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Abstract: Coordinated truck-drone delivery has emerged as an important extension of the vehicle
routing problem (VRP), offering new opportunities to improve logistics efficiency, accessibility, and
sustainability. In this review, we synthesize the literature on truck-drone routing by examining three
interrelated themes: Vehicle routing and synchronization models, stochastic and dynamic operational
constraints, and payload-energy management. Early studies primarily formulate truck-drone delivery
as variants of heterogeneous or two-echelon VRP using mixed-integer linear programming (MILP)
to capture coupled routing decisions, drone endurance limits, and launch-retrieval feasibility, often
supplemented by heuristic or metaheuristic strategies to address computational scalability. More recent
research extends these formulations to stochastic and dynamic VRP settings by incorporating uncertain
customer availability, time windows, vehicle delays, and weather disruptions, reflecting a shift toward
adaptive routing under incomplete information. Parallel work on payload configuration and energy
management investigates modular loading and battery-swapping mechanisms, demonstrating how load
heterogeneity and energy constraints fundamentally reshape feasible routing structures. Extensions
to multimodal VRP variants, including electric vehicle-drone systems and van-robot hybrids, further
broaden applicability in dense and constrained urban environments. Despite these advances, most
models remain grounded in static or weakly stochastic assumptions, with limited support for real-
time updates or predictive decision-making. In this review, we identified the integration of data-driven
prediction and learning-based optimization within dynamic VRP frameworks as a critical direction for
advancing truck-drone delivery toward large-scale operational deployment.
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1. Introduction

The vehicle routing problem (VRP) has long served as a foundational model for optimizing freight
transport and distribution systems. As logistics networks become more complex, numerous variants of
the VRP have been proposed to reflect real-world delivery structures and constraints. Among these, the
integration of heterogeneous fleets and multi-echelon delivery systems has been particularly influential
in urban contexts, where large trucks often deliver to intermediate facilities or satellites, and smaller
vehicles such as drones, vans, or cargo bikes handle the last-mile distribution [1]. With the emergence
of lightweight and low cost aerial platforms, particularly unmanned aerial vehicles (UAVs) or drones,
the VRP has been extended to include truck and drone collaboration. These truck-drone VRPs explore
how drones can complement ground vehicles by leveraging their speed, flexibility, and ability to bypass
traffic congestion.

Hybrid systems that combine independent drones with truck-carried drones have been explored to
leverage the complementary strengths of trucks (capacity, range) and drones (speed, accessibility) [2].
Subsequent work formalized this multi-vehicle interaction more rigorously through the definition of the
two-echelon VRP with drones (2EVRPD), where multiple trucks function as mobile depots and drones
are permitted to perform several deliveries per sortie before returning [3]. This formalization represents
the first explicit problem statement for the 2EVRPD and has become a foundational reference point for
studies on truck-drone coordination.

Applications of VRP with trucks and drones generally fall into two broad categories: Urban delivery
and emergency logistics. In urban contexts, researchers have primarily addressed the challenges of
traffic congestion, limited road access, and regulatory restrictions. For example, large trucks are often
inefficient or prohibited in narrow inner-city streets, while European low-emission and zero-emission
zones further encourage the use of electric vans, cargo bikes, or drones for last-mile distribution [4]. In
contrast, emergency logistics emphasizes flexibility and resilience, as drones enable access to otherwise
unreachable locations such as rural households, mountainous areas, or disaster zones [5].

The integration of drones into VRP frameworks offers several distinct benefits. First, drones can
bypass traffic restrictions, flying directly between origin and destination without being constrained
by road conditions [2]. Second, they extend accessibility to remote or isolated areas that ground
vehicles cannot reach [5]. Third, they enhance delivery speed, providing faster service for time-critical
items [6]. Finally, drones enhance resilience in emergencies, maintaining service continuity during
hurricanes, floods, or pandemics when conventional transport is disrupted [5].

The remainder of this paper is organized as follows: In Section 2, we analyze the major application
scenarios of VRP with trucks and drones. In Section 3, we review key research contributions addressing
truck-drone synchronization. In Section 4, we examine the operational limitations of drones, including
endurance and payload capacity. In Section 5, we discuss the integration of novel vehicle types into
parcel-delivery systems. Finally, in Section 6, we summarize the research methods observed across
different scenarios and conclude with future research directions.

2. Applications of VRP with trucks and drones

As discussed, VRP plays a central role in optimizing logistics and improving the efficiency
of transportation systems. With the rapid advancement of technologies such as electric vehicles,
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autonomous drones, and real-time data analytics, VRP applications have expanded into increasingly
dynamic and specialized delivery contexts. In particular, emerging scenarios involving electric truck
delivery, drone-based last-mile distribution, and truck-drone collaborative systems have introduced
new challenges and opportunities, prompting the development of tailored VRP solutions for modern
logistics networks.

Early efforts to integrate drones into logistics were motivated by the challenge of remote
deliveries. The hybrid truck-drone delivery (HTDD) system combines trucks, truck-carried drones,
and independent drones in a three-layer framework. While the design promised high efficiency for
sparsely distributed customers, it also highlighted the routing complexity of coordinating multiple
delivery platforms [7], as illustrated in Figure 1.
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Figure 1. Hybrid truck-drone delivery (HTDD).

The accompanying HTDD formalizes this challenge mathematically for large-scale implementation,
underscoring the system’s potential to transform current delivery practices.

Building on the theme of hybridization, Wang et al. [2] introduced the VRP with drones (VRPD),
extending the classical capacitated VRP by enabling drones to travel with trucks, serve customers, and
rendezvous at service hubs. Their mixed-integer programming formulation with a branch-and-price
algorithm achieved 20% cost reductions and shorter delivery times compared to truck-only routing.
Unlike the remote-oriented HTDD, VRPD emphasized hub coordination and pointed to the importance
of improved drone battery technologies for further cost savings.

This line of research has since expanded toward multi-drone coordination. Leon-Blanco et al. [8]
addressed the truck-multi-drone team logistics problem (TmDTL) in which multiple UAVs assist a
truck along a delivery route. Using an agent-based modeling approach, they demonstrated scalability
to very large instances with up to 500 customers and eight drones, showing that distributed decision-
making can mitigate the local minima often encountered by centralized optimization methods. This
perspective complements the VRPD framework of Wang et al. [2] by shifting the emphasis from cost
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and travel-time efficiency toward scalability and robustness in multi-drone operational settings.

Other researchers prioritized minimizing customer waiting times. Moshref-Javadi et al. [9]
proposed the multi-trip traveling repairman problem with drones (MTRPD), where trucks repeatedly
launch drones from stops. Their hybrid Simulated Annealing (SA)-Tabu Search algorithm significantly
reduced waiting times, with key drivers being depot location, UAV-to-truck speed ratio, and reuse of
UAVs. Similarly addressing synchronization but from another angle, Gonzalez et al. [10] introduced
the truck-drone team logistics (TDTL) model, removing the assumption of fixed rendezvous points
by letting drones recharge flexibly at dynamically chosen truck stops. Their iterated greedy plus
SA heuristic proved scalable across more than 1,000 benchmarks, suggesting readiness for real-
world deployment. Both entailed extending the VRPD and TmDTL lines by focusing on operational
constraints like rendezvous flexibility and time-sensitive service.

Beyond these, Karak et al. [11] explored the hybrid vehicle-drone routing problem (HVDRP),
emphasizing pickup and delivery integration. Their hybrid clarke-wright heuristic showed that
simultaneously optimizing vehicle and drone routing yields superior cost savings compared to
sequential planning. Later works built on this integrated perspective by incorporating sustainability
concerns. For instance, Kyriakakis et al. [12] and Mara et al. [13] extended HVDRP into electric
vehicle (EV)-drone hybrids, examining charging infrastructure and power-sharing between vehicles
and drones. Moreover, Morim et al. [6] introduced robot depots as intermediate stops, showing further
potential for operational cost reduction. These directions represent the evolution from early three-layer
systems (HTDD) toward modern, multi-modal frameworks that combine drones, trucks, EVs, and new
infrastructure concepts.

Finally, Sluijk et al. [14] highlighted another frontier by incorporating stochastic demand into
a 2EVRP. Their chance-constrained formulation ensures that second-echelon routes remain feasible
with high probability, and their column-generation algorithms efficiently handle correlated or data-
driven demand distributions. This complements deterministic truck-drone research by embedding
uncertainty directly into the model, showing how hybrid logistics systems must not only optimize
routes and infrastructure but also remain robust to demand fluctuations.

3. Synchronization of trucks and drones

A central challenge in urban truck-drone delivery systems is the synchronization of heterogeneous
vehicles, particularly ensuring that drones can be launched, retrieved, and resupplied in coordination
with truck routes. Several seminal researchers have approached this problem from different
perspectives.

Kitjacharoenchai et al. [3] explicitly modeled truck-drone synchronization where multiple drones
were deployed from a single truck. They proposed a decomposition-based truck and drone routing
clustering (DTRC) approach combined with large neighborhood search (LNS) to minimize total
delivery time. While effective, their model assumes only truck-carried drones, overlooking the
potential of independent drones or additional modalities. This limitation is partially addressed in Wang
et al. [7] who proposed a HTDD system in which truck-carried and independent drones must be jointly
scheduled. In their formulation, the truck acts as a mobile depot for a set of carried drones, while
independent drones operate directly from the depot to serve customers in parallel. The scheduling
algorithm coordinates three platforms (truck, truck-carried drones, and independent drones) to exploit
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their complementary advantages: The truck provides capacity and mobility, truck-carried drones
extend coverage around the truck’s route, and independent drones enable direct long-range sorties
without waiting for truck synchronization. By considering both drone types simultaneously, Wang
et al. [7] explicitly modeled interdependence between fleets, demonstrating significant cost savings
compared to systems limited to truck-carried drones only.

Similar to Kitjacharoenchai et al. [3], Moshref-Javadi et al. [9] developed a mixed-integer
programming formulation to synchronise drone launches and returns along truck routes, with the goal
of reducing customer waiting times. Their truck and drone routing algorithm (TDRA) demonstrated
strong performance for realistic e-commerce cases. However, the researchers considered homogeneous
fleets and did not extend to multiple drones or heterogeneous vehicle types. Researchers such as
Leon-Blanco et al. [8] studied multi-drone fleets through an agent-based approach, highlighting the
scalability of coordination when several drones operate concurrently, thereby complementing the
earlier single-drone synchronization frameworks.

Wang et al. [2] introduced the VRP with drones (VRPD), where drones could rendezvous with
multiple trucks at service hubs. Their branch-and-price solution captured endurance and payload
constraints explicitly, making it a more realistic model for urban logistics. Yet, this formulation
excluded independent drones and did not consider additional ground modalities. In contrast, Morim
et al. [6] extended synchronization to a tri-modal setting, introducing robot stations alongside truck-
drone tandems. Their general variable neighborhood search (GVNS) demonstrated that integrating
robots reduces parcel capacity bottlenecks and improves coverage, although at the cost of added
operational complexity. While synchronization has been addressed in increasingly sophisticated
ways from single truck-drone pairings to multi-drone, multi-truck, and robot-augmented systems,
no single study fully integrates all dimensions of coordination. This reveals a research opportunity
for unified models that can simultaneously accommodate multi-drone fleets, endurance and payload
constraints, and multimodal collaborations in realistic urban settings. As shown in Figure 2, these
studies collectively illustrate the evolution of synchronization strategies, from early truck-carried drone
models to complex multi-modal systems, highlighting progress and remaining gaps in the literature.
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Figure 2. Truck and drone synchronization.
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4. Limited drone endurance and capacity

The short battery life and low payload of drones remain the most cited barriers to scaling hybrid
truck-drone systems in urban delivery. Early research sought to mitigate this by tightly coupling drones
with truck routes. For instance, Kitjacharoenchai et al. [3] embedded drones into truck tours using
decomposition-based clustering and large neighborhood search. By launching drones from the truck
and requiring them to return before the truck moves on, the effective operating radius of drones was
extended. This approach works because the truck acts as a mobile depot, enabling drones to cover
short hops around the truck’s path rather than attempting long-haul flights. Yet, such a design restricts
flexibility, since only truck-drone tandems are considered. Researchers later addressed this rigidity:
Wang et al. [7] added independent drones, enabling long-range sorties alongside truck-carried drones,
while Kyriakakis et al. [12] and Mara et al. [13] integrated EVs into the system, directly modeling how
payload weight and charging infrastructure influence endurance. These extensions show that endurance
limits can be tackled not only by constraining drones within truck tours, but also by introducing
additional fleet heterogeneity (independent drones, EVs) that absorb demands drones cannot meet
alone.

Another stream of work approached endurance constraints by directly encoding them in
optimisation formulations. Wang et al. [2] accounted for drone range and payload in a VRPD solved by
branch-and-price, producing cost-efficient delivery plans under strict flight limits. However, because
this remained a single-echelon system, opportunities for cross-modal synergy were under exploited.
This gap was later bridged by Morim et al. [6], who added robot stations as a third modality, and
Anderluh et al. [4], who showed that considering emissions, noise, and congestion as additional
objectives changes how endurance trade-offs should be balanced. These complementary contributions
highlight that endurance is not just a technical constraint but part of a broader system design problem:
Extending reach may require adding new vehicle types or considering social and environmental
objectives that make endurance constraints more binding in practice.

Heuristic and metaheuristic approaches have also emphasized endurance feasibility. Euchi
et al. [15] combined mixed integer linear programming (MILP) with a hybrid genetic-sweep algorithm
to ensure drones remained within their endurance limits while minimizing cost. Yet, this solution
prioritized feasibility and efficiency under static assumptions. Complementary work has shown
why static modeling is insufficient: Kyriakakis et al. [12] explicitly modeled how payload weight
affects energy consumption, and Lichau et al. [5] incorporated hurricane conditions, where endurance
decreases dynamically with wind intensity. These studies demonstrate that treating endurance as a fixed
constraint underestimates its variability; instead, it is influenced by context such as payload weight or
environmental disruptions, requiring adaptive modeling.

Capacity constraints have likewise shaped the problem model. Moshref-Javadi et al. [9] designed
drones as single-parcel couriers, leaving bulk deliveries to the truck. This assumption reflects
operational realism but sacrifices efficiency. Karak et al. [11] extended this by allowing multi-customer
sorties, and Mara et al. [13] incorporated charging stations to coordinate EVs and drones under
endurance limits. These extensions show that endurance and capacity challenges can be eased when
infrastructure is introduced (charging/robot stations) or when operational rules are relaxed (multi-
customer sorties). Importantly, new Al-driven methods offer further flexibility: Zhou et al. [16]
introduced large language model (LLM)-enhanced Q-learning for multi-drone scheduling. These
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methods complement classical optimization by learning adaptive policies, offering a way to exploit
fleeting opportunities that static endurance or capacity models cannot capture.

In summary, these studies show that endurance and payload limits are rarely solved by one
mechanism alone. Embedding drones in truck tours extends range but limits flexibility; adding
independent drones or EVs increases heterogeneity but raises coordination costs; and installing
charging or robot stations expands effective endurance but adds complexity. Complementary methods
from exact optimization to reinforcement-learning reveal that endurance is best managed when fleet
design, infrastructure support, and adaptive scheduling are jointly considered. Relationships among
these studies are summarized in Figure 3, illustrating how different approaches address endurance and
capacity from multiple angles.

Limited Drone

Endurance & Capacity
Truck-Drone Adaptive Infrastructure
Tandem Focus Scheduling Support/EV Recharging
Moshref-Javadi et al. Mara et al. Kyriakakis et al. q Zhang et al. Mara et al.
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Kitjacharoenchai et al.
(2020)

Figure 3. Limited drone capability.

5. Integration of novel vehicle types

The integration of novel vehicle types in logistics has evolved from isolated truck-drone pairings
toward multi-echelon systems where EVs, UAVs, and ground robots interact under shared energy,
spatial, and temporal constraints. This evolution is not driven by the introduction of new modes
alone, but by attempts to overcome the structural limitations exposed in earlier models; energy
feasibility, limited accessibility, synchronization complexity, and the inability to handle time-
dependent operations.

A first wave of research framed integration primarily as an energy-endurance problem, particularly
through EV-drone coordination [12]. These researchers used MILP-based formulations to explore the
synergies between EV battery reserves and drone sortie feasibility, but they remained tied to road-
network assumptions and static charging logic. Subsequent extensions introduced charging-station
scheduling [13], addressing energy feasibility more realistically. However, both studies revealed a
structural gap: Even well-energized motherships cannot solve spatial inaccessibility in dense urban or
pedestrian-restricted regions.

This gap motivated a second trajectory in which vehicle integration becomes a spatial accessibility
problem. Van-robot systems [1] illustrated how terrestrial robots extend reach into non-road zones
where trucks and drones face restrictions on safety or airspace use. This represented an explicit
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response to the accessibility limitations of EV-drone systems: When endurance is no longer the
bottleneck, the next constraint is domain of operation. Yet, in doing so, robot-based approaches
introduced new synchronization challenges (handoff points, station availability, and work-zone
partitioning), which EV-drone formulations largely abstracted away.

A third strand emerged when researchers attempted to combine endurance and accessibility into
unified logistics architectures. Truck-drone-robot combinations [6] embody this shift: Drones offer
rapid coverage, robots offer fine-grained access, and trucks provide high-capacity mobility. Their
modeling approach, MILP for assignment plus heuristics for routing, reflects a methodological
adaptation to the increased coordination complexity. These systems explicitly bridge the limitations
observed in earlier EV-drone work (limited reach) and robot-based delivery (limited speed and range),
but they treat operations as static, with fixed release times, known demand, and predetermined station
locations.

The most recent progression reverses the traditional hierarchy of hybrid systems and recasts
integration as a temporal throughput problem. By using UAVs as first-echelon carriers and UGV robots
for the last mile, the UAV-UGV multi-trip architecture, Zhou et al. [17] synthesized the endurance-
aware perspective of EV-drone studies [12, 13] with the accessibility-oriented logic of robot-assisted
delivery [1, 6]. Importantly, it extended the modeling paradigm by incorporating multi-trip schedules
and package release times, directly addressing the static-time assumption that constrained previous
multimodal systems. Through this connection, Zhou et al. [17]’s formulation not only generalized
earlier work but also exposed the next bottleneck: The absence of mechanisms to handle stochastic or
real-time demand conditions.

Across these connected developments, as summarized in Table 1, the common limitation is
determinism: Demand does not arrive in real time, travel times do not fluctuate, and inter-vehicle
coordination is not adaptive. As the field progresses, integrating novel vehicle types requires not
only combining new modes but restructuring multimodal logistics into uncertainty-aware, dynamically
coordinated ecosystems, where the synergy between heterogeneous vehicles is governed by adaptive,

data-driven intelligence rather than static synchronization rules.
Table 1. Integration of novel vehicable types.

Vehicle Key differentiator Relation to earlier works
Kyriakakis EV + Energy-efficient EV mothership; . .
(2022) Drone ignores recharging infrastructure Establishes energy foundation
EV + . .
Mara Drone + Adds charging stations and Extends infrastructure realism
. endurance scheduling
(2023) Charging
Van Ground robots for Focuses on access and
Yu o .
Robot pedestrianised areas safety constraints
(2022)
Truck + . .
Morim  Drone + Multimodal ground-aerial-robot Explores spatial complementarity

(2024) Robot Stations  cCOPeration

Reverses hierarchy:

airborne main carrier +
Drone + Expands the temporal-structural

Zhou UGV autonomous ground finisher; inteeration of vehicle tvpes
(2025) introduces multi-trip coordination & yP

and package release times
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6. Summary and conclusions

We reviewed three dominant research directions within truck-drone coordinated delivery systems.
The first and most established direction concerns route planning, where authors construct formal
mathematical models to encode system constraints and vehicle interactions. MILP remained the
predominant framework [6, 11, 13], providing a basis upon which exact or heuristic methods generate
initial feasible solutions that are subsequently refined using metaheuristics. Alternative formulations,
such as Markov chains for modeling stochastic state transitions [18], illustrate an emerging interest in
capturing dynamic behavior more rigorously.

The second direction focuses on time-window constraints and truck-drone operational conditions,
which introduce uncertainty into service feasibility and route stability. For instance, Jeong et al. [19]
assumed customers be available only for a fixed time window. Thus when the time window was missed,
the delivery task was skipped automatically, whereas Teimoury et al. [18] assumed probabilistic
customer availability, generating random delivery failures that necessitated adaptive rescheduling.
These works highlighted the fragility of static routing plans and emphasize the need for dynamically
responsive optimization, especially when disruptions arise from vehicle delays, environmental factors,
or incomplete information.

The third direction is drone’s payload management, driven by the operational limitations of
drones with respect to endurance and carrying capacity. Studies in this stream explore how payload
configuration affects routing feasibility, service coverage, and drone energy expenditure. Kyriakakis
et al. [12] examined equal-sized but variably weighted payload modules, while Masmoudi et al. [20]
conceptualized drone batteries as swappable payload elements handled on the truck in the same
manner as parcels. These insights underscored the strong coupling between payload decisions, energy
constraints, and synchronization requirements across heterogeneous vehicles.

It is important to recognize that these research directions are interdependent rather than mutually
exclusive. Many researchers combine multiple themes, for example, embedding payload logic within
stochastic routing models or integrating uncertainty handling within MILP formulations to construct
a more realistic representation of truck-drone operation. However, most researchers assume static
information, deterministic travel times, and limited forms of uncertainty. Few researchers address real-
time node arrivals, dynamically changing customer states, or learning-based prediction of profitable
delivery opportunities, which may be opportunities for future research on truck and drone collaborate
delivery.
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