endophytes could be more diverse than what is actually revealed from laboratory cultivation [30]. 

Bacteria endophytes comprise both cultivable and uncultivable species [31], which are further 

characterized as endophytes and endosymbionts. The use of culture-dependent and advanced 

molecular tools such as next-generation sequencing and metagenomics analyses have immensely 

enhanced the understanding of their functional diversity, composition, taxonomic and genetic 

diversity [32]. Sarhan et al. [33] prefer studying the diversity of bacterial endophytes using 

culturomics (culture-dependent techniques) since they can further be subjected to bioassays to 

establish their effect in promoting plant growth. Cultivation media that supports a wide range of 

endophytes remains undiscovered. Research efforts should be channeled to unfold the basic 

metabolic requirements and physiological functioning of various endophytes. 

Metagenomics techniques involve the use of sequencing tools to analyze the genes for the entire 

population using extracted DNA [32]. However, during sequencing, one can opt for a specific 

phylogenetic marker such as the 16S rRNA gene, sequencing of internal transcribed spacer regions 

(ITS), or the entire genome [34] (Figure 2). In other words, the use of the metagenomics approach 
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has allowed in-depth analyses of bacterial endophyte diversity. For instance, metagenomics has 

uncovered a hidden potential of rice endo-rhizosphere bacterial community whose endophytic 

competence might be crucial for stimulating plant growth and enhancing rice yield [35]. 

 

Figure 2. Approaches used in the study of PGPR diversity. 

At least 200 bacterial genera or 16 phyla have been documented as endophytes from various 

plant hosts [22,36]. The most dominant bacterial endophytes phyla are Proteobacteria, 

Actinobacteria, Bacteroidetes, Cyanobacteria, Aguificae, Firmicutes, and Acidobacteria [37,38]. 

Among them, the most studied and prominent endophytic bacteria genera include members of 

Bacillus, Pseudomonas, Stenotrophomonas, Enterobacter, Burkholderia, and Azoarcus belonging 

to Proteobacteria phyla [9,39]. 

Liotti et al. [40] noted that it is advantageous to focus on both the diversity and species richness 

to comprehend the distribution and role of bacterial endophytes in their ecological niche. Similarly, 

Harrison and Griffin [41] indicated that a good diversity index should include information and 

dominance indices such as Simpson Index and Shannon-Wiener Index respectively, especially for 

the rhizospheric PGPR [42]. For instance, Andreolli et al. [43] revealed a higher diversity of 

bacterial endophytes from grapevines (Vitis vinifera cv. Corvina) aged 3–15 years. Interestingly, 

younger grapes had a greater genus richness [43]. Meanwhile, Koskey et al. [44] reported a high 

genetic diversity of endophytic rhizobia symbionts associating with Phaseolus vulgaris L. based on 

Shannon-Wiener and Simpson diversity indices [45]. Thus, there seems to be a complex diversity of 

the endophytic microbiome and with the advancing technological tools, further exploration could 

yield a huge bacterial diversity whose composition potential could have novel functionalities in 

transforming the current crop production. 

Currently, the study of the functional diversity of endophytic bacteria is gaining attention, and 

various experiments are being undertaken to understand their functional roles in delivering 

agroecosystem services to plants and their co-existence with other PGPRs. Microbial functional 

diversity in an ecosystem refers to the various functional traits of microorganisms coexisting in a 

given ecosystem [46]. Studies have shown that functional diversity can dictate the nutrient balance, 
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stability, dynamics, and productivity of the ecosystem [47]. Practically, plants would be more 

susceptible to environmental stress and less fit to withstand phytopathogens in the absence of the 

associated beneficial bacterial endophytes. However, it is a rare exception in any natural environment 

to find an endophyte-free plant since they have been reported in every studied plant species. Increased 

microbial functional diversity positively influences plant traits through the enhanced provision of 

agroecosystem services associated with soil fertility, productivity and overall plant health [13]. 

Prasannakumar et al. [48] applied metagenomics tools to study endophytic functional diversity 

associated with two finger millet varieties and reported several genes with functional roles in 

inducing resilience against blast disease caused by ascomycete fungus. Therefore, it is evident that 

the analysis of bacterial endophytes based on metagenomics techniques should focus more on the 

functionality of the genes to understand their roles compared to the sequencing of the core genes.  

Endophytic diversity and their ability to colonize the host is strongly influenced by the 

environmental factors and host plant genotype [49]. Distinctively, the type of plant material used and the 

plant growth stage have been shown to influence the composition of bacterial endophytes present [50]. 

Hong et al. [51] carried out metagenomics analyses at different plant ages and reported a high 

variation of PGPRs, including endophytes, colonizing a 3-year old Panax ginseng plant. Different 

plant species have been reported to have different bacterial endophytes despite growing in the same 

environment [52]. This was also observed by Ding et al. [53] who reported that host plant species 

followed by sampling time and location of the plant materials are the most important determinants 

when selecting an endophytic community. Their distribution along the plant tissues could also differ 

with some endophytes concentrating on the roots while others on the stem and leaves [5]. Vertical 

evolutionary inheritance through seeds or stem cuttings also affects the predominant endophytic 

bacterial species present. Besides, the type of soil used to grow the plants also affects endophytic 

diversity [54]. This means the same plant species could have very diverse bacterial endophytes while 

growing in different agricultural soils. For instance, Rashid et al. [55] isolated different bacterial 

endophytes from one tomato cultivar that was grown in 15 different agricultural soils. Hence, the 

determinants of endophytic diversity seem to be complex and influenced by dynamic processes 

involving the environment, bacteria and the host plant. Further investigations on endophytic 

transcriptomics and determination of their distribution in the ecosystem and within the plant cell 

could reveal the key drivers needed for optimal plant-microbe-environment interactions. 

3. Soil degradation in sub-Saharan Africa 

Soil degradation is described as the decline in soil quality that is characterized by the reduction of 

valuable services and functions of the ecosystem. It is characterized by leaching and depletion of 

essential nutrients N and P, Ca2+ and Mg2+ deficiencies, increased Mn2+ and Al2+ toxicities, cation 

exchange capacity (CEC) reduction, salinization, poor water holding capacity, and soil acidification [56]. 

Soil degradation is also associated with the loss of soil biodiversity, reduction in organic carbon (OC), 

organic matter (OM), and the capacity to sink carbon (C) [57]. Soil degradation results in the loss of 

key functions of the soil ecosystem, therefore, reducing food supply, which may contribute to a surge 

of “environmental refugees” [58]. 

Land degradation is a global challenge facing agriculture. It is often termed a “silent disaster” 

due to its unnoticeable impacts leading to the decline of soil fertility and crop productivity. 

Approximately 24% of the productive soils worldwide is under consistent degradation while 40% of 
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agricultural land is already degraded [59]. The degradation is majorly attributed to human-induced 

processes. For instance, the key drivers of soil degradation in agricultural land in sub-Saharan Africa 

(SSA) include excessive tillage, crop residue removal, unbalanced use of chemical fertilizers, poor 

crop cycle planning, and lack of sustainable soil fertility inputs [60,61]. This is compounded by excessive 

tillage, deforestation, and overgrazing, resulting in soil erosion and leaching of essential macro and 

micronutrients, hence affecting land productivity [56]. Additionally, chemical attributes such as salinity 

and waterlogging account for the degradation of agricultural lands. Approximately 80% of the SSA 

farms constitute smallholder farms characterized by limited farming area, insufficient farm inputs 

and lack of knowledge and necessary skills for crop production. Soil degradation in SSA has 

contributed to low agricultural productivity and poverty in rural communities, leading to rural-urban 

migration and land abandonment, which leads to food insecurity. 

In this regard, soil degradation is a major threat that requires special attention to establish 

alternative soil management interventions that can reinstate the productivity of degraded soils. 

According to Chaer et al. [62], there is a correlation between soil degradation and quantitative analysis 

of soil microbial community. The size, composition and functionality of bacterial endophytes and other 

rhizospheric microbes can lessen the negative impacts of anthropogenic farming practices. Hence, it is 

evident that these microbes can favorably be used to restore soil health and productivity and promote 

plant growth. Nevertheless, there is a need to carry out long-term studies to unfold their long-term 

sustainability and to further understand the concept of interactions between microbes and plants in the 

soil if a more effective reclamation of degraded soils is to be achieved. 

4. Potential of endophytic and rhizospheric bacteria in improving crop productivity 

Different endophytic and rhizospheric bacteria have distinctive strategies for enhancing plant 

growth and yield in the soil. The distinct biotic activities of these bacteria make them vital components 

for nutrient restoration in sustainable farming systems [63] (Figure 3). They produce extracellular 

fluids such as organic acids that solubilize nutrients for easy absorption by plants [64]. Other 

endophytic bacteria indirectly promote plant growth through biocontrol mechanisms such as 

competition for nutrients, release of lytic enzymes, and the induction of plant defense mechanisms [13]. 

This is supported by the findings of Devi et al. [65], where the application of Bacillus spp. induced 

systemic resistance and nutrient competitive advantage in inoculated potato plants. The inter-specific 

plant-microbial interaction process starts with the establishment of communication between the host 

plant and microorganism. This is made possible by the production of specific compounds in the root 

exudates that aid signaling and recognition. The type of root exudates significantly determines the 

composition of microbiota in the rhizosphere colonizing the plant [66]. Through a series of complex 

signal mediated communications, bacterial endophytes can gain entry into the root’s endosphere such 

as nodules in the case of legumes. 
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Figure 3. Role of PGPRs as plant growth enhancer in degraded soils. 

Apart from water and temperature, plants in terrestrial environments are strongly constrained by 

nutrients availability. Notably, plants in different ecosystems respond to changes in the concentration 

of one or more soil nutrients and endophytes can play a key role in balancing soil nutrients, 

enhancing nutrient acquisition, and plant growth [67]. In degraded soil, for instance, there is low 

availability of minerals such as P and Fe for plant absorption. Acquisition of such nutrients can be 

enhanced by the use of bacterial endophytes that releases phytosiderophores responsible for Fe 

chelation and carboxylate exudates required for P mobilization [68,69]. 

4.1. Biological nitrogen fixation (BNF) 

Endophytic bacteria can perform various nutrient transformations, thanks to their versatile 

enzymatic systems crucial in nutrient recycling and metabolism [70]. The transformation of 

atmospheric N2 through biological nitrogen fixation (BNF) is important to the plants and in restoring 

soil fertility. BNF is a microbial mediated process that involves converting atmospheric N2 in the 

presence of nitrogenase enzyme complex into ammonia and nitrate [71]. Nitrogen is considered a 

major growth-limiting nutrient in plants. The microbes involved in this kind of nutrient conversion 

are referred to as diazotrophs. According to Nag et al. [72], some diazotrophs can fix nitrogen in 

association with their host plants, while others can do so in their free-living state. Some symbiotic 

bacterial endophytes induce physiological and structural modifications of plant roots leading to the 

establishment of specialized structures known as nodules. For instance, legume plants usually establish 

specific associations with soil rhizobacteria that can sequester N2 as ammonia using root nodules. These 

include Bradyrhizobium, Rhizobium, Allorhizobium, Sinorhizobium, and Mesorhizobium [73–75]. Other 

soil microorganisms such as actinomycetes and cyanobacteria in cycads and lichens also have been 

reported to fix nitrogen through the formation of symbiotic associations [76]. 

Symbiotic associations tend to work efficiently because the N fixed by the bacteria is directly 

transferred to the host plant and in return, the photosynthetically fixed carbon and other metabolites benefit 
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the bacterial symbiont [70]. However, there are nitrogen-fixing bacteria that are non-symbionts and do not 

induce nodulation unlike rhizobia (Figure 4). These bacteria have the ability to thrive on the nutrients and 

energy derived from the roots of the host plant. According to Afzal et al. [22] and Njeru et al. [77], 

associative nitrogen-fixing endophytes can promote plant growth and health in nitrogen-limited soils 

compared to other rhizospheric microorganisms. Similarly, endophytic bacteria that are nitrogen 

fixers can enhance nitrogen accumulation in plants growing in nitrogen-deficient soils as described 

by Gupta et al. [78]. The success of culturable N-fixing endophytes in promoting plant growth in 

poor field conditions indicates the reliability of the endophytes in delivering low-cost ecosystem 

services for farmers. However, it is important to note that there are less endophytic bacteria that have 

enzymatic ability to carry out BNF compared to the total endophytic bacterial population. Hence, 

more studies should be carried out to identify candidate endophytes that thrive in stressful 

environments and have high N-fixing potential with legumes and non-legumes. 

 

Figure 4. A root of a field grown cowpea plant showing root nodules after colonization 

by effective nitrogen-fixing endophytic bacteria. Image courtesy of the the Future 

Leaders–African Independent Researchers (FLAIR) project titled; using root-associated 

microorganisms to enhance sustainable crop production and resilience of smallholder 

agroecosystems to climate change. 

4.2 Phosphate solubilization 

Plants require phosphorus (P) as an essential nutrient for growth and development. The 

deficiency of P availability in the rhizosphere is a major limiting factor for plant growth. P is 

involved in important plant-metabolic processes such as respiration, biosynthesis of macromolecules, 

energy transfer, and photosynthesis [79]. Phosphorus in the soil is often in forms that are unavailable 

for plant uptake and hence cannot support plant growth. According to Alori et al. [80], about 95% of 

phosphate in the soil is immobilized, insoluble, and/or precipitated into minerals like rock phosphate 

and tricalcium phosphate. Interestingly, phosphorus applied using inorganic fertilizers end up 

forming complexes with the soil and hence becoming unavailable for plant absorption [81]. To 

increase P availability in the soil, mineralization and solubilization of phosphate through biological 

processes are required. These processes are carried out effectively by phosphate solubilizing bacteria, 
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which are part of endophytic bacteria colonizing the plants and rhizosphere [80]. Among the most 

effective groups of solubilizers include Pseudomonas, Enterobacter, Bacillus, Mesorhizobium, 

Rhizobium, Achromobacter, and Acinetobacter [36,82]. 

Endophytic bacteria promote P availability by solubilizing the insoluble P forms using 

mechanisms such as organic acid production, acidification, ion exchange and chelation [82]. Other 

endophytic bacteria enhance P solubilization by secretion of complexes in the soil that mineralize 

organic phosphorus [83]. For instance, Burkholderia sp. synthesizes tartaric, citric and oxalic acids 

that are largely involved in phosphorus solubilization [84]. During vermicomposting, inoculation of 

plants using Herbaspirillum seropedicae, Bacillus spp., and Burkholderia silvatlantica increases P 

availability and phosphatase activity [85]. Besides, bacterial endophytes can assimilate solubilized P, 

hinder soil P fixation, and promote adsorption of phosphate into the host plant under phosphate 

limiting conditions, thus, making it more available for the plants [86]. Therefore, endophytic bacteria 

can be used as potential biofertilizers for restoring soil fertility in degraded soils. They are part of the 

most promising sustainable interventions in agriculture due to their effectiveness and environmentally 

friendly nature. Because of their efficient interventions in P solubilization, endophytes remain the most 

viable biological resource systems that have been identified to date. They have been proven to 

solubilize inorganic P into available forms such as orthophosphate improving plant growth and yield in 

degraded soils [80]. 

4.3. Potassium bioavailability 

Potassium (K) not only provides resilience to both abiotic and biotic stresses, but also plays a 

key role in plant metabolic and physiological processes. Unfortunately, over 90% of K in the soil is 

unavailable for plant absorption necessitating to search for effective endophytic bacteria and 

rhizobacteria that solubilize the crucial mineral. The limited availability of K in the soil is further 

depleted by intensive farming, especially in developing countries where farmers do not put adequate 

strategies to replenish the lost soil K nutrient after a harvest [87]. According to Minden and 

OldeVenterink [88], K deficiency worldwide is considered a major setback in crop production. The 

fact that farmers apply inorganic fertilizers without knowing the exact standard amount required 

worsens the situation. Continuous use of chemical fertilizers is environmentally undesirable and a 

costly affair in maintaining soil fertility status. Therefore, to sustain crop production, it is important 

to improve K availability by finding alternative sustainable ways. 

It has been demonstrated that some endophytic bacteria establish a functional relationship with 

plants that is holistic in nature and contributes to K bioavailability [13]. Endophytic bacteria can free 

potassium from insoluble soil minerals and they are referred to as K-solubilizing bacteria (KSB). A 

large diversity of bacterial endophytes that can also carry out K solubilization includes; Burkholderia 

spp. Acidithiobacillus ferrooxidans, Flavobacterium spp. Bacillus circulans, Bacillus mucilaginosus, 

Paenibacillus spp. and Bacillus edaphicus [89]. The B. mucilaginosus and B. edaphicus have 

demonstrated high capabilities in K solubilization from K-bearing minerals [90,91]. These microbes 

are known to utilize mechanisms such as chelation, production of organic acids, complexation, 

acidolysis, exchange reactions and lowering soil pH to cause the dissolution of K in the soils [92]. 

Several studies have shown that KSBs, under controlled and field conditions, can improve crops' 

germination, growth, uptake of nutrients, and yields [91,93]. 
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The use of endophytic and rhizospheric bacteria in K solubilization may not entirely fulfill the 

K requirements for the plants as compared to the use of inorganic K fertilizers [28]. However, K 

availability can be enhanced significantly by the novel approach of using rhizobacteria which are 

eco-friendly and can greatly cut the use of inorganic fertilizers in crop production [93]. For instance, 

some K solubilizing bacteria that have been used to improve agricultural soils and productivity of 

specific crops include Pseudomonas and Bacillus spp. in sorghum (Sorghum bicolor), Pseudomonas 

spp., Bacillus spp., Micrococcus spp. and Enterobacter spp. in common beans (Phaseolus vulgaris), 

Mesorhizobium ciceri and P. jessenii in chickpea (Cicer arietinum) [94], Bacillus, Paenibacillus 

kribbensis, Stenotrophomonas and Pseudomonas in wheat (Triticum aestivum) [95], Bacillus 

circulans in Oranges (Citrus sinensis), and Bacillus spp., Azotobacter spp., Pseudomonas spp. and 

Mesorhizobium spp. in various legumes [96–98]. 

The use of endophytic bacteria in the restoration of K degraded soils is considered an attractive 

and pragmatic intervention for sustainable crop production. According to Etesami et al. [99], K 

bacterial solubilizers are valued resources for lessening K deficiencies in degraded agricultural soils. 

However, there is still grossly inadequate experimental evidence on their effectiveness in degraded 

field conditions. Additionally, studies by Meena et al. [91] shows that the approach is not well 

utilized due to lack of sufficient information and awareness in communities practicing agriculture for 

their livelihood. 

4.4. The roles of endophytes and rhizobacteria in inducing plant stress tolerance 

The productivity of crops is threatened by the increasing biotic and abiotic stresses across the 

globe, of which some are linked to the effects of climate change while others are anthropogenic [100]. 

The incidences of extreme events like the emergence of plant diseases and pests, frost, heat waves, 

intense rains coupled with floods, and severe drought are increasingly being witnessed globally [101]. 

These incidences are expected to continue increasing due to the changing climate and their impacts 

are thought to severely affect the livelihoods of many people in developing countries. Plant breeding 

has been utilized to produce genotypes that can tolerate stresses but their success in the field has 

been limited and is not guaranteed to hold the changing future climatic conditions [102]. In this context, 

soil microorganisms have unique traits that can reduce the severity of the incidences and promote 

sustainable crop production. The endophytic bacteria and rhizobacteria have shown a high capability of 

enhancing crop growth and yield by inducing tolerance traits against different forms of stress [103]. 

These microbes exhibit multifaceted functional traits and can colonize and firmly establish 

themselves in the plant tissues, thereby positively influencing plant growth and survival. Studies 

have shown that endophytic bacteria can increase the supply of nutrients to their host plants to enable 

them to manage stress and suppress plant nematodes and insect pests [104]. Besides, endophytic 

bacteria can reduce disease severity and suppress weed growth, thus, improving plant resilience 

under stress conditions [105]. 

According to Gorai et al. [106] plants with high endophytic and rhizospheric microbial diversity 

are more resilient to environmental stress as opposed to endophytic-free plants. Additionally, Vigani et 

al. [107] suggested that endophytic bacteria can sustain their host plants against different forms of 

stress by developing resistance “power”. Endophytic microbes synthesize various secondary 

metabolites or antistress-like metabolites that activate the host plant's stress management mechanisms. 

Some of those metabolites include phytohormones (ethylene and abscisic acid), enzymes (superoxide 
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dismutase and catalase), and organic osmolytes such as glycine, butane and proline [108]. Some 

endophytes induce the production of reactive oxygen as scavenger species that deal with free radicals, 

while others trigger antagonistic actions and defensive pathways to suppress phytopathogens [109]. 

However, Le Cocq et al. [20] warn of possible toxin production by endophytes while suppressing plant 

stress and hence it would be imperative to rigorously test different metabolites that they produce for 

animal and human safety. 

Endophytic bacteria and rhizobacteria also confer stress resilience via induction of plant 

immune fitness, and biocontrol of destructive insects, pests and phytopathogens. Biological control is 

described as a mechanism of protecting plants against phytopathogens through the production of 

bacteriocins, lytic enzymes, antibiotics and siderophores. Endophytic inoculation has been shown to 

suppresses fungal, bacterial, and viral diseases [110]. Bacillus amyloliquefaciens have shown high 

potential as a biocontrol agent against powdery mildew in tobacco plants [111]. Similarly, 

verticillium wilt disease in cotton that is caused by Verticillium dahliae has been suppressed 

significantly by the application of Enterobacter spp. in pot and field experiments [112]. According to 

Beneduzi et al. [113], rhizosphere and endophytic bacteria suppress diseases by inducing systemic 

resistance, which is a defensive mechanism developed by plants after stimulation. 

The use of bacterial endophytes that produce antibiotics in the host makes them very efficient in 

combating plant pathogens [114]. Examples of antibiotic compounds are lipopeptides biosurfactants 

that are synthesized by Bacillus spp. and Pseudomonas spp. According to Wang et al. [115], antibiotic 

compounds isolated from different bacterial endophytes affect other organisms by inhibiting cell wall 

synthesis and ribosomes' small subunit formation [115]. Azospirillum spp. produces plant metabolites 

and hormones such as auxins in retaliation to stress conditions like carbon limitation, drought stress [19] 

and high acidity and salinity [116]. Endophytic bacteria and other rhizobacteria can mitigate 

environmentally induced stresses and enhance plant survival under challenging environmental 

conditions. These roles are expected to be more relevant with the increasingly adverse effects of 

climate change on soil quality, health and food production [117]. However, the activity and 

effectiveness of endophytes depends on plant species, growth stage, age, and other plant genotypic 

properties, and most importantly the changing environmental conditions [118]. 

4.5. Suitability of endophytic bioinoculants on crop production 

The application of biofertilizers from microbe-based products has been demonstrated in a 

burgeoning volume of literature [119]. For instance, for many decades rhizobial biofertilizers have 

been utilized commercially reducing the need for inorganic chemical fertilizer application. Many 

companies and organizations in different countries have also participated or engaged in the 

production of biofertilizers commercially [120]. However, the maximum utilization of beneficial 

endophytic and rhizospheric bacteria in crop production remains largely unexplored [22]. This may 

be driven by a lack of market penetration for biofertilizers, especially smallholder farmers who need 

the technology most. Farmers are not aware of a wide range of potential endophytes apart from the 

few commonly used species such as Rhizobium and Bacillus spp. and this impedes their continuous 

use and adoption [121]. Despite the many roles played by the PGPRs and bacterial endophytes in 

promoting plant growth, several setbacks such as tough competition and harsh environmental 

conditions still limit their effectiveness under degraded field conditions [122]. Lesueur et al. [122] 

highlights that despite the availability of a vast number of commercial bioinoculants, the efficiency 



508 

AIMS Agriculture and Food Volume 6, Issue 2, 496–524. 

and quality of the majority are not proven. In our view, the overdependence of inorganic fertilizers 

can only be reduced by the presence of consistent and good efficacious microbial bioinoculants [123]. 

Certainly, the use of beneficial soil microorganisms could be convenient for the farmers 

because of their resilient nature in the environment. Bacteria species such as Bacillus are gram-

positive and can survive detrimental conditions by producing endospores [124]. The endospores 

allow the microbes to withstand different seasons and environmental variables, thereby supporting 

plant growth in changing climatic conditions. According to Moawad et al. [125], microbial 

inoculants' persistence varies from one strain to another. Some microbial inoculants such as 

Rhizobium etli, Bradyrhizobium japonicum and Rhizobium phaseoli can persist in the environment 

and plant materials for years although ineffective due to low abundance. Contrary, some microbial 

inoculants decrease below detectable levels within weeks like the cases of Bacillus 

amyloliquefaciens and Trichoderma harzianum [126]. 

It is important to consider transferring useful soil microbes from laboratory to farms in the field. 

The transfer of this technology to the field involves testing and making the best choice for microbial 

strain, mass production and appropriate handling including having the right carrier material to ensure 

the microbes remain viable for a given period [127]. Additionally, quality control is important to 

monitor the preparation process, packaging and storage conditions. For instance, microbial 

inoculants packaged in polybags with a carrier material such as soil and dairy animal waste powder 

can be stored for 3–4 months at 28 ± 2 ℃ [128]. In most cases during development, there is no 

consideration of the burden that the microbial inoculants have to withstand and overcome the harsh 

and competitively aggressive soil environment [82]. Therefore, the inoculated endophytes must 

contend with the local microflora and adjust to the flighty and heterogeneous soil environment. In 

addition, efficient quality control should be done to ensure the availability of excellent and reliable 

inoculants for farmers. According to Parnell et al. [129], adoption of this technology by farmers is 

also another hurdle because they are unpopular which may be due to a lack of awareness. The 

majority of the farmers in developing countries are smallholders and based on their economic 

situation, they expect instant results from endophyte bioinoculation. This may not happen 

immediately depending on the nature of the soils, application method and crop genotype cultivated. 

The situation may be further worsened by the poorly-developed biofertilizer supply chain [130]. 

The use of endophytic and rhizospheric bacteria is a viable approach that is recommended for 

use by farmers. There exists various evidence for the success of these microbial inoculants. For 

example, there was a significant increase in plant height, pod and leaf/stem biomass of Brassica 

napus crop after inoculation with Pseudomonas fluorescens and a bacterial consortium in both field 

and greenhouse conditions [131]. According to Alkahtani et al. [132], endophytic bacteria are good 

PGPR candidates for use to increase stress resilience and nutrient uptake in plants while reducing 

chemical inputs used in conventional farming. In the same study, Brevibacillus and Bacillus strains were 

identified as the most common endophytes and had a significant increase in shoot N and P content. 

Similarly, co-inoculation of endophytic and rhizospheric bacteria in Roshan and Marvdasht wheat 

cultivars enhanced plant shoot dry weight (by 5.8% and 7.5%) and height (by 15.0% and 11.0%) 

respectively in P deficient soils while P utilization efficiency increased by 29.5% and 18.7% for 

Marvdasht and Roshan wheat cultivars respectively [133]. Interestingly, the same study showed that 

co-inoculation of endophytic and rhizospheric bacteria act synergistically in improving plant growth 

and P acquisition. Despite the many successful greenhouse or pot trials reported on the use of 

endophytes, their long-term effects in supporting plant growth in degraded fields remain largely 
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unaccounted. Studies have demonstrated the usefulness of microbial inoculants in crop production as 

summarized in Table 1 and Table 2. 

Table 1. Potential bacterial endophytes isolated from various plants and their use in Sub-

Saharan Africa. 

Crop Endophytic bacteria Bioactive activity Refere

nces 

Maize (Zea mays) Enterobacter spp. Disease suppression (Against 

Fusarium verticillioides)  

Seedling growth and health 

[134] 

Burkholderia spp. Enhance growth and P-utilization [135] 

Wheat Enterobactereacea 

(Pantoea genus) 

IAA and siderophore producer, and 

also solubilised phosphate 

biocontrol abilities against Fusarium 

graminearum 

[136] 

Banana (Musa spp.) Enterobacter cloacae Promote growth and health [137] 

Finger millet (Eleusine 

coracona (L). 

Gaertner) 

Pseudomonas spp. Blast disease management and growth 

promotion 

[138] 

Oryza sativa (rice), 

Arachis hypogaea 

(groundnut), Vigna 

mungo (black gram) 

Enterobacter cloacae Enhance seed germination index, shoot 

and root biomass of seedling, seed 

vigour index and salinity tolerance 

[139,1

40] 

Peanut (Arachis 

hypogaea L.) 

Bradyrhizobium and 

Trichoderma 

Growth improvement [141] 

Groundnut (Arachis 

hypogaea L.) 

Bacillus subtilis Suppression of stem rot caused by 

Sclerotium rolfsii and growth 

promotion 

[142] 

Cowpea (Vigna 

unguiculata) 

Pseudomonas 

fluorescens 

Seed health and yield [143] 

Damping off control caused by 

Sclerotium rolfsii 

 

Bacillus pumilus and 

Bacillus subtilis 

Resistance against the black eye 

cowpea mosaic strain 

[144] 

Common Bean 

(Phaseolus vulgaris 

L.) 

Trichoderma 

atroviridae 

Biocontrol against common bean root 

rot (Fusarium solani) and growth 

enhancement. 

[145] 

Rhizobium Nitrogen (N) fixation  

Bacillus spp. Biocontrol activity of Fusarium sp., 

Macrophomina sp., and Alternaria sp 

[146] 

Bacillus 

amyloliquefaciens 

Biocontrol against charcoal root rot [147] 

Soybean (Glycine 

max) 

Bradyrhizobium Nitrogen fixation [148] 

Bacillus cereus Mitigation of heat stress damage [149] 

Continued on next page 
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Crop Endophytic bacteria Bioactive activity Refere

nces 

Soybean (Glycine 

max) 

Bacillus firmus (SW5) Enhancing salt tolerance [150] 

Pseudomonas 

koreensis 

Salt sress tolerance in soybean  

Pseudomonas 

pseudoalcaligenes 

Alleviates salt stress in soybean plants [151] 

Bacillus spp. Biological control of the rootknot 

nematode, Meloidogyne javanica 

(Chitwood) 

[152] 

Cassava Bacillus 

amyloliquefaciens and 

Microbacterium 

imperiale 

Mitigates Fusarium root rot disease [153] 

African cultivated rice 

(Oryza glaberrima) 

Photosynthetic 

Bradyrhizobium 

Increase in the shoot growth and grain 

yield 

[154] 

Tomato Stenotrophomonas sp. 

str. S33 (KR818084) 

and Pseudomonas sp 

Suppress tomato Fusarium wilt disease 

caused by Fusarium oxysporum f. sp. 

Lycopersici (FOL) 

[155] 

Bacillus 

amyloliquefaciens 

Drought tolerance [156] 

Bacillus cereus Thermotolerance [157] 

Rice (Oryza sativa) Bacillus subtilis Disease suppression against fungal 

pathogens Rhizoctonia solani, 

Fusarium verticelloides and Sclerotium 

rolfsii. 

antibacterial activities against 

Xanthomonas oryzae 

[158] 

Sugracane (Saccharum 

officinarum) 

Gluconacetobacter 

diazotrophicus 

Drought tolerance [159] 

Date palm tree 

(Phoenix dactylifera 

L.) 

Paenibacillus 

xylanexedens) and 

(Enterobacter 

cloacae) 

Facilitate nutrient uptake in roots 

enhance canola root elongation 

[140] 

Sweet potato 

(Ipomoea batatas (L.) 

Lam.) 

Bacillus 

amyloliquefaciens 

Resistance against fungal pathogens [160] 

Sunflower (Helianthus 

annuus L.) 

Burkholderia Stimulate plant growth [161] 

Sorghum (Sorghum 

bicolor)  

Gluconacetobacter 

diazotrophicus 

Nitrogen fixation [162] 

Burkholderia tropica Growth promotion [163] 
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Table 2. Potential rhizobacteria for plant growth promotion. 

Rhizobacteria Growth promotion 

traits  

Associated rhizosphere References 

Stenotrophomonas spp Enhance nutrients 

uptake and growth  

Wheat (Triticum aestivum 

L.) 

[164] 

Chryseobacterium 

antibioticum 

Antimicrobial activity 

against gram-negative 

bacteria. 

Siderophore production 

Arctic soil [165] 

Gluconacetobacter 

diazotrophicus 

Drought tolerance 

Nitrogen fixation 

Sugarcane (Saccharum 

officinarum) 

[159] 

Paenibacillus mucilaginosus IAA production 

Potassium 

solubilization 

Apple (Malus domestica) [166] 

Phyllobacterium ifriqiyense 

and Phyllobacterium 

sophorae 

Siderophore production 

Phosphate 

solubilization 

Wheat (Triticum aestivum 

L.) 

[167] 

Pseudomonas aeruginosa Biocontrol agents 

against bacterial blight 

disease 

 Stress management 

through glucanase and 

chitinase production 

Rice (Oryza sativa) [168] 

Bacillus velezensis Biocontrol agent 

against corynespora 

leaf spot diseases 

Cucumber (Cucumis 

sativus) 

[169] 

Pseudomonas sp Salinity tolerance Sunflower (Helianthus 

annuus) 

[170] 

Azospirillum Biofertilizer Barley (Hordeum 

vulgare), wheat (Triticum 

aestivum L.), oats 

[171] 

Bacillus cereus Phytoremediation of 

heavy metals  

Vetiveria zizanioides L [172] 

Bacillus spp. Auxin synthesis 

Production of 

antibiotics, 

siderophores and 

enzymes 

Potato (Solanum 

tuberosum), cucumber 

(Cucumis sativus), 

peanuts (Arachis 

hypogaea) 

[173] 

Bacillus amyloliquefaciens Mitigation of nitrous 

oxide emissions 

Acidic soils [174] 

Burkholderia kururiensis Nutrients uptake 

Nitrogen fixation 

Sorghum (Sorghum 

bicolor) 

[175] 

Continued on next page 
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Rhizobacteria Growth promotion traits  Associated 

rhizosphere 

References 

Nitrosospira spp. Management and control 

of nitrous oxide in soils 

with excess use of 

inorganic fertilizers 

Tropical soils [176] 

    

Pseudomonas putida Iron translocation through 

siderophore production  

Mung bean (Vigna 

radiata) 

[177] 

Pseudomonas fluorescens Biocontrol agent against 

fusarium wilt disease 

Tomato (Solanum 

lycopersicum) 

[178] 

Burkholderia paludis Siderophore and 

antibiotic production 

Forest rhizosphere [179] 

Bacillus cepacia Biocontrol agent against 

fungal pathogens 

Pepper plant (Piper 

nigrum) 

[180] 

Rhodobacteria Nitrogen fixation Wheat (Triticum 

aestivum L.) 

[181] 

Azarcus Nitrogen fixation Rice (Oryza sativa) [182] 

Azorhizobium Nitrogen fixation Sugarcane 

(Saccharum 

officinarum)  

[183] 

Serratia 

Marcescens 

Pathogen biocontrol 

Antifungal 

Wheat (Triticum 

aestivum L.) 

[184] 

Pseudomonas aeruginosa Siderophore production 

Biocontrol agent against 

Rhizoctonia solani and 

Colletotrichum 

gloeosporioides 

Chilli (Capsicum 

frutescens) 

[185] 

5. Future perspectives 

To develop and increase the use of effective bacterial endophytes in modern crop production, it 

would be important to expand the endophyte screening and the understanding of their physiological 

functioning using state-of-the-art technologies such as high-throughput sequencing, meta-

transcriptomics and metagenomics. Broadening the understanding of the full genome of endophytic 

bacteria, aiming to uncover the functional genes that help them adapt to unfavorable conditions, 

would be a breakthrough in biotechnology and agriculture. For instance, the application of fertilizers 

in crop production could be minimized or avoided by the identification of highly effective 

endophytes that gain entry and colonize the plant tissues and overcome the plant immune response 

and infer resilience to abiotic and biotic stressors including the changing climatic conditions. Further 

in-depth research would be crucial to maximizing the benefits of endophytic bacteria in sustainable 

agriculture through a better understanding of their ecological roles and associations. The practical 

association of bacterial endophytes with plants in the field can be explored for the potential 

restoration of degraded and unproductive lands. 
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6. Conclusion 

Bacterial endophytes play a very crucial role in enhancing and promoting plant growth and 

resilience against abiotic and biotic stress. These bacteria promote plant growth by actively 

enhancing nutrient availability, biomass production, leaf area, hydraulic activity, chlorophyll content, 

shoot and root ratio, and tolerance against acidity, drought among other forms of stress. Studies from 

different bioassays carried out in both field and microcosms conditions have shown that bacterial 

endophytes and rhizobacteria are potential plant probiotics championed to enhance nutrients 

bioavailability in the soil. In this regard, the successful use of endophytic bacteria can reduce 

significantly the indiscriminate use of artificial chemicals such as inorganic fertilizers and pesticides 

although this change may not take place drastically without compromising other norms valued in 

conventional farming. The endophytic and rhizospheric bacterial communities have shown the 

potential to enhance the bioavailability of natural nutrients that are often limited for soil enrichment 

and better crop production. There is an imperative call for more information on the fate of microbial 

inoculants in degraded soils and their interaction with plants and indigenous microbes. There is a 

growing need to improve nutrients use efficiency in the soil in an eco-friendly manner, which can be 

achieved by the application of microbial nutrients solubilizers. This kind of information will 

certainly pave way for the adoption of bioinoculants in crop productivity based on their potential in 

actual field conditions. 
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