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Abstract: Two handheld near infrared (NIR) spectrometers were used to quantify crude protein (𝐶𝑃) 

content of mixed forage and feedstuff composed of Sweet Bran, distiller’s grains, corn silage, 

and corn stalk. First was a transportable spectrometer, which measured in the visible and NIR 

ranges (320–2500 nm) with a spectral interval of 1 nm (H1). Second was a smartphone 

spectrometer, which measured from 900–1700 nm with a spectral interval of 4 nm (H2). 

Spectral data of 147 forage and feed samples were collected by both handheld instruments and 

split into calibration (𝑛 = 120) and validation (𝑛 = 27) sets. For H1, only absorbances in the 

NIR region (780–2500 nm) were used in the multivariate analyses, while for H2, absorbances in the 

second and third overtone regions (940–1660 nm) were used. Principal component analysis (PCA) 

and partial least squares (PLS) regression models were developed using mean-centered data that had 

been preprocessed using standard normal variate (SNV) or Savitzky-Golay first derivative (SG1) or 

second derivative (SG2) algorithm. PCA models showed two major groups—one with Sweet Bran 

and distillers grains, and the other with corn silage and corn stalk. Using H1 spectra, the PLS 

regression model that best predicted 𝐶𝑃 followed SG1 preprocessing. This model had low root mean 

square error of prediction (𝑅𝑀𝑆𝐸𝑃 = 2.22%) and high ratio of prediction to deviation (𝑅𝑃𝐷 = 5.24). 

With H2 spectra, the model best predicting 𝐶𝑃 was based on SG2 preprocessing, returning 𝑅𝑀𝑆𝐸𝑃 = 

2.05% and 𝑅𝑃𝐷 = 5.74. These values were not practically different than those of H1, indicating 

similar performance of the two devices despite having absorbance measurements only in the second 

and third overtone regions with H2. The result of this study showed that both handheld NIR 

instruments can accurately measure forage and feed 𝐶𝑃  during screening, quality, and process 

control applications. 
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1. Introduction 

In forages and feedstuffs, crude protein ( 𝐶𝑃 ) is one of the most regularly assessed 

constituents [1]. Laboratory-based chemical tests are often expensive, time-consuming, and require 

chemical reagents, some of which are potentially dangerous. Near infrared (NIR) spectroscopy has 

been used as an alternative method to predict forage 𝐶𝑃, giving quick and reliable results with 

minimal sample preparation and no requirement for any reagents [2–4]. Typically, NIR technology is 

conducted with benchtop spectrometers that exhibit very high performance [5], giving low errors and 

accurate predictions of nutrient concentrations. However, these instruments are too large and costly 

to be widely distributed and transported and are generally used in controlled environments. 

Advancements in optics and electronics have enabled the development of portable, handheld NIR 

spectrometers, which are relatively easy to operate and have reduced space and energy 

requirements [6] compared to benchtop spectrometers. These handheld units vary in cost, size, 

weight, type of power needed, robustness, user-friendliness, durability, accuracy of measurement, 

and performance reliability [7,8]. Given this large variation in properties and specifications, there is 

no one-size-fits-all spectrometer for different applications. There is a need for continued evaluation 

of different handheld NIR spectrometers to identify applications in which a given type can be 

reliably employed [9]. This study contributes to the ongoing process of validating the level of 

performance of miniaturized NIR instruments for utilization in the food and agriculture sector. 

One of the major downsides of using NIR spectroscopy is the investment required in calibration 

development [10], more so in the case of different types of forage and feedstuff. The ability to 

develop one calibration that encompasses a wide range of available animal feed would significantly 

reduce the cost and time involved in developing a calibration per feed type. Using a handheld or 

portable spectrometer that can be easily transported to locations, where samples are, provides an 

extra benefit. The objective of this study was to evaluate and compare the accuracy of estimating 

crude protein (𝐶𝑃) of composite animal forage and feedstuff using two handheld NIR spectrometers. 

The first handheld NIR spectrometer (H1) was a transportable spectrometer, which measured in the 

visible and NIR ranges (350-2500 nm), had a spectral interval of 1 nm, and weighed 2.5 kg. 

Absorbance measurements from only the NIR region (780–2500 nm) were used in the calibration 

and prediction of 𝐶𝑃. The second handheld NIR spectrometer (H2) was a smartphone spectrometer, 

which measured from 900–1700 nm, had a spectral interval of 4 nm, and weighed 136 g. This 

instrument covered the second overtone region with limited absorption windows in the first and third 

overtone regions of the NIR range.  

Over the years, NIR has been used as a helpful tool for routine monitoring of quality control, 

including 𝐶𝑃  composition, in animal forage and feedstuff [11–16] with the coefficient of 

determination of prediction (𝑟2) ranging from 0.53-0.99. To obtain an accurate calibration, reference 

samples should have a sufficient working range of 𝐶𝑃 content [12], in addition to covering as much 

of the variability in predicted samples as possible [14]. However, it is not always possible to obtain 

same-type samples with a 𝐶𝑃 range wide enough to allow for the development of a reliable 

calibration model. For example, Monrroy et al. [17] reported a 𝑟2  = 0.53 for a 𝐶𝑃 calibration 
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model for Brachiaria spp with a narrow 𝐶𝑃 range of 5.6–11.1%, utilizing NIR absorbance spectra in 

the second and third overtone regions. Likewise, a model with corn samples with a 𝐶𝑃 range of 

6.95–8.05% had 𝑟2 = 0.61 [18], even when the first and combinations spectral regions were utilized 

in the calibration. Similar observations were made with corn stalk and dried distillers grain with 

solubles (DDGS) with narrow 𝐶𝑃 ranges, such that the resulting prediction had 𝑟2≤ 0.85. Pooling 

different feed and forage types together increases the working range of 𝐶𝑃 content, the number of 

samples, and variability of samples. Therefore, for this study, it was hypothesized that forage and 

feedstuff 𝐶𝑃 could be quantified using two handheld spectrometers (H1 and H2) with 𝑟2  > 0.85 

because of a wide 𝐶𝑃 range of the calibration samples. 

Most reported studies, with high 𝑟2 values, using NIR to predict 𝐶𝑃 in forage and feedstuff, 

were based on absorbances that cover the entire NIR range, focusing on the 1100–2500 nm 

region [4,19–25]. Therefore, it was postulated that H1 would have higher 𝑟2 and ratio of performance 

to deviation (𝑅𝑃𝐷 ) values than those of H2, indicating better prediction performance, because 

absorbance bands tend to be stronger in the first overtone and combinations regions (1700–2500 nm) 

than in the second and third overtone regions (900–1700 nm). With suitable accuracy, rapid data 

collection and analysis, handheld NIR units may be used for in situ monitoring of feed 𝐶𝑃  at 

different stages of production - whether it is at the farm, market, feed mill, silo, or a packaging 

facility. Miniaturized NIR spectrometers that cost less enable a wide distribution and application of 

the technology to areas where benchtop systems would not ordinarily be useful.  

2. Materials and methods 

2.1. Samples 

Forage and feed samples, and their corresponding 𝐶𝑃 data (measured via laboratory analysis) 

were obtained from the Ruminant Nutrition Laboratory, Animal Science department at the 

University of Nebraska-Lincoln. The samples included Sweet Bran, corn silage, corn stalks, and 

three kinds of corn distillers grains: wet distillers grain with solubles (WDGS), modified distillers 

grain with solubles (MDGS), and dry distillers grain with solubles (DDGS). Samples were collected 

weekly and composited monthly from the University of Nebraska Eastern Nebraska Research and 

Extension Center beef cattle feedlot. All samples were dried in a forced air oven at 60°C (model 

LBB2-21-1; Despatch Industries, Minneapolis, MN) for 48 hours (AAOC, 1965; method 935.29) [26], 

and ground through a 1mm screen using a Wiley mill (number 4; Thomas Scientific, Swedesboro, 

NJ). 𝐶𝑃  was determined on all monthly composites using a combustion chamber (TruSpec N 

Determinator, Leco Corporation, St. Joseph, MI) (AOAC, 1999; method 990.03) [27]. The sample 

descriptive statistics are shown in Table 1. 

2.2. Spectrometers 

Absorbance measurements were collected using two handheld NIR spectrometers representing 

two of the several kinds of portable spectrometers available on the market that vary in spectral range, 

cost, and potential applications [7]. The first handheld NIR spectrometer (H1) was a transportable 

NIR spectrometer (ASD QualitySpec® Trek, Malvern Panalytical, Cambridge, UK), which 

measured in the visible and NIR ranges from 350-2500 nm, had a spectral interval of 1 nm, and 
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weighed 2.5 kg. Only the NIR range (780–2500 nm) was used in the multivariate analyses. The 

second handheld NIR spectrometer (H2) was a smartphone NIR spectrometer (Enterprise Scanner, 

Tellspec Inc., Toronto, Ontario, Canada), which measured from 900–1700 nm, had a spectral interval 

of 4 nm, weighed 136 g, and could be classified as a Hadamard transform-based palm-sized 

spectrometer [7]. The spectrometer’s 940–1660 nm range was used in the multivariate analyses. The 

cost of H2 was approximately 40x less that of H1. Table 2 shows the differences between the two 

handheld spectrometers. 

Table 1. Crude protein content of forage and feed samples. 

Forage or feed type No. of 

samples (𝑛) 

Crude protein (𝐶𝑃) content 

𝜇 ± 𝜎 (%)a ∆= 𝑚𝑎𝑥 −𝑚𝑖𝑛 (%)a 

Sweet Bran 45 23.62 ± 1.40 6.86 = 26.94 – 20.08 

Distillers grain    

Dried 18 31.73 ± 1.97 7.70 = 36.15 – 28.45 

Modified 27 34.40 ± 2.17 8.61 = 39.11 – 30.50 

Wet 15 35.06 ± 3.53 10.65 = 40.34 – 29.69 

Corn silage 24 7.81 ± 1.51 6.69 = 10.83 – 4.14 

Corn stalk 18 4.31 ± 0.81 2.61 = 6.00 – 3.39 

Note: aMean (𝜇), standard deviation (𝜎), range (∆), maximum (𝑚𝑎𝑥), and minimum (𝑚𝑖𝑛). 

Table 2. Specfifications of two handheld near infrared spectrometers. 

Instrument 

name 

Dimensionsa 

(W × H × D, 

mm3) 

Weight 

(kg) 

Spectral 

range 

(nm) 

Spectral 

interval 

(nm) 

Spectral 

resolution 

Signal- 

to-Noise 

Ratio 

Cost 

($) 

Manufacturer 

ASD 

QualitySpec® 

Trek (H1) 

100 × 310 × 

300 

 

2.5 

 

350–

2500 

 

1 3 nm @ 700 

nm 

9.8 nm @ 

1400 nm 

8.1 nm @ 

2100 nm 

NAb 60,000 Malvern 

Panalytical 

 

Tellspec 

Enterprise 

Scanner (H2) 

66 × 45 × 82 0.14 900–

1700 

4 10 nm 5000:1 2000 Tellspec 

Note: aWidth (W), height (H) and depth (D); bNot available. 

2.3. Spectral data collection 

Spectral data of 147 dried and ground forage and feed samples, contained in 0.08-mm-thick (3 

mil = 3/1000th inch thick) polypropylene (PP) bags (Uline, Pleasant Prairie, WI, USA), were 

collected using both handheld spectrometers—H1 and H2. For each spectrometer, a background 

spectrum was collected by encasing a white reference (Spectralon®) disk in an empty 0.08-mm-thick 

PP bag. This background spectrum was subtracted from subsequent sample spectra to reduce the 

effect of PP absorption. Collecting NIR spectra of forage samples through a transparent PP film can 
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reduce the accuracy of predicting consitituents [28]. A sample spectrum was collected by placing the 

window of the handheld spectrometer directly on top of the packaged sample and pulling the trigger 

of H1 or pressing the scan button on H2 to start scanning through the plastic film tightly held to the 

sample. The sample bag was flipped over to collect a second scan on the other side. For both 

instruments, each scan was an average of 50 spectral measurements across the entire spectral range. 

The two scans obtained per sample, per spectrometer, were averaged in Excel (Microsoft Office 

Suite, Version 2016, Microsoft Corporation, Redmond, WA, USA) before preprocessing and 

multivariate analyses. The averaged spectra collected with H1 were truncated also to include only the 

NIR range (780–2500 nm), and, for H2, the spectra were truncated to 940–1660 nm. 

2.4. Spectra data preprocessing 

For each spectrometer, the mean spectra of all forage and feed samples (𝑛 = 147) were exported 

to The Unscrambler® X software (Version 10.5, Camo Analytics, Magnolia, TX, USA) for further 

processing and analysis. The spectral data were split into a calibration set (𝑛 = 120) to build PLS 

regression models, and an independent validation set (𝑛 = 27) to test the performance of the models 

developed. Calibration and validation sets were selected such that they had a similar distribution 

based on the laboratory values of parameters under test and ensuring that the validation range was 

covered by the calibration (Table 3).  

Table 3. Crude protein content of calibration and validation sets of forage and feedstuffs. 

Forage  

or feed type 

Crude protein (𝐶𝑃) content 

Calibration set (120 samples) Validation set (27 samples) 

𝑛a 𝜇 ± 𝜎 (%)a ∆= 𝑚𝑎𝑥 −𝑚𝑖𝑛 (%)a 𝑛 𝜇 ± 𝜎 (%) ∆= 𝑚𝑎𝑥 −𝑚𝑖𝑛 (%) 

Sweet Bran 36 23.56 ± 1.43  6.86 = 26.94 – 20.80 9 23.85 ± 1.32 4.35 = 25.93 – 21.59 

Distillers grain       

Dried 15 31.78 ± 2.13 7.70 = 36.15 – 28.45 3 31.47 ± 0.99 1.80 = 32.61 – 30.81 

Modified 22 34.31 ± 2.16 8.61 = 39.11 – 30.50 5 34.80 ± 2.40 5.88 = 38.91 – 33.04 

Wet 12 34.33 ± 3.58 10.65 = 40.34 – 29.70 3 37.94 ± 1.12 2.20 = 38.90 – 36.70 

Corn silage 20 7.89 ± 1.62 6.69 = 10.83 – 4.14 4 7.39 ± 0.70 1.47 = 7.94 – 6.47 

Corn stalk 15 4.19 ± 0.77 2.61 = 6.00 – 3.39 3 4.89 ± 0.93 1.82 = 5.70 – 3.88 

Note: aNumber of samples (𝑛), mean (𝜇), standard deviation (𝜎), range (∆), maximum (𝑚𝑎𝑥), and minimum (𝑚𝑖𝑛). 

2.5. Principal component analysis and partial least squares regression 

The spectral data from each spectrometer were analyzed using principal component analysis (PCA) 

and partial least squares (PLS) regression. PCA was performed on the whole forage and feed data set 

to observe which samples clustered based on their scores. PLS regression models were built using 

the calibration data and validated with the prediction data set. For both H1 and H2, PCA and PLS 

regression models were developed using mean-centered spectral data that had been preprocessed 

using standard normal variate (SNV) and Savitzky-Golay first derivative (SG1) or second 

derivative (SG2) algorithm with 11-61 smoothing points. Each model was built with random cross-

validation using 20 segments with four samples in each segment and removing one segment of 

observations from the calibration set at a time. For PLS regression, the ful l NIR spectral range 
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of H1 (780–2500 nm) was used, while for H2 the spectral range of 940–1660 nm was used. During 

cross-validation, Marten’s uncertainty test, a significance testing method based on jack-knifing [29], 

was enabled to identify, along with loading weights, the important wavelengths on which the PLS 

regression model is based. This allowed for a set of model parameters [e.g., 𝐵-coefficients (also 

called regression coefficients), scores, loadings and loading weights] to be calculated for every sub-

model created based on samples that were not held out of the cross-validation segment. Differences 

between the 𝐵 -coefficients of all the sub-models to those of the full calibration model were 

calculated and used to estimate the uncertainty limits of each 𝐵-coefficient. Wavelengths with 𝐵-

coefficients which have a relatively large uncertainty limit and, at the same time, had loading 

weights that also had relatively large uncertainties were deemed not important by The Unscrambler® 

software.  

PCA models were assessed using sample scores and spectral loadings on the principal 

components (𝑃𝐶s) that captured most of the variation in the samples (>70%). PLS models were 

assessed for performance based on the optimal number of latent variables or factors (𝑁𝐹), coefficient 

of determination of calibration (𝑅2), root-mean-square errors of calibration (𝑅𝑀𝑆𝐸𝐶) and cross-

validation (𝑅𝑀𝑆𝐸𝐶𝑉) [30]. The Unscrambler® software suggests an optimum 𝑁𝐹  based on the 

lowest 𝑅𝑀𝑆𝐸𝐶𝑉. Good-fit models typically have similar or close values for 𝑅𝑀𝑆𝐸𝐶 and 𝑅𝑀𝑆𝐸𝐶𝑉. 

Prediction performance of the models was assessed on having a high coefficient of determination of 

validation (𝑟2 ), low root-mean-square error of prediction (𝑅𝑀𝑆𝐸𝑃) and standard error of 

prediction (𝑆𝐸𝑃), and a 𝑏𝑖𝑎𝑠 close to zero. 𝐵𝑖𝑎𝑠 is the mean difference between the NIR-predicted 

and reference values? Two additional validation performance parameters were calculated: ratio of the 

standard deviation of the reference values in the validation set to 𝑆𝐸𝑃, called the 𝑅𝑃𝐷, and the ratio 

of the 𝑟𝑎𝑛𝑔𝑒 of reference values in the validation set to the 𝑆𝐸𝑃, called 𝑅𝐸𝑅 [31]. Ideally, the SEP 

should be much lower than the standard deviation and range of reference values in the validation set, 

resulting in high 𝑅𝑃𝐷  and 𝑅𝐸𝑅  values. In forages, feed, and soils, models with 𝑅𝑃𝐷  > 4.1 are 

considered excellent for any application - screening, quality control, and process control [32]. 

3. Results 

3.1. Principal components analysis 

The scores plot of the PCA of the raw spectra collected from H1 and H2 showed a similar 

pattern (Figure 1a,b) with corn stalk and corn silage samples close to each other, while Sweet 

Bran, wet distillers grain (WDG), and modified distillers grain (MDG) overlapping with each 

other (Figures 1a,b). Dried distiller grain (DDG) clustered on its own, with minor overlap with MDG. 

For H1, the first principal component (𝑃𝐶1) accounted for 89% of the variability in the raw NIR spectra, 

while the second principal component (𝑃𝐶2) accounted for 9% (Figure 1a). Similarly, for H2, 𝑃𝐶1 

accounted for 91% of the variability in the raw NIR spectra, while 𝑃𝐶2 accounted for 8% (Figure 1b), 

indicating that despite the difference in range of NIR absorbances measured, calibration and validation 

performance of both instruments would be similar. To check this, the raw spectra from both 

instruments were subjected to PLS regression. The resulting scores plots (Figures 1c,d) were mirror 

images across the 𝑥-axes (i.e., 𝑃𝐶2 =  0) of the PCA scores plots of the raw spectra (Figures 1a,b) 

for both instruments. For H1, PLS Factors 1 and 2 together accounted for 98% of the variability in 

the NIR absorbance spectra, but only 81% of the variability in 𝐶𝑃 (Figure 1c). In a similar vein, PLS 
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Factors 1 and 2 together accounted for 100% and 77% of the variability in the NIR absorbance 

spectra of H2 and in 𝐶𝑃, respectively. Because a variety of feedstuffs were being pooled in the 

calibration, it was better to have more variation accounted for in the NIR absorbance spectra than in 

the 𝐶𝑃  data. To achieve this, the NIR absorbance spectra from both instruments needed to be 

preprocessed using Savitzky-Golay derivative algorithm prior to the PLS regression. Doing so 

resulted in 61% of the variability in the NIR absorbance spectra of H1 accounted for by Factors 1 

and 2 in the regression while accounting for 94% of the variability in 𝐶𝑃 (Figure 1e). The same trend 

was observed for H2, with Factors 1 and 2 accounting for 78% and 92% of the variability in the NIR 

absorbance spectra and 𝐶𝑃, respectively (Figure 1f). 

3.2. Partial least squares regression 

Raw and preprocessed absorbance measurements from both handheld spectrometers were 

calibrated to 𝐶𝑃 using PLS regression (Table 4). In general, all models based on the full NIR range 

of H1 spectra had 𝑁𝐹  of 3 or 4, 𝑅2 and 𝑟2 ≥ 0.95, 𝑅𝑀𝑆𝐸𝐶, 𝑅𝑀𝑆𝐸𝐶𝑉, 𝑅𝑀𝑆𝐸𝑃 ≤ 2.95%. Values for 

𝑅𝑃𝐷 and 𝑅𝐸𝑅 varied from 3.98-5.28 and 11.88-15.79, respectively. Applying SNV preprocessing to 

the spectral data did not improve prediction performance. Models based on Savitzky-Golay first-

derivative (Models H1.5) and Savitzky-Golay second-derivative (Models H1.6) pretreated spectra 

had similar calibration and validation performance. However, Model H1.5 was considered 

optimal because it had few latent variables (𝑁𝐹). This model had 𝑅2 = 0.97, 𝑅𝑀𝑆𝐸𝐶 = 2.14% 

and 𝑅𝑀𝑆𝐸𝐶𝑉 = 2.29%, and its validation performance parameters were 𝑟2 = 0.96, 𝑅𝑀𝑆𝐸𝑃 = 2.22%, 

𝑆𝐸𝑃 = 2.24%, 𝑅𝑃𝐷 = 5.24 and 𝑅𝐸𝑅 = 15.65. Models developed with H2 spectra had 𝑁𝐹  of 6 when 

no preprocessing was done or 𝑁𝐹  of 5 when spectral data were processed. All models had 𝑅2 ≥ 0.93 

and 𝑅𝑀𝑆𝐸𝐶 ≤ 3.05%. Values for 𝑅𝑀𝑆𝐸𝐶𝑉 were up to 3.30%. 𝑅𝑀𝑆𝐸𝑃 and 𝑆𝐸𝑃 were 2.05-3.30 and 

2.04–3.41%, respectively. All models had 𝑅𝑃𝐷 ≥ 3.44 and 𝑅𝐸𝑅 ≥ 10.45. Once again, applying SNV 

preprocessing did not improve model prediction performance. Models based on second derivative 

spectra had better performance than those based on first derivative spectra. Pretreating the spectra 

with Savitzky-Golay second-derivative and 13 smoothing points gave the model with the best 

prediction parameters (Model H2.6), such that 𝑅2 = 0.97, 𝑅𝑀𝑆𝐸𝐶 = 2.12% and 𝑅𝑀𝑆𝐸𝐶𝑉 = 2.43%, 

and validation performance parameters were 𝑟2 = 0.97, 𝑅𝑀𝑆𝐸𝑃 = 2.05%, 𝑆𝐸𝑃 = 2.04%, 𝑅𝑃𝐷 = 5.74 

and 𝑅𝐸𝑅 = 17.14. Models H1.5 and H2.6 performed in agreement to the hypothesis (𝑟2 > 0.85). The 

prediction performance of Model H2.6 was slightly better than that of Model H1.5, contrary to the 

hypothesis that H1 models would have higher 𝑟2 and 𝑅𝑃𝐷 values than H2 models. Nonetheless, both 

models had high validation performance. 
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Figure 1. Scores plots from principal component analysis (PCA) and partial least squares 

(PLS) regression based on raw or preprocessed near infrared absorbance measurements 

(spectra) collected with a transportable spectrometer (H1—spectral range of 780–2500 nm 

and 1 nm interval ) and a smartphone NIR spectrometer (H2—spectral range of 940–

1660 nm and 4 nm interval). Spectra were preprocessed using Savitzky-Golay first 

[SG1(j,k)] or second [SG2(j,k)] derivative algorithm using jth order polynomial and k 

number of smoothing points. The smoothing window width (nm) was equal to 𝛥𝜆(𝑘 − 1), 

where 𝛥𝜆 is the spectral interval (nm) of the spectrometer. 
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Table 4. Partial least squares regression models of near infrared absorbance spectra to 

crude protein content of forage and feedstuff 

A. Transportable NIR spectrometer (H1): spectral range of 780–2500 nm and 1 nm interval 

Model 

ID[a] 

Preprocessing 

technique[b] 

Calibration performance[c] Validation performance[d] 

𝑁𝐹 𝑅2 𝑅𝑀𝑆𝐸𝐶 

(%) 

𝑅𝑀𝑆𝐸𝐶𝑉 

(%) 

𝑟2 𝑅𝑀𝑆𝐸𝑃 

(%) 

𝑆𝐸𝑃 

(%) 

𝑏𝑖𝑎𝑠 

(%) 

𝑅𝑃𝐷 𝑅𝐸𝑅 

H1.1 Raw 4 0.95 2.54 2.75 0.94 2.79 2.84 –0.21 4.13 12.35 

H1.2 SNV 4 0.96 2.27 2.39 0.94 2.91 2.95 0.33 3.98 11.88 

H1.3 SG1(2,31) 3 0.96 2.33 2.43 0.95 2.54 2.56 0.39 4.58 13.68 

H1.4 SG2(2,31) 3 0.96 2.39 2.56 0.95 2.62 2.67 –0.04 4.39 13.10 

H1.5* SG1(2,61) 3 0.97 2.14 2.29 0.96 2.22 2.24 –0.32 5.24 15.65 

H1.6 SG2(2,61) 4 0.96 2.18 2.30 0.96 2.19 2.22 –0.24 5.28 15.79 

A. Smartphone NIR spectrometer (H2): spectral range of 940–1660 nm and 4 nm interval 

Model 

ID 

Preprocessing 

technique 

Calibration performance Validation performance 

𝑁𝐹 𝑅2 𝑅𝑀𝑆𝐸𝐶 

(%) 

𝑅𝑀𝑆𝐸𝐶𝑉 

(%) 

𝑟2 𝑅𝑀𝑆𝐸𝑃 

(%) 

𝑆𝐸𝑃 

(%) 

𝑏𝑖𝑎𝑠 

(%) 

𝑅𝑃𝐷 𝑅𝐸𝑅 

H2.1 Raw 6 0.93 2.98 3.30 0.93 3.04 3.10 –0.10 3.79 11.32 

H2.2 SNV 5 0.93 3.05 3.35 0.92 3.27 3.41 –0.06 3.44 10.28 

H2.3 SG1(2,11) 5 0.94 2.77 3.07 0.92 3.27 3.24 –0.26 3.62 10.82 

H2.4 SG2(2,11) 5 0.97 2.13 2.45 0.97 2.11 2.10 –0.42 5.59 16.69 

H2.5 SG1(2,13) 5 0.94 2.80 3.15 0.92 3.30 3.35 –0.25 3.50 10.45 

H2.6* SG2(2,13) 5 0.97 2.12 2.43 0.97 2.05 2.04 –0.40 5.74 17.14 

Note: [a]Models that best predicted crude protein content (𝐶𝑃) were identified with an asterisk (*). [b]Spectral data were raw or 

preprocessed using standard normal variate (SNV) and Savitzky-Golay first [SG1(j,k)] or second [SG2(j,k)] derivative algorithm using 

jth order polynomial and k number of smoothing points. The smoothing window width (nm) is equal to Δ𝜆(𝑘 − 1), where Δ𝜆 was the 

spectral interval (nm) of the spectrometer. [c]Calibration performance was evaluated using number of factors (𝑁𝐹 ), coefficient of 

determination (𝑅2), and root mean square errors of calibration (𝑅𝑀𝑆𝐸𝐶) and cross validation (𝑅𝑀𝑆𝐸𝐶𝑉). [d]Validation performance 

was evaluated using coefficient of determination (𝑟2), root mean square error of prediction (𝑅𝑀𝑆𝐸𝑃), standard error of prediction 

(𝑆𝐸𝑃), 𝑏𝑖𝑎𝑠, ratio of standard deviation to standard error of prediction (𝑅𝑃𝐷), and ratio of range to error (𝑅𝐸𝑅). 

A direct comparison of the predicted 𝐶𝑃 (𝐶𝑃 ) to the reference 𝐶𝑃 showed no systemic deviation 

from linearity or significant offset for the best performing models (Models H1.5 and H2.6) for each 

instrument (Figure 2). A closer look showed that all samples had 𝐶𝑃 :𝐶𝑃 ratio of unity, except Sweet 

Bran for which the ratio was 0.93 ≠ 1 (𝑝 = 0.03) when Model H1.5 was used. Overall, these results 

demonstrated that there was no bias introduced by each forage or feedstuff type to predictions by 

Models H1.5 and H2.6. However, it should be noted that the prediction confidence intervals are 

wider at at higher 𝐶𝑃 values than at lower 𝐶𝑃 values. For instance the precision for predicting 𝐶𝑃 of 

WDG would be less than that of predicitn corn silage. The standard error (𝑆𝐸) for measuring 𝐶𝑃 

using the reference method were 0.44% (Sweet Bran), 0.57% (DDG), 1.07% (MDG), 1.09% (WDG), 

0.35% (Corn silage) and 0.54% (Corn stalk). These values were, in all cases, lower then the 𝑆𝐸𝑃 for 

both Models H1.5 (2.25%) and H2.6 (2.04%). 
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Figure 2. Comparison of predicted to reference crude protein (𝐶𝑃 ) of forage and 

feedstuff using partial least squares regression models developed for a transportable 

(Model H1.5) and a smartphone (Model H2.6) near infrared spectrometer. 

 

Figure 3. Important absorption bands identified by Williams (2001) and by Marten’s 

uncertainty test during calibration of a transportable spectrometer (Model H1.5) and a 

smartphone spectrometer (Model H2.6) to crude protein (𝐶𝑃) content of forage and 

feedstuff. 
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4. Discussion 

It was not surprising that corn stalk and corn silage were close to each other in the PCA scores 

plots (Figures 1a,b). Both feed types had relatively low 𝐶𝑃 compared to the other samples and were 

similar in material or botanical fractions of the plant. Corn silage is made from ensiling the entire 

corn plant [33,34], while corn stalk is composed of stover (stalks, leaves, husks, cobs, and some gran) 

left in the field after harvesting corn [35]. The samples did not overlap in the scores plot with PC2 

differentiating them according to 𝐶𝑃, i.e., corn silage had higher 𝐶𝑃 (6.2–10.8%) than that of corn 

stalk (3.4–6.0%). Sweet Bran and distillers grain had 𝐶𝑃 between 20.0 and 41.0% and these samples 

overlapped in the scores plots. Sweet Bran is a commercial product of the corn wet milling process 

which produces high frucutose corn syrup and starch. This co-prduct, known as corn gluten feed, is 

relatively high in protein [36] and is widely used in ruminant animal diets [37]. Distillers grain is a 

co-product of bioethanol production, with a high feed value based on its 𝐶𝑃 content [38]. Following 

the ethanol production process, most of the starch-filled endosperm has been extracted from distillers 

grain, and the remaining components would be similar to those of Sweet Bran, explaining their 

proximity in the PCA scores plot. The observed within-group score differences could be ascribed to 

further differences in 𝐶𝑃 content. Sweet Bran 𝐶𝑃 ranged from 20.1–26.9% while that of distillers 

grain ranged from 28.5–50.3%. 

The PLS regression models obtained using H1 and H2 performed higher than hypothesized. To 

evaluate the utility of PLS regression models in food and agriculture, Williams proposed that models 

with 𝑟2 ≥ 0.92, and 𝑅𝑃𝐷 ≥ 4.1 can be used for rough screening, screening, research, quality control, 

and process control [31,32]. Models H1.5 (𝑟2 = 0.96, and 𝑅𝑃𝐷 ≥ 5.24) and H2.6 (𝑟2 = 0.97, and 

𝑅𝑃𝐷 = 5.74) could be used for any of these applications to predict 𝐶𝑃 content of the forage and 

feedstuff samples represented in the calibration. The 𝑅𝐸𝑅 parameter can also be used to assess PLS 

regression models, however, it is sensitive to the range of samples in the validation set [39]. Its 

interpretation based on Williams’ scale should be made with caution.  

When predicting forage and feedstuff 𝐶𝑃 using NIR, it would be ideal to have a calibration for 

each type or species of forage and feedstuff with samples covering much of the expected variability 

in future samples. However, this is not always possible since there may not be enough available 

samples for each feed type. Even with a large number of samples, if there is an insufficient 𝐶𝑃 range 

in calibration samples, it may not be possible to develop a reliable calibration model [12]. 

Developing broad-based calibrations provides room for increasing the working 𝐶𝑃 range, allowing 

for a more reliable model for quantitative prediction [40]. For instance, Daniel et al. [24] reported 𝑟2 

= 0.94, when their calibration samples contained a variety of forage grasslands, crops, and haylage, 

with 𝐶𝑃 of 8.16–37.23%. Similarly, Gonzalez-Martin et al. obtained 𝑟2 = 0.99 with a broad-based 

calibration model comprising mixed animal feeds and fodder for cattle, swine, sheep, poultry and 

rabbits [25]. The performance of their models was similar to that obtained in this study. Even with a 

single type of feedstuff with a 𝐶𝑃 range of 3.76–29.4%. Vokers et al. [22] reported 𝑟2 = 0.96 for 

a single variety of forage maize. Similar results were obtained for corn silage (𝑟2 = 0.94) and hay 

crop silage (𝑟2 = 0.95) when samples of the same feed type with a high 𝐶𝑃 range were used in 

calibration development [41]. On the contrary, lower 𝑟2  values were obtained for corn (𝑟2  = 0.61), 

DDGS (𝑟2 = 0.71) and corn stalk (𝑟2 = 0.85), when same-type samples with a narrow 𝐶𝑃 range were 

used to develop calibration models [23,42]. These observations, and the results obtained from this 

study underscore the need to have samples with a sufficient range of  𝐶𝑃  composition when 
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developing calibration models. In situations, for example at a feed mill, farm, or processing plant, 

where 𝐶𝑃  of different forage and feedstuff is routinely measured, a NIR calibration model that 

encompasses all feed types allows for efficiency, saving time and cost involved in developing a 

calibration for each feed type. 

The ability to determine 𝐶𝑃 content in forage is based on absorbed energy by organic bonds 

among carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) in the sample. The amount of energy 

absorbed by these bonds in the NIR region is relative to the amount of 𝐶𝑃 constituents in the sample [43]. 

The spectral data can be calibrated to 𝐶𝑃 concentration using a set of reference samples measured by 

a standard method. Strong N-H absorptions are primarily responsible for the good relationships seen 

between chemical and spectral data during calibration development [44]. Another contributing factor 

to the observed predictions based on NIR spectra is the fairly high and wide range of 𝐶𝑃 

concentrations in forage and feedstuff [1]. The calibration samples used in this study had 𝐶𝑃 ranging 

from 3.39 to 40.34%. With an accurate calibration, it allows for reliable determination of 𝐶𝑃 in 

future forage samples using their NIR spectra, without need for chemical analysis. Nonetheless, the 

limitations of such a global NIR model cannot be ignored. It is worth noting that, for each feed type, 

the 𝐶𝑃 𝑆𝐸 of the referenc method was always lower than the 𝑆𝐸𝑃 for the selected models for both 

H1 and and H2. This limitation is inherent if one must build a calibration encompassing different 

types offorage and feedstuff. While the model errors may be large compared to the reference method, 

looking at the final ratios of NIR-predcited to reference values, there was no signicant difference. 

This is of great utility to the end-user. 

Shenk and Westerhaus [46] reported the most important NIR wavebands for measuring 𝐶𝑃 to 

include: 2060 nm (the carbonyl stretch of the primary amide), 2168 to 2180 nm (combination band 

consisting of N–H bend 2nd overtone, C–H stretch/C=O stretch combination; and C=O stretch/N–H 

in-plane bend/C–N stretch combination bands), 2050 to 2060 nm (N–H stretching vibrations), 1640 

to 1680 (C–H stretch), and 1500 to 1530 nm (N–H stretch). These bands were mostly in the first 

overtone and combinations regions of the NIR spectrum. Later on, Williams [31] reported a more 

extensive range of wavelengths of weak, fair, and strong principal absorption bands for protein that 

covered the entire NIR range (Figure 3). It follows that strong absorption bands are mostly 

concentrated in the first overtone and combinations regions, while the fair and weak bands are 

dispersed across the entire NIR spectrum. Factor one important 𝐶𝑃  wavebands identified by 

Marten’s uncertainty test during PLS regression modeling with H1 spectra covered the whole NIR 

range overlapping many of the bands identified by Williams [31] (Figure 3) and all those reported by 

Shenk and Westerhaus [46] in the first overtone and combinations regions, allowing calibration of 

absorbance measurements to reference 𝐶𝑃 and obtaining a model with good prediction performance. 

The smartphone spectrometer, H2, only covered the NIR absorbances in the region of 900–1700 nm 

and PLS models were built over the 940–1660 nm range, covering mostly the second and third 

overtone regions During PLS regression modeling using these absorbances, Marten’s uncertainty test 

identified several important spectral bands along the first factor (Figure 3). The bands overlapped the 

weak and fair wavebands by Williams [31] and some of the principal 𝐶𝑃 wavelengths identified by 

Shenk and Westerhaus [46].  

While H2 absorbances had a limited NIR window, the information obtained therein was 

sufficient enough to build a PLS model with prediction performance that even slightly performed 

better than that of H1. Since NIR absorption becomes weaker moving from the combinations to the 

first, second, and third overtone regions [47], it is reasonable to expect that the second and third 
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overtone regions would have weaker absorption that translates to reduced prediction performance of 

a regression model. However, with adequate principal 𝐶𝑃 spectral bands, the limitation of a reduced 

NIR window did not seem to affect the performance of Model H2.6 negatively. A reliable 𝐶𝑃 

prediction model could be obtained even with absorbance measurements covering the second and 

third overtone regions. Most reported studies predicting 𝐶𝑃  composition of forage and feedstuff 

using NIR use absorbance measurements in the entire NIR range (780–2500), with a focus on the 

100–2500 nm range. However, similar to observations of this work, Modrono et al. [48] reported no 

difference in prediction performance when two handheld NIR spectrometers were used to predict 𝐶𝑃 

content of a combined variety of feed for cattle, pigs, hens, sheep, and other animals. The first 

spectrometer recorded absorbance measurements in the 1600–2400 nm region, while the second only 

covered the 950–1650 nm region. Many of the low-cost handheld NIR spectrometers have only a 

limited spectral window, and it is useful to know they can be used to predict 𝐶𝑃 with sufficient 

utility. 

5. Conclusions 

Two handheld NIR spectrometers were used to predict 𝐶𝑃  content of mixed forage and 

feedstuff. The first was a costly, full-range NIR spectrometer, while the second was a low-cost, 

limited-range NIR spectrometer. PLS regression models based on spectral data from both 

spectrometers had similar prediction performance in terms of possible applications such as rough 

screening, screening, research, quality, and process control. The quantity of 𝐶𝑃  in forage and 

feedstuff is one of the most important quality parameters. If a low-cost handheld NIR unit, covering 

mostly the second overtone region, can be used to predict forage and feedstuff 𝐶𝑃, a lot of time and 

cost required for routine wet chemistry analysis would be saved, provided a reliable calibration 

model exists. Additionally, the ability to build a single calibration model encompassing different 

types of forage and feedstuff eliminates the need to have one for each feed type. Miniaturized, high-

performing NIR instruments will enable easy distribution and utilization of the technology, 

especially in developing countries where feed testing remains a challenge due to limitations in cost, 

access to laboratories, and analytical skills. The adaptation of low-cost, easy-to-use, fast NIR 

spectrometers could improve the control and management of animal feeding programs, as long as 

there is a reliable calibration. However, it should be noted that this study was performed using dry 

and ground samples, which controlled for sample moisture and particle size. Future evaluation will 

focus on evaluating the sensitivity of portable NIR spectrometers and chemometric models 

developed here to moisture content and particle size and to provide recommendations on how to 

overcome the effects of these interferents chemometrically.  
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