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Abstract: Most vines in the Mediterranean are cultivated on bare soils, due to the scarcity of water. 

In addition, most traditional soil conservation measures have been eliminated to facilitate the 

movement of machinery in the fields. In such conditions, high erosion rates are recorded. Given the 

predicted changes in precipitation and an increasing number of extreme events, an increase in 

erosion processes is expected. In this study, erosion processes under different climate change 

scenarios were evaluated as well as the effects of implementing drainage terraces in vineyards. Soil 

losses were simulated using the WEPP model. The results confirmed the relevance of extreme events 

on annual soil losses. The WEPP model gave satisfactory results in predicting runoff and soil losses, 

although the soil losses recorded after some extreme events were under-predicted. The model 

responded to changes in precipitation and because of that a decrease in precipitation gave rise to a 

decrease in soil losses. For the scenario in 2050, runoff volumes decreased between 19.1 and 50.1%, 

while erosion rates decreased between 34 and 56%. However, the expected increase in rainfall 

intensity may contribute to higher erosion rates than at present. The construction of drainage terraces, 

perpendicular to the maximum slope, 3 m wide and 30 m between terraces, may lead to an average 

decrease in soil losses of about 45%. 
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1. Introduction  

Soil erosion is a natural process that can be greatly accelerated by land use and climate changes, 

and is a major hazard to the long-term sustainability of agriculture and ecosystems. In the 

Mediterranean area, typical land uses such as olive trees, almond trees, orchards or vineyards are 

among those that incur higher rates of erosion. Among these land uses, vineyards are one in which 

greatest soil losses are recorded [1-4]. This may be due to a combination of rainfall and soil 

characteristics, as well as management. The Mediterranean climate is characterized by large variability 

in rainfall from to year to year, irregularly distributed throughout the year and with high intensity 

rainfall events, particularly in autumn. Some of these events are highly erosive [5], and usually one or 

two events every year are responsible for a high percentage of the annual soil losses. Most soils have 

loamy or loamy-sand textures, with an average percentage of coarse elements in the top horizon 

ranging between 10 and 20% and with relatively low organic matter content. In some cases soils are 

susceptible to sealing after some mm of rainfall. Thus, soils are susceptible to erosion processes. 

In the Mediterranean, most vines are cultivated on bare soil, due to the scarcity of water. In 

addition, most traditional soil conservation measures were eliminated with the mechanization of 

almost all labors, mainly driven by the need to plant longer vine rows to facilitate the movement of 

machinery in the fields and to increase plant density. This required leveling and transforming land 

and reorganizing existing plots. The resulting cultivated soils, with altered profiles, lower organic 

matter content, poor structure and low infiltration capacities, are more susceptible to erosion 

processes [6,7]. Under these conditions, erosion losses in vineyards reach high values. Annual soil 

losses up to 25 Mg ha−1 have been recorded, most of which are recorded in a small number of 

events [8]. Even higher values have been recorded after some extreme events [9]. These soil losses 

not only represent the degradation of the soil due to higher losses, which surpass the soil loss 

tolerance, but additional nutrient losses [10] and increasing operational costs with negative impacts 

for vine growers [11].  

The observed climate trends present additional threats for soil degradation with a potential 

increase of the magnitude of erosion processes. Different studies carried out in the Mediterranean 

region suggest that notable changes in seasonal precipitation regimes have occurred during the 

second half of the 20th century, which affected the main rainy seasons [12,13] with decreasing 

precipitation trends [14-17] and with an increase in extreme events in association with global 

warming [18-20]). The increase in the incidence of precipitation extremes may have an additional 

impact, due to greater water volumes being lost to runoff meaning less water infiltration and storage 

in the soil and an increase in the erosion processes [8,21]. Some predictions have been made for 

several different environments and according to dif2ferent scenarios, and also, using different models 

with different approaches and covering a range of spatial scales and time periods [22-25]. Among the 

most used models, WATEM-SEDEM [26]; PESERA [27]; SWAT [22]; EUROSEM [28]; WEPP [29]; 

R-USLE [30], or PSIAC [31] can be found. However, the expected increase in erosion rates was not 

always confirmed [32,33]. The results show that they seem to be affected by complex interactions of 

changes in rainfall distribution and intensity and in land use and management, which should be 

considered when climate change effects are considered [34-36]. 

In this study, soil losses under different rainfall distributions and climate change scenarios (2030 

and 2050) in an area with a Mediterranean climate are analyzed. The effect of implementing drainage 

terraces in new vineyards to reduce soil losses is simulated for vineyards cultivated under rainfed 

conditions using WEPP.  
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2. Materials and Method 

2.1. Area of study  

The area of study is located in the Anoia region, about 40 km northwest of Barcelona 

(1°46ʹ11″E, 41°31ʹ52″N, 340 m.a.s.l.). This area is located in the Penedès Depression, between the 

Serralada Pre-litoral pre-coastal mountain range and the Mediterranean Sea in Northeastern Spain 

(Figure 1). The climate is Mediterranean with maritime influence, characterized by two wet periods 

(spring and autumn) separated by hot, dry summers. High intensity rainfall events are usually 

recorded in autumn [37]. The soils have developed on alluvial deposits from the Pleistocene Epoch, 

which are covered with a substratum of Miocene marls, sandstones and unconsolidated 

conglomerates. A high percentage of coarse elements of metamorphic origin is present in the soils. 

The evaluations were carried out at plot scale in one vineyard in which the soils, according to the soil 

map (1:25,000) of the Penedès region [38], are classified as Typic Xerorthents and Fluventic 

Haploxerepts. Sand contents ranged between 27.7 and 50%; silt content ranged between 37 and 47.2% 

and clay content ranged between 13 and 25.1%, while organic matter content ranged between 0.7 and 

1.4%. The main land use is vines, which cover about 40% of the area [39]. 

 

Figure 1. Location of the study area. 

2.1.1. Field survey  

The studied plot (Figure 1) was planted in 1990 and was levelled before vine plantation. It 
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produced significant disturbances to the original soil profile and created variability in soil properties 

within the plot. The plantation consists of trained vines with 3 m between rows and 3 m between 

plants, orientated NNE-WSW, on an average gradient of about 7%. The field study was carried out in 

2010, 2011 and 2012, which had different amounts of rainfall and distribution. Within the plot, soil 

properties were evaluated at three locations (up (1), middle (2) and down slope (3)). pH, soil particle 

distribution [40], bulk density [41], organic carbon [42], water retention capacity at saturation, −33 

and −1500 kPa (Richard Plates) were evaluated. The coarse element fraction was evaluated in an 

aliquot fraction of 2 kg, which was sieved using a 2 mm mesh. In addition, steady infiltration was 

evaluated using simulated rainfall. Plots, 0.30 m × 0.20 m were delimited in the field and subjected 

to 70 mm h−1 simulated rainfall composed of 2.5 mm diameter drops of deionized water falling 

freely from droppers 2.5 m above the soil surface. Runoff water was collected at 5-minute intervals 

for 50 minutes. 

Soil characteristics of the soil surface at those locations are shown in Table 1. Most soils have a 

loamy-sandy or sandy texture, with the average percentage of coarse elements ranging from 20 to 30% 

in the top horizon. Organic matter content is relatively low (<1.4%). Water retention capacity at −33 

kPa ranges between 16 and 22%, while at −1500 kPa the value ranges between 5.24 and 7.24%. Bulk 

density also varies within the plot, with an average value of about 1540 kg m-3. Based on this average 

value and taking into account that tillage may produce a reduction in bulk density, the average bulk 

density after tillage considered in the model was 1500 kg m−3. 

Table 1. Soil characteristics of soil surface at three positions within the studied plot. 

Area Clay 

% 

Silt  

% 

Sand 

% 

O.M. 

% 

Bulk 

density  

kg m
−3

 

pH FC  

(−33 kPa) 

% 

PWP 

(−1500 kPa) 

% 

Infiltration 

rates  

mm h
−1

 

1 8.5 ± 4.6 22.9 ± 4.6 68.6 ± 8.8 1.18 ± 0.37 1545 ± 120 8.53 19.55 6.25 27 

2 4.5 ± 3.0 13.6 ± 2.1 81.9 ± 4.6 1.32 ± 0.22 1670 ± 55 8.55 16.11 5.27 28 

3 5.0 ± 2.3 17.9 ± 3.9 77.1 ± 6.0 1.37 ± 0.21 1420 ± 89 8.66 21.89 7.24 10.3 

Soil depth ranges from 0.80 to 1.5 m. Soil water was monitored at four depths (10–30, 40–50, 

50–70, 70–90 cm) in each plot every 15 days using Time Domain Reflectometry (TDR) IMKO 

tube-probes. The average soil water values for the profile were used to test the soil water simulated 

by the model. At the same positions, runoff samples were collected after the events that produced 

runoff using Gerlach collectors. Sediment concentrations in runoff were measured in each sample 

using an aliquot which was dried at 105 ºC and weighed. The results obtained were then used in 

conjunction with runoff water volumes to calculate soil losses for each runoff sampling point. 

2.1.2. Climatic data 

Climatic data were recorded at Els Hostalets de Pierola (long. 41.46°; lat. −1.81°; elev. a.l. 326 

m), close to the study vineyard plot. This station belongs to METEOCAT (Institut Meteorologic de 

Catalunya). Hourly maximum, minimum and dew point temperature, precipitation, solar radiation, 

relative wind velocity and direction from the period 1996–2014 were recorded. Means and standard 

deviations of each variable were calculated. During the period of study additional rainfall data at 1 
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min intervals were collected at the plot. Years with different rainfall amount and distribution were 

identified and considered for further analysis. Temperature and precipitation changes in climate were 

simulated for 2030 and 2050 using the HadCM3 GCM predictions for the Representative 

Concentration Pathways (RCP) scenarios RCP8.5. Changes in solar radiation and relative humidity 

were taken for the prediction made for scenario A2. The data were downscaled to daily time step. 

The average monthly changes of these variables for each scenario are summarized in Table 2. 

 

Table 2. Average monthly changes in temperature, humidity, wind velocity, and solar radiation 

for the 2030 and 2050 scenarios. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2030             

Tmax (ºC) 0.694 0.816 1.147 0.894 1.034 1.372 1.675 2.248 1.647 1.552 0.613 0.573 

Tmin (ºC) 0.639 0.630 0.769 0.643 0.863 1.028 1.290 1.868 1.347 1.517 0.674 0.388 

SR (W/m2) 0.129 0.076 7.606 4.600 −0.303 11.748 14.851 11.003 6.296 −0.354 0.321 0.170 

P (%) −3.64 −4.17 −15.92 −5.12 −9.10 −17.98 −25.08 −13.74 −0.40 24.95 6.38 −4.03 

RH (fraction) 0.49 −0.56 −2.65 −2.37 −0.41 −1.75 −2.52 −2.21 −1.89 −0.36 −1.62 −1.30 

WV (%) −1.65 0.61 0.00 4.04 −1.70 1.83 1.80 −1.62 0.70 −0.75 2.87 2.65 

2050             

Tmax (ºC) 1.450 1.888 1.633 1.461 1.831 2.438 3.360 4.198 3.129 2.251 1.628 1.388 

Tmin (ºC) 1.215 1.719 1.455 1.054 1.363 1.832 2.366 2.982 2.499 2.157 1.705 1.326 

SR (W/m2) −0.142 −1.047 5.286 8.094 6.182 10.937 22.325 20.637 12.504 1.366 0.442 −1.647 

P (%) 1.86 3.18 −12.32 −17.37 −23.41 −23.65 −32.91 −31.91 −25.91 9.14 6.17 1.86 

RH (fraction) −0.75 −0.84 −2.86 −3.16 −2.32 −2.24 −4.13 −5.46 −4.18 −1.58 −1.70 −0.99 

WV (%) 1.48 −0.58 3.08 1.34 1.69 0.49 −3.29 −4.20 −3.46 −0.63 −1.29 −1.30 

 

2.2. Runoff and soil loss simulation: WEPP model  

The hillslope version WEPP (v2012.8), which computes erosion along a single slope profile, 

was used in this study. The surface hydrology and water balance, subsurface hydrology, soils, plant 

growth, overland-flow hydraulics, and erosion components were considered. The description of the 

model was taken from Pieri et al. [43]. The surface hydrology and water balance routines use 

information on weather, vegetation and cultural practices. Infiltration in the model is computed by a 

Green-Ampt Mein-Larson equation [44] modified for unsteady rainfall [45]. Actual evapotranspiration 

(ET) is evaluated using a modified Ritchie’s model [46], with reference potential ET estimated from 

the Penman-Monteith model [47]. Rainfall interception by canopy, surface depressional storage, soil 

water percolation, and subsurface lateral flow are also considered. Water partitioning between 

infiltration and runoff depends on hydraulic conductivity and saturation. The subsurface flow 

simulation is based on a mass continuity approach developed by Sloan and Moore [48]. The 

overland-flow is based on the approximate solutions to kinematic wave equations. The erosion 

component includes interrill and rill erosion and soil detachment by raindrop impact and subsequent 

sediment delivery as a function of the flow shear stress and transport capacity of concentrated flow. 

The plant-growth routines calculate biomass production for both crops and rangeland plants. The 

inputs for the model are described below.  
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2.2.1. Model input data 

Table 3. Vegetation parameters and management inputs in the WEPP model for grape vine. 

Initial conditions Values Plant growth and harvest parameters Values 

Bulk density after last tillage (g/cm3) 1.5 Biomass energy ratio (kg/MJ) 30 

Initial canopy cover (%) 10 Growing degree days to emergence (dgd) 30 

Days since last harvest (days) 180 Growing degree days for growing season 

(gdd) 

2000 

Days since last tillage (days) 30 In-row plant spacing (m) 3 

Initial interril cover (%) 10 Plant stem diameter at maturity (cm) 5 

Initial residue cropping system 0 Harvest index (dry crop yield/ total above 

ground biomass) (%) 

50 

Cummulative rainfall since last tillage 200   

Initial ridge height since the last tillage 

(cm) 

2 Canopy, LAI and Root Parameters  

Initial rill cover (%) 10 Canopy cover coefficient 14 

Initial roughness after last tillage (cm) 1 Parameter value for canopy height equation 23 

Rill spacing (m) 0 Maximum canopy height (m) 2 

Rill width type Temporary Maximum leaf area index 6 

Depth secondary tillage layer (cm) 35 Maximum root depth (m) 1.5 

Depth primary tillage layer (cm) 20 Root to shoot ratio 0.3 

Initial rill width (cm) 2 Maximum root mass for perennial crop 

(kg/m2) 

0.6 

Initial total dead root mass (kg/m2) 0.5   

Initial total submerged residue mass 

(kg/m2) 

0.2 

 

  

Temperature and radiation parameters    

Base daily air temperature (ºC) 10   

Optimal temperature for plant growth 

(ºC) 

25   

Maximum temperature that stops the 

growth (ºC) 

35   

Critical freezing temperature (ºC) −40   

Radiation extinction coefficient 0.65   

Management   S, Ch, C 

Plant beginning Apr 1st   

Tillage information    

Subsoil-chisel (S) Jan 15th Mean tillage depth (cm) 20, 20, 10 

Chisel plow, rolling dick (Ch) Feb 15th Fraction of surface area disturbed (%) 100, 100, 95 

 Apr 1st Random roughness value after tillage (cm) 1.5, 1.5, 1.5 

Cultivator (C) May 20th Ridge interval (cm) 7.5, 30, 75 

 Jun 20th Ridge height value after tillage (cm) 100, 5, 15 

Harvest-Annual Sep 10th   
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Climate data: Daily maximum, minimum and dew point temperature, precipitation, solar 

radiation, relative wind velocity and direction from the period 1996–2014 were used. Breakpoint 

climate data series were used as inputs for the Water Erosion Prediction Project (WEPP), which were 

generated using the BPCDG2 software. 

Soil characteristics: Soil properties such as pH, CEC, soil particle distribution (clay, silt, sand 

and rock fragment contents), organic matter content, bulk density, hydraulic conductivity, water 

retention capacity −33 and −1500 kPa were included. The soil water level measured in the field was 

used to parametrize the initial saturation level. Soil erosion was predicted for the different soil 

characteristics and then averaged for the plot. 

Land management: Basic parameters related to grape vine were extracted from the WEPP 

database [49] and completed with information obtained from the literature [50,51] and own data 

derived from previous studies in the area. Land management and field-implemented tillage practices 

were modified according to the information given by the grape growers in the area. In the study plots, 

soil was bare most of the time with frequent tillage. The specific vegetation parameters for vines 

used by the model are shown in Table 3. 

2.2.2. Model calibration and validation 

The calibration of the model was carried out according to the procedure suggested by Alberts et 

al. [52] in the WEPP documentation. The model response to changes in drainage conditions and the 

parameters such as interrill erodibility, rill erodibility, critical shear and effective hydraulic 

conductivity were evaluated and explored on the outputs. These parameters were adjusted one by one 

starting with the average values recommended by the WEPP documentation [53]. For other 

parameters, information available from previous studies in the area and evaluations carried out in the 

field were considered. Calibration was then carried out by manually adjusting these parameters until 

reaching the best fit between simulated and measured soil loss. The soil water level measured in the 

field was used to parametrize the initial saturation level.  

Calibration was carried out for the years 2010–2011 while 2012 was used for validation. 

Simulated runoff and soil losses were compared with the data obtained in the field survey. For each 

event the simulated runoff and soil loss integrated over time were compared with the average 

measured values. Model performance for both calibration and validation periods was evaluated 

following the criteria proposed by Moriasi et al. [54], based on three statistical methods: 

Nash-Sutcliffe efficiency (NSE; [55]), percent bias (PBIAS, %; [56]) and the ratio of the root mean 

square error to standard deviation (RSR) (Equations 1, 2 and 3).  
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(3) 

where Ym is the measured value and Ys is the simulated value with the model, and (Ȳ) is the mean 

of the measured values of each of the parameters analyzed. In order to analyze soil erosion under 

different climate scenarios two different rainfall distributions were considered. The simulations were 

based on two years with annual rainfall close to the average: one year with annual rainfall of 555.8 

mm, in which rainfall was mainly concentrated in spring (41%) and autumn (34%) and another year 

with annual rainfall of 509 mm in which spring and autumn rainfall represented 37 and 43% of 

annual rainfall, respectively. The predicted changes for the climate change scenario and for different 

time periods were applied two both years in order to ascertain their effects on runoff and erosion 

rates. Additionally, increases of 10 and 20% were considered based on the trends observed in the area 

of study [5].  

2.3. Simulation of the effect of drainage terraces on runoff and soil losses 

 

Figure 2. Present vine row direction and optimum direction of the drainage terraces 

in the plot of study. 

Drainage terraces (locally known as “rases”) were soil conservation measures used in the past in 
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this viticulture area. However, in the new vineyard planted for management with machinery these 

practices were eliminated. Their construction does not reduce soil cultivation surface as they can be 

constructed between vine rows. In order to find a suitable design for the area, according to the slope 

of the terrain and the rainfall characteristics, a previous study carried out in the area [57], based on 

the limits of soil loss tolerance, was taken into consideration. Based on the average land slope, the 

optimum horizontal distance between terraces should be about 28 m. Given the plantation pattern, 

with 3 m between rows, a separation between terraces of 30 m was established while the width of the 

terraces was 3 m. The slope was modified according to that design. Other parameters of terrace 

design, such as the shape and the capacity of the terraces to carry the peak flow rate should be 

defined when constructing them, but these parameters are not considered as input data in the model. 

The terraces must be constructed across the slope on a contour. In the study plot, the vine rows are 

not planted following this logic in all plot. Figure 2 shows the present direction of the vine rows and 

the proposed location of the terraces in the vineyard studied. Thus the construction of the terraces 

could be not constructed at relatively low cost at present but it should be considered in a new 

vineyard replanting.  

3. Results 

3.1. Runoff and soil losses in the years analyzed 

 

 

Figure 3. Precipitation, soil moisture, runoff and soil losses simulated for the selected years. 

 

Figure 3 shows the precipitation and average soil moisture recorded during the years analyzed. 
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Within the period analyzed rainfall varied between 509 and 555.8 mm. In 2010, ten events produced 

runoff, which accounted for about 26% of rainfall. Most runoff was recorded in summer and in 

autumn. In one event in summer recorded 75% of rainfall run off. In 2011, 21 events with more than 

9 mm were recorded, but only seven of them produced runoff and erosion. The rainfall recorded in 

those events represented 41% of annual rainfall and 25% of rainfall run off. In 2012, rainfall was 

mainly distributed in spring and autumn and 20 events produced runoff. Runoff represented about 22% 

of annual rainfall distributed in all seasons of the year. Annual soil losses ranged between 6.8 Mg 

ha−1 in 2012 and about 10 Mg ha−1 in 2011. Most soil losses were recorded in a small number of 

events. During the years analyzed, the highest erosive event was recorded in the summer of 2010, in 

which 50% of annual soil losses were recorded. In 2011 soil losses were mainly recorded in spring 

and summer. In 2012, there were no extremely erosive events. Soil losses were distributed 

throughout the year although the highest soil losses were recorded in spring (66% of annual erosion). 

3.2. Runoff and soil losses simulated using WEPP: under present conditions and climate change 

scenarios 

 

Figure 4. Runoff (a) and soil loss (b) measured and simulated with WEPP for the 

erosive events recorded during the calibration and validation periods. 
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Figure 4 shows the comparison between runoff and soil loss measured and simulated with 

WEPP used for the erosive events recorded during the calibration and validation periods. The main 

rainfall events were simulated. However, the simulated runoff rates were smaller than the values 

measured in those events in which rainfall was concentrated in a limited number of hours. For soil 

erosion, the model simulated detachment but there was no deposition in any case. The simulated 

values were slightly smaller than the values measured for most cases, with greater differences in the 

extreme events. Table 4 shows the statistics used to analyze the performance of the model for both 

periods (calibration and validation). According to the criteria proposed by Moriasi et al. [54], the 

performance of the model may be considered good for runoff and sediment yield based on NSE, 

RSR and PBIAS (NSE > 0.65, RSR > 0.60 and PBIAS < 15% for runoff and 25% for sediment) 

during the calibration period and satisfactory during the validation period (NSE > 0.65, RSR < 0.70 

and PBIAS < 25% for runoff and 6.75% for sediment).  

After validation of the model, runoff and erosion rates were simulated for the years 2011 and 

2013, which were the years for which the climate change analyses were analyzed. The recorded 

rainfall and the simulated runoff, soil water and soil losses for each year are presented in Figure 3. It 

can be observed how rainfall amount and distribution have a clear effect not only on soil water but also 

on runoff and erosion rates. In year 1, total rainfall was slightly higher than in year 2, but the most 

relevant aspect was its distribution. In year 1 it was more concentrated in spring and autumn while in 

year 2 it was more homogeneously distributed in spring, summer and autumn and the contribution of 

single events was smaller. The contribution of each event to annual soil losses was smaller in year 2 

than in year 1. The annual and seasonal results are summarized in Tables 5 and 6. 

The results of the simulations for the different climate scenarios (with additional increases of 10 

and 20% for 2030 and 2050) are presented in the same tables. For both rainfall distributions 

(represented in the two analyzed years) the reduction in rainfall amount and the increase in temperature 

gave rise to a decrease in runoff and erosion rates. However, the effect of rainfall intensity increase was 

also evident, which is in agreement with the expected increase of erosion rates under the climate 

change scenario. 

3.3. Simulated soil losses under present conditions and with drainage terraces 

The predicted soil losses with and without terraces, for the analyzed scenarios (two different 

rainfall distributions and increasing intensities, for different time periods) are shown in Table 7. The 

average predicted reduction in soil losses associated with the construction of terraces ranged between 

31 and 59%, with an average of 45%. The reduction in soil losses was mainly due to deposition within 

the fields, while in the situation without soil conservation measured, the simulated deposition was null. 

Table 4. Statistics used to evaluate the performance of the model for runoff and soil losses. 

  Calibration   Validation  

 RSR NSE PBIAS RSR NSE PBIAS 

Runoff 0.858 0.711 −9.582 0.532 0.786 14.733 

Soil losses 0.521 0.828 −25.135 0.810 0.718 −6.667 
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Table 5. Simulated rainfall, runoff, infiltration, evaporation, deep percolation, soil water and 

erosion rates for rainfall conditions of year 1 (2011) under each scenario (2030 and 2050 and 10% 

(+i10) and 20% (+i20) increasing intensity). 

Year-scenario Period Rainfall 

(mm) 

Infilt. 

(mm) 

Evap. 

(mm) 

Deep percol. 

(mm) 

Runoff 

(mm) 

Soil water 

(mm) 

Soil loss 

(Mg ha−1) 

Year 1-present Annual 555.10 493.99 438.44 49.21 59.24 140.91 9.55 

 Winter 60.70 52.17 58.22 7.36 8.28 161.67 0.75 

 Spring 232.50 213.82 175.70 33.35 17.87 182.92 4.30 

 Summer 71.20 59.25 152.00 2.37 11.43 119.29 2.59 

 Autumn 190.70 168.75 52.54 6.14 21.66 99.78 1.91 

Year 1-2030 Annual 536.31 479.41 429.21 40.99 56.90 137.73 7.94 

 Winter 58.74 51.28 59.23 8.11 7.46 162.53 0.64 

 Spring 211.84 196.96 172.56 23.59 14.88 177.45 3.37 

 Summer 59.15 51.65 145.40 1.47 7.50 112.37 1.12 

 Autumn 206.57 179.53 52.01 7.83 27.05 98.72 2.82 

Year 1-2030+i10 Annual 536.31 465.25 423.82 36.13 71.86 135.72 9.62 

 Winter 58.74 48.17 58.31 6.64 8.71 160.04 0.75 

 Spring 211.84 196.15 172.00 22.59 18.53 176.75 4.34 

 Summer 59.15 49.18 143.16 1.35 7.45 110.67 2.62 

 Autumn 206.57 171.74 50.35 5.56 37.17 95.50 1.91 

Year 1-2030+i20 Annual 536.31 431.29 409.42 25.80 78.40 130.84 11.73 

 Winter 58.74 45.83 56.89 4.64 9.29 155.70 0.84 

 Spring 211.84 184.91 166.76 17.39 21.70 171.75 4.83 

 Summer 59.15 42.79 139.28 1.04 10.42 107.65 1.10 

 Autumn 206.57 157.77 46.49 2.74 36.98 88.35 4.95 

Year 1-2050 Annual 502.60 453.20 414.20 34.00 47.92 131.80 6.28 

 Winter 62.20 53.10 60.50 6.90 8.85 160.70 0.73 

 Spring 188.70 179.30 169.90 21.00 8.68 173.40 1.75 

 Summer 48.80 44.50 135.20 0.70 3.92 102.20 0.31 

 Autumn 202.90 176.30 48.60 5.50 26.47 91.20 3.49 

Year 1-2050+i10 Annual 502.60 438.27 406.56 31.12 62.02 129.50 8.37 

 Winter 62.20 52.51 59.61 5.72 9.99 158.30 0.98 

 Spring 188.70 175.00 168.99 20.96 10.84 172.70 2.33 

 Summer 48.80 41.43 130.99 0.51 4.55 99.10 0.41 

 Autumn 202.90 169.34 46.96 3.93 36.64 88.10 4.65 

Year 1-2050+i20 Annual 502.60 431.30 409.40 25.80 78.40 128.37 10.38 

 Winter 62.20 45.80 56.90 4.60 9.29 157.20 0.77 

 Spring 188.70 184.90 166.80 17.40 21.70 172.35 4.34 

 Summer 48.80 42.80 139.30 1.00 10.42 97.77 1.61 

 Autumn 202.90 157.80 46.50 2.70 36.98 86.66 3.67 
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Table 6. Simulated rainfall, runoff, infiltration, evaporation, deep percolation, soil water and 

erosion rates for rainfall conditions of year 2 (2013) under each scenario (2030 and 2050, and 10% 

(+i10) and 20% (+i20) increasing intensity). 

Year-scenario Period Rain 

(mm) 

Infilt. 

(mm) 

Evap. 

(mm) 

Dep Percol. 

(mm) 

Runoff 

(mm) 

Soil water 

(mm) 

Soil loss 

(Mg ha−1) 

Year 2-present Annual 530.5 435.4 412.4 44.40 92.60 117.80 7.28 

 Winter 14.5 12.3 62 12.8 0 136 0.00 

 Spring 195 165 160.1 9.4 29 127.8 2.29 

 Summer 93 63.1 114.6 0.2 27 70.1 2.39 

 Autumn 228 195 75.7 22 36.6 110.2 2.59 

Year 2-2020 Annual 510.7 428.3 407.8 47.7 81.12 109.4 6.67 

 Winter 11.8 11.7 62.9 12.5 0.00 136.4 0.00 

 Spring 176.6 153.0 157.0 6.6 22.93 123.9 1.80 

 Summer 77.6 59.8 111.1 0.1 17.61 66.9 1.31 

 Autumn 244.7 203.9 76.8 28.4 40.58 110.8 3.56 

Year 2-2020+i10 Annual 510.3 406.0 397.0 38.0 103.26 107.0 9.52 

 Winter 11.3 11.2 62.6 11.9 0.00 135.6 0.00 

 Spring 176.3 146.6 154.8 6.0 29.06 122.5 2.60 

 Summer 78.5 55.4 106.1 0.1 23.00 63.9 1.97 

 Autumn 244.2 192.8 73.5 20.1 51.20 106.5 4.94 

Year 2-2020+i20 Annual 509.7 382.9 385.0 29.0 125.79 104.2 12.95 

 Winter 11.8 11.7 62.3 11.1 0.00 134.6 0.00 

 Spring 170.9 135.1 149.9 4.5 35.31 119.1 3.54 

 Summer 83.0 54.6 102.7 0.1 28.24 61.8 2.75 

 Autumn 244.0 181.6 70.2 13.4 62.23 101.9 6.65 

Year 2-2050 Annual 437.2 390.7 390.4 31.1 45.41 103.6 3.14 

 Winter 12.0 11.9 64.1 11.2 0.00 134.6 0.00 

 Spring 154.1 140.2 152.4 4.7 13.26 119.4 0.71 

 Summer 59.6 52.6 104.4 0.1 6.87 61.4 0.32 

 Autumn 211.5 186.1 69.5 15.2 25.28 99.6 2.10 

Year 2-2050+i10 Annual 437.0 437.0 437.0 437.0 61.49 101.7 4.63 

 Winter 11.5 11.5 11.5 11.5 0.00 133.6 0.00 

 Spring 154.3 154.3 154.3 154.3 18.05 118.3 1.14 

 Summer 60.4 60.4 60.4 60.4 9.93 59.5 0.55 

 Autumn 210.8 210.8 210.8 210.8 33.51 96.1 2.95 

Year 2-2050+i20 Annual 436.1 356.4 372.3 20.4 78.87 99.3 6.48 

 Winter 12.0 11.9 63.2 9.8 0.00 132.4 0.00 

 Spring 149.5 126.2 146.5 3.5 22.84 115.4 1.63 

 Summer 64.0 50.4 98.1 0.0 13.46 57.7 0.84 

 Autumn 210.6 167.9 64.5 7.0 42.57 92.3 4.02 
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Table 7. Comparison of soil losses with and without terraces in the analyzed scenarios (SL: soil 

losses; D: deposition) 

Year/scenario Without terraces With terraces Year/scenario Without terraces With terraces 

Year 1 SL SL D (%) Year 2 SL SL D (%) 

Year 1-present 6.78 2.78 30 Year 2-present 9.55 3.92 39 

Year 1-2020 6.67 4.59 33 Year 2-2020 7.94 5.46 31 

Year 1-2020_i10 9.51 6.58 39 Year 2-2020_i10 8.8 6.08 30 

Year 1-2020_i20 12.95 8.83 32 Year 2-2020_i20 11.73 7.01 40 

Year 1-2050 3.14 2.16 40 Year 2-2050 5.35 2.72 41 

Year 1-2050_i10 4.63 2.35 22 Year 2-2050_i10 8.37 5.76 32 

Year 1-2050_i20 6.48 2.66 21 Year 2-2050_i20 10.38 4.26 35 

4. Discussion 

Soil losses recorded during the analyzed period were of the same order of magnitude as those 

observed in the area in previous years [8,10]. Annual soil losses were mainly recorded in a small 

number of events, with total values that exceed the soil loss tolerance rate established for Europe (0.3 

to 1.4 Mg ha−1 yr−1) [58] and higher permissible values established for arable lands, which range 

between 2.2 and 12 Mg ha−1 yr−1 [59,60]. The results confirmed the importance of extreme events on 

runoff generation and on annual erosion rates. For example, threshold values are considered 

permissible. 

The use of the Water Erosion Prediction Project (WEPP) gave satisfactory results to predict 

average annual soil losses. However, the model did not simulate all erosion events well, in particular 

those that generated very little runoff, and those that contributed more to total annual erosion. The 

former did not contribute significantly to total runoff and erosion. However, the most erosive events, 

which were usually concentrated in a short time interval and generated high runoff rates, were 

under-predicted. Nevertheless, the statistics used to analyze the performance of the model confirmed 

that the results could be considered satisfactory, taking into account that the calibration was carried 

out using daily data. Licciardello et al. [61] pointed out some limitations of the model when dry and 

wet conditions were considered together, and this could also be the reason for the lack of goodness of 

fit of all events. It can be observed that the statistics showed better fit for the validation than for the 

calibration period, which may seem strange. This result was attributed to the fact that during the 

validation period no extreme events were recorded. Despite these limitations, the model may be 

useful to compare the response regarding soil losses under different rainfall distributions and those 

that may be produced under different climate change scenarios.  

The simulated trends in precipitation associated with climate change for the study area showed a 

decrease in rainfall for the coming decades, with a greater decrease for 2050 than for 2030. However, 

due to the different trends in spring and autumn, the two main rainfall periods in the area of study, 

the effect may be different from year to year. For the years analyzed, spring rainfall decreased while 

autumn rainfall increased. The simulation of the erosion rates responded to the changes in runoff, 

which were affected by less water availability due to temperature increase. For the 2030 scenario, 

runoff volumes decreased between 4 and 8%, while erosion rates decreased 2 and 16% respectively. 

For the 2050 scenario, however, the differences in runoff between years were greater. Runoff rates 

decreased between 19.1 and 50.1% in the 2050 scenario, while erosion rates decreased between 34 
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and 56%. Despite the expected increase in erosion rates with climate change, for both rainfall 

distributions the simulation showed a decrease in soil losses. Similar results have also been indicated 

by other researches [33,34]. These authors simulated changes in erosion rates of similar magnitude 

for Greece and for Ireland under climate change scenario A. This means that additional factors may 

condition soil losses that were not included in the simulation. In this respect, some studies indicate 

that although changes in soil erosion are driven by changes in rainfall, they may be affected by 

complex interactions including changes in rainfall distribution and intensity and in land use and 

management, which should be considered when the effects of climate change are considered [35-37]. 

In this respect Routschek et al. [62] indicate that the impacts of land use, soil management and soil 

properties on soil erosion by water are greater than the effects of changing precipitation patterns. In 

the study area, vine cultivation has been the main land use for centuries and at present it is a strong 

economic motor. Management practices have changed during recent decades, but there is no 

perspective of change in the midterm to a different land use or to dedicate the land to other activities. 

The main changes suffered in the area, associated with labor mechanization, has implied an increase 

of soil degradation and soil losses [7,63], and for this reason knowledge of additional potential 

effects is needed in order to establish new control measures.   

One of the main changes in precipitation associated with climate change is the increasing 

strength and erosivity of rainfall events [64-66]. Evidence recorded in the area in different 

observatories during recent decades shows an increase in the maximum intensity of erosive events. 

The increase varied between observatories between about 12 and 20% [5]. The increase in rainfall 

erosivity has also been confirmed in other areas of Spain [67] in which erosion processes seem to 

increase, and also in other areas around the world [68-70]. In this respect, Shiono et al. [68] indicated 

an expected increase of 20% in the R-values compared with those in the recent past and predicted 

average erosion rates greater than 20% based just on the effects of the rainfall erosivity factor.  

The simulations carried out in this study with increasing rainfall intensities, for the different 

scenarios confirmed the effect of intensity on soil erosion with significant increases in erosion rates. 

The results showed that the erosion rates for the 2030 scenario, may be up to 21.8% higher than at 

present considering an increase of 10% in rainfall intensity and up to 47% higher when rainfall 

intensity increased by 20%, for one of the rainfall distributions. For the second rainfall distribution, 

soil losses may be up to 46 and 95%, respectively for an increase of 10 and 20% in rainfall intensity. 

For the 2050 scenario, the increase of soil erosion rates could reach 100% in relation to the predicted 

values without rainfall intensity change. Despite the decrease in precipitation, erosion rates may 

increase due to the effect of the extreme events. Under the two analyzed rainfall distributions, the 

results of the simulation reached higher annual soil losses, than the soil loss tolerance. Thus, under 

the hypothesis of an increase of these situations associated with climate change, the high erosion 

rates point out the need for establishing some soil conservation measures. 

The simulation of the soil terrace effect on soil losses confirmed its benefits. For the existing 

vine plantation pattern and the slope of the terrain, the construction of drainage terraces, 3 m width 

and spaced 30 m, i.e. every 10 vine rows, would reduce soil losses by about 45%, on average. The 

deposition simulated with the model was in agreement with observations carried out in the same area, 

where terraces were already constructed [11]. The function of the terraces was not only to evacuate 

the excess of runoff but to retain some of the sediments produced along the slope and prevent their 

removal from the field. The lowest reductions were observed in the driest situations and with the 

lowest erosion rates. The results of the simulation, regarding the reduction of soil losses, were in 
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agreement with previous simulations make at catchment scale using SWAT [71] and with those 

simulated or observed by other authors. Yang et al. [72] indicated a sediment yield reduction of about 

56% when applying flow diversion terraces separated uniformly 60 m on slopes ranging between 3 

and 8%. Even higher reductions in soil losses have been simulated. Thus Mwangui et al. [73] 

indicated that the introduction of parallel terraces reduced sediment losses by 85% and decreased 

surface runoff by 22%. Even higher reductions were found when contour planting is associated with 

terracing [74]. However, the effect of terraces may depend on the actual design of the terrace [75]. 

5. Conclusion 

The results confirmed the difficulties for obtaining predictions for soil erosion processes due to 

the high variability of rainfall recorded in Mediterranean conditions as well as the contributions of 

extreme events to annual soil losses. Soil losses simulated under the predicted trends in precipitation 

and temperature may give rise to higher erosion than at present for certain rainfall distributions when 

increasing rainfall intensity is considered. A 10% increase in rainfall may result in soil losses up to 

40% higher. Under these scenarios, there is a need to implement some soil conservation measures to 

reduce soil losses. The construction of drainage terraces, perpendicularly to the maximum slope, 3 m 

in width and separated 30 m between terraces may reduce soil losses significantly (up to about 45%). 
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